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 Abstract  

Hantavirus pulmonary syndrome (HPS) is a zoonotic disease associated with the deer 

mouse (Peromyscus maniculatus) in the United States. Prediction of increases in deer 

mouse population density could result in advance warning of high-risk conditions and 

help direct public health interventions. We used temperature, precipitation, and monthly 

counts of rodents captured at a Montana trapping site to develop two causal and 16 

univariate forecasting models as well as to compare their efficacy in predicting deer 

mouse population densities. A naïve model, which carried forward the last observed 

population abundance value, was used as a basis of comparison. We generated 12 

forecasts over a rolling origin fixed three-month window over three years. Only the 

univariate state-space local level models outperformed the naïve model. Failure of the 

causal models may be related to their dependence on accurate forecasts of temperature 

and precipitation variables well into the 3-month forecast horizon. Future models will 

incorporate remote measures of habitat quality including satellite-derived indices of 

greenness and primary productivity. 

 
Introduction 

 In the southwestern United States, in 1993, there was a sudden outbreak of severe 

respiratory disease with a case fatality exceeding 50%. This disease, now called 

hantavirus pulmonary syndrome (HPS), was shown to be caused by a previously 

unrecognized virus, Sin Nombre hantavirus (SNV), which is carried by the deer mouse 

(Peromyscus maniculatus). Following the development of diagnostic reagents and the 

education of physicians to recognize the disease, HPS was detected throughout the range 

of the deer mouse in the US. As of March 2007, 465 cases had been confirmed in 32 



 3

states (Fig. 1). Further investigations have now shown that there are many more 

hantaviruses in the Americas. At least 37 hantavirus genotypes have been described in 

association with an approximately equal number of rodent species in North, South, and 

Central America. 

 

 

Figure 1: Distribution of the deer mouse in North America (shaded) and locations of 465 cases of 
hantavirus pulmonary syndrome in the USA as of April 1, 2007. Cases outside range of the deer 
mouse were associated with other hantaviruses and host species (Special Pathogens Branch, 
Centers for Disease Control and Prevention). 
 

There is no vaccine and no specific treatment for HPS, so the best control 

measure is prevention. Because the development of the most effective intervention or 

prevention strategies depends on a thorough knowledge of the ecology of hantaviruses in 

nature, the U. S. Centers for Disease Control and Prevention (CDC) initiated ecological 

investigations of hantavirus hosts soon after SNV was discovered in 1993. An important 
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part of these investigations has been a series of long-term mark-recapture studies of deer 

mouse populations in the southwestern United States (Mills et al., 1999), and Montana 

(Douglass et al., 2001). These studies have allowed investigators to follow deer mouse 

population densities and associated environmental variables (e.g., rainfall, temperature, 

habitat quality) over time.  

Through analysis of the data from these studies we have been able to associate 

increases in rodent numbers at certain sites with increases in human cases of HPS (Yates 

et al. 2002). Knowledge of this association allowed successful prediction of periods of 

increased risk of human disease and the publication of advanced warning (CDC, 1998, 

1999), possibly resulting in reduced morbidity and loss of life. Nevertheless, these 

predictions provided a short lead time, and they were only possible for localized areas 

where rodent populations were being monitored. In an effort to provide predictions with 

greater lead time over wider geographic areas, our attention recently has focused on the 

measurement of environmental factors associated with increases in rodent numbers (e.g., 

weather and habitat quality), and the development of mathematical models to predict 

rodent population abundance (Mills and Childs, 1998).  

It has been hypothesized that increases in deer mouse population abundance are 

associated with environmental changes that follow a bottom-up, “trophic cascade” 

(Figure 1, Mills and Childs 1998, Yates et al. 2002). For example, the 1993 outbreak of 

HPS in the southwestern United States was preceded by an El Niño southern oscillation 

event that brought unusually high rainfall to the normally arid Southwest, resulting in 

improved vegetation quality, abundant food supplies and eventually, dramatic increases 

in rodent populations. The existence of such a cascade suggests that deer mouse 
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population abundance (and thus human risk for HPS) might be forecast by quantifying 

the successive relationships among rainfall, food supply (as indexed by vegetation 

quality), and rodent population density and using weather variables as predictors.  

 Because of the universal availability of meteorological stations, weather 

(especially rainfall) is one of the easiest parameters in the trophic cascade to measure. 

Additionally, weather is the furthest “upstream” of any of the parameters in the cascade 

and thus, provides the greatest lead time for developing and implementing disease 

prevention interventions. Predictive models based on local weather data would use 

readily available data, be geographically specific, and provide the maximum advance 

warning. Nevertheless, we recognize that the same amount of rainfall can have totally 

different effects on vegetation (and thus on rodent population growth) depending on a 

multitude of factors including location, slope, topography, soil type, altitude, vegetation 

type, etc. Thus the stochastic effects of the numerous variables that intercede between 

weather and food supply might render weather variables as unreliable predictors. Because 

of their ready availability, long lead time, and potential utility, it was imperative to 

conduct a thorough and intensive forecasting experiment using weather variables and 

employ the newest and most powerful forecasting techniques available.  

 In the process of this test, we introduced a number of novel approaches, including 

the combination of causal and univariate methods, the comparison of state space methods 

to more traditional models, the use of four versions of the Theta method, the use of a 

rolling origin in the comparison of forecasting methods, and the use of measure of 

forecast accuracy that combined several standardized conventional criteria. 
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We hypothesized that we would be able to use variables derived from local 

weather conditions (temperature and precipitation) combined with monthly 

measurements of deer mouse population density to predict future deer mouse population 

density over a 3-month forecasting horizon. We invited four experts from three countries 

to use state-of-the-art forecasting tools that were in their area of expertise. Investigators 

were provided identical datasets including rodent abundance and weather variables and 

given 9 months to develop a predictive model. The approaches evaluated in this paper 

included 2 conditional and 16 univariate forecasting models. The accuracy of each model 

was assessed using identical criteria. We addressed three principal questions: (1) Can we 

develop an effective forecasting model using rodent abundance and local weather 

(temperature and precipitation) data? (2) Are causal models superior to univariate 

models? (3) Can we develop objective criteria for measuring forecast accuracy that allow 

us to rank our models in order of successful prediction? 

This is one of the first attempts to bring together mathematicians, ecologists, and 

public health scientists to address an important public health problem. We hope that this 

preliminary attempt at combining our talents will result in improvements in the science in 

all three fields and lead to additional interdisciplinary collaborations to address problems 

related to the prevention of disease.  

Methods 

Measures and Data collection 

 Because of the completeness of the data, relative simplicity (low species 

diversity) of the rodent assemblage, and large numbers of deer mice, we chose the 

Cascade, Montana trapping site in Central Montana to test our forecasting tools. 
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Beginning in 1994, rodents were trapped on three 100 x 100m trapping grids consisting 

of 100 Sherman live-capture traps spaced at 10m intervals. The 3 grids were located 1 to 

3 km apart in grassland habitat, at an elevation of 1250m, on a working cattle ranch. 

Trapping was conducted for 3 consecutive nights each month. Captured rodents were 

weighed and measured and affixed with a uniquely numbered ear tag so that they could 

be identified upon recapture in subsequent months. To measure population abundance, 

monthly captures were used to compute minimum number alive (MNA) from June 1994 

through November 2005 (Fig. 2). MNA in month X is calculated as the number captured 

in month X plus those not captured in month X but captured in at least 1 previous month 

and at least 1 subsequent month (Chitty and Phipps, 1966).  

Figure 2: MNA time series for deer mice in Cascade, Montana 

 

 

 

 

 

 

 

 

 

 

Possible predictor series included monthly weather data obtained from the 
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predictors. They included the sum of cooling degree days at lag 2 months, the sum of 

monthly precipitation at lag 5, the low minimum monthly temperature, and the sum of 

monthly precipitation at lag 2 (Fig. 3). The sum of cooling degree days per month is a 

measure of the amount of cooling needed for warm months. The number of cooling 

degree days is the difference obtained by subtracting 65° Fahrenheit from the average 

daily temperature, for each day that the average daily temperature surpasses that 

threshold (there are no negative cooling degree days). The sum of monthly cooling 

degree days is the sum of these differences (Source: National Oceanic and Atmospheric 

Administration World Wide Web site: 

http://answers.noaa.gov/noaa.answers/consumer/kbdetail.asp?kbid=348&p=t). Series that 

were not significant predictors were the sum of monthly snow (inches), maximum 

monthly temperature, minimum monthly temperature, average monthly temperature, sum 

of monthly heating degree days, and mean monthly minimum temperature (all 

temperatures in degrees F). 

Because the abundance of deer mice is related to human risk, the level rather than 

the rate of change is of interest. In this form, this series was nonstationary, containing 

multiple level shifts, outliers, and end-effects (i.e., sudden, large level or slope shifts just 

before the point of forecast origin). Depending upon the model applied, there were at 

least 17 level shifts and 3 outliers within the series or forecast horizons.  
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Figure 3: Occasionally significant weather predictor series 

 

  

Forecasting Models 

In the search for a useful predictive model, 18 forecasting models were applied. 

Two conditional (“causal”) forecasting models used readily available weather predictor 



 10

variables. Those were 1) a transfer function model using Autobox version 6.0 and 2) a 

state space model using STAMP version 7.0, both of which could incorporate dynamic 

regressors. STAMP, in contrast to the single source of error state space method (Ord, K., 

Koehler, A. & Snyder, R, 1997), formulates the state space model with separate error 

terms for each random component. STAMP was used for state space modeling because it 

contained an augmented Kalman filter algorithm that could model and forecast 

nonstationary series. The augmented Kalman filter partitions the state vector into 

stationary and nonstationary components and then applies a diffuse prior distribution to 

initialize the weighting of the nonstationary components in the Bayesian sequential 

updating process. The regressor series observed to be statistically significant within some 

of these models were described above. Only the Autobox and Stamp “causal” models 

employed dynamic predictors.  

 Sixteen of the forecasting methods were univariate. These included 3) univariate 

Autobox, 4) Forecast Pro: expert system, which alternated between an ARIMA (0,1,0) or 

simple exponential smoothing model, 5) simple exponential smoothing (Stata was used 

because it performed exceptionally well compared to the National Institute of Standards 

and Technology Criterion datasets), 6) damped trend (SPSS v.15), 7) damped trend 

(Forecast Pro v 5), 8) Holt-Winters linear trend (Stata v. 9.2), 9) Holt-Winters additive 

seasonal (Stata), 10) Holt-Winters multiplicative seasonal (Stata), 11) state space local 

level model [STAMP-LLM], 12) state space local level model plus interventions (Stamp-

LLM+interv), 13) original Theta AN (Assimakopoulos and Nikolopoulos) method, 14) 

Theta with optimal weighting, 15) generalized Theta, 16) Theta HB (Hyndman and 

Billah’s version in R), and 17) Neural Networks (Feedforward with an exhaustive grid 
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search) (ANN FF). 18) A naïve model, in which the last actual MNA value was carried 

forward throughout the length of the three month forecast, is used as a basis for 

comparison.  

The STAMP 7 and Autobox 6 causal models include dynamic regressors and 

interventions. The STAMP model includes a local level term, while the Autobox model 

includes a global intervention term. STAMP interventions include user-identified and 

modeled level shifts and additive outliers, while Autobox interventions include level 

shifts, additive outliers, and seasonal pulses. STAMP dynamic regressors, selected with 

PcGets version 1, generally included the sum of cooling degree days at lag 2 and 

occasionally the sum of precipitation at lag 5. Autobox dynamic regressors generally 

included the sum of cooling degree days at lag 2 and much less frequently the other three 

predictor series (low monthly minimum temperature, and sum of monthly precipitation at 

lags 2 and 5) displayed in Figure 3. Although the sum of cooling degree days at lag 2 was 

frequently significant, the size of its effect was very small. For example, an increase in 

one cooling degree day at lag 2 accounted for an increase in one more mouse tallied per 

month in the STAMP models. 

The univariate models used different methods to forecast MNA. The state space 

models were run exclusively with STAMP because it uses an augmented Kalman filter, 

which can handle nonstationary time series. The state space models were based on a local 

level model, a random walk plus noise. When interventions were included in the 

univariate context, this reduced the model to a simple exponential smoother plus 

interventions. However, the interventions were identified and modeled by the user. 

Damped trend, without a seasonal component, forecasts were run with Forecast Pro and 
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SPSS. Forecast Pro was also used as an expert system, in which it alternated between an 

ARIMA (0, 1, 0) and a simple exponential smoother (SES) model. Four versions of the 

Theta model were tested: 1) The original Assimakopoulos and Nikolopoulos Theta model 

(Theta AN), 2) Hyndman and Billah’s version of Theta in R (Theta HB), 3) an Optimal 

Weighting version which optimized weights on a three month out of sample segment of 

the data, and 4) a Generalized Theta, which combined 50% L(0) and 40% L(2) with 

additional Theta lines (L = -1,1,0,1,2,3) for the remaining 10% while optimizing on the 

last 12 months to obtain the forecast. 

Forecasting Protocol 

There were 138 months (11.5 years) in the MNA series, from June 1994 through 

November 2005, inclusive. We began forecasting three months ahead in November 2002 

[month 102]. After each 3-month forecast, we rolled the forecast origin ahead for one 

season (three months). For example, the origin of the forecast was rolled ahead one (three 

month) season for each forecast [102, 105, . . . ,135] so that the next forecast extended 

over the next season. Seasons were defined as winter: December -- February; spring: 

March -- May; summer: June -- August; and fall: September -- November. The process 

was reiterated until there were no more forecasts to be generated. In sum, 12 three month 

ex ante forecasts were generated.  

The comparative analysis was not done as a blind experiment. The decision to 

perform this comparative analysis was made after several of the forecasts had already 

been generated. Forecasters were not blind after generating their first complete set of 

forecasts and most forecasters submitted multiple sets of forecasts.  

Principal Measures of Forecast Accuracy 
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We assessed the accuracy of forecasts with multiple measures. We used mean 

absolute error (MAE, eq. 1) to obtain an absolute measure of error, mean absolute 

percentage error (MAPE, eq. 2) to place MAE on a comparable scale, median absolute 

percentage error (MedAPE, eq. 3) to avoid outlier distortion, and percent worse than 

naïve (last value carried forward, eq. 4) to obtain a good relative measure.  

 

 

  

 

 

 

 

 

 

MedAPE: Midpoint of sorted MAPE for 3 month forecast horizon. (Eq. 3) 
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baseline when forecasts are of very small numbers, but it contains no scale and is 

vulnerable to outlier distortion. By comparison, MAPE has a comparable scale, but it is 

vulnerable to distortion from outliers or forecasts of small numbers. For example, if there 

is but one mouse, a forecast of two mice can have a MAPE of 100%. MedAPE has good 

outlier protection, yet no control for difficulty in forecasting. Percent worse is the 

complement of percent better. As a percentage of counts of whether forecast is better than 

the absolute error of the naïve forecast, it should provide good outlier protection, good 

reliability, and maintain the same direction of accuracy (with more accurate measures 

having lower scores) as other measures. When the accuracies of models or methods are 

similar, percent worse may have difficulty distinguishing among them. 

 

Results 

 We developed 18 forecasting models and compared their forecast accuracy using 

several measures. The 16 “univariate” models had a smaller mean absolute error and 

mean absolute percentage error than the 2 “causal” models (Figs. 4, 5). 

  

 

Figure 4: MAE by type     Figure 5: MAPE by type 
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However, outliers may have distorted the mean measures in the horizontal bar charts. 

Box-plots showing medians for the two classes of forecasts suggest that the causal 

models might slightly outperform the univariate models (Fig 6).  

 

 

 

 

 

 

 

 

 

 

Figure 6: Box-plots of absolute percentage error and absolute error by type 

 

  We graphed forecast accuracy in terms of MAPE with error bars representing +/- 

2 standard deviations (Fig 7). Because the whole population of forecasts is contained in 

our dataset, we did not require hypothesis testing with standard errors. Although these 

distributions may not be normal, the overlap of the error bars, suggests that there is no 

clear way to identify a single best forecast using MAPE.  
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Figure 7: MAPE with plus or minus 2 standard deviation bars by method 

 

 To determine if MAPE is distorted by outliers we graphed the medians of the 

different methods, which are much more resistant to outlier distortion than the mean (Fig 

8). The more extreme observations, on the right-hand sides of the distributions, were 

probably distorting the means, so we could not rely only on average measures. However, 

the interquartile ranges greatly overlapped, indicating that many of these methods had 

similar accuracy. 
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Figure 8: Box –Plot of MedAPE 

 

We sorted our methods by forecast accuracy, as measured by MAE, MAPE, MedAPE, 

and Percent worse (Tables 1 – 4). Methods are sorted in order of decreasing accuracy for 

MAE (Table 1), MAPE (Table 2), MedAPE (Table 3), and percent worse (Table 4).  

 

 

Table 1: Forecasting models sorted by MAE 
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Table 2: Forecasting models sorted by MAPE 

            

 

 

Table 3: Forecasting Models sorted by MedAPE 
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Table 4: Forecasting models sorted by Percent Worse 

                   

 

We also sought to distinguish one group of forecast methods from the others in 

accordance with measures of forecast accuracy—absolute error, absolute percentage 

error, and error squared. We used Classification and Regression Trees (CART 6.0), with 

a twoing splitting criterion, to split the methods according to levels of the forecast 

accuracy criteria. Because cross-validation revealed only 11.6% correct classification, 

these results were discarded.  

 

Discussion  

Our primary research question addressed the development of an effective 

forecasting model using locally available weather variables. Although two causal models 

were developed, they had lower accuracy than the naïve model that simply brought 

forward the previous MNA value across the 3-month forecast horizon. With a three 

month forecast horizon, we were not able to develop an effective forecast based on a 
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causal model using weather (temperature and precipitation) predictor variables. To 

answer our second research question about the relative accuracy of causal versus 

univariate models, by most measures, the causal models were inferior to most univariate 

models. We will discuss possible reasons for the failure of the causal models below. 

Finally, we employed four criteria of forecast error to indicate forecast accuracy.  

It was difficult to determine which models were better because the measures of 

forecast accuracy for so many of these models were almost identical. A Classification and 

Regression Trees (CART 6.0) program provided an overall correct classification of only 

11.6%. Thus we were not able to use CART to define cut-points to construct an ordered 

typology of the preferred methods. Bagging (bootstrap aggregation) resulted in overall 

correct percentages of classification of less than 10 percent. The accuracies of these 

methods were very similar, given the size of the series and the number of forecasts 

generated.  

The most accurate model for our difficult series depended upon the forecast 

accuracy criterion is used. If we employ the MAE, MAPE, and MedAPE, the state- space 

local level model (STAMP LLM) appears to be the most accurate. If we employ the 

percent worse measure, this method is tied with the original Theta developed by 

Assimakopoulos and Nikolopoulos along with the Billah and Hyndman versions of Theta 

method implemented in R. The top six to nine models, regardless of the forecast accuracy 

criteria employed, seem almost indistinguishable in forecast accuracy. Were we to look 

for those methods that appear among the top six ranked in terms of accuracy for at least 

three of these forecast accuracy criteria, we discover the state space (STAMP) local level 

model, state space local level model plus interventions (STAMP-LLM + interv), Theta 
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(AN) , Theta (BH), and the simple exponential smoother (Stata) methods. If we were to 

examine the top nine ranks for models that appeared in at least three criteria, we could 

add to the foregoing set damped trend (SPSS), damped trend (Forecast Pro), as well as 

the naïve model. Moreover, there is no simple, easily made, hard and fast cut-point 

among the accuracies indicated in the above tables.   

Given the numerous level shifts and end-effects that characterize this series, it 

would be expected that models containing local level adjustment would provide the best 

forecasts and, indeed, the top performers in the first two groups included local smoothing. 

Two outstanding performers were state space models with the augmented Kalman filter, 

which allows modeling nonstationary series. The best forecasting models were the state 

space local level univariate model and the state space local level model with 

interventions. The state space models adjusted to the unstable level of the series by 

sequentially updating a state vector with a one-step-ahead autoregressive forecast of a 

state vector plus a regression on the innovation. This sequential updating in the state 

space model corrects for difference between the observed and the estimated value after a 

lag of one month and helps adjust to intervention effects. The local level model can be 

formulated as a simple exponential smoother (Harvey, 1992). The local smoothing 

adjustment in the Theta method, the Stata simple exponential smoother, and the damped 

trend models perform a similar function. A local smoothing capability was common to 

these outstanding models.  

 Several factors may help explain the failure of the causal models using weather 

variables. The weather variable that commonly turned out to be statistically significant in 

these models (sum of cooling degree days at lag 2) was associated with a very small 
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increase in the mouse population. The forecasting models with weather predictors 

required preliminary prediction of some of the weather variables well into the 3-month 

forecasting horizon. However, accurate prediction of the weather is not currently possible 

beyond an approximately two week horizon (Trenberth, K., 2007; NCAR & UCAR, 

2007). Attempting to predict for longer periods is to build error into the forecasts of the 

MNA. The aggregated error compounds the difficulty of making accurate forecasts of the 

MNAtotal.  

  

Limitations 

Our primary goal was to identify one or more methods that would provide useful 

forecasts of deer mouse population abundance. Because we only tested these methods on 

a single, particularly difficult series, we cannot assess the general capability of each 

method. We had neither a large sample of different series nor a large sample of forecasts. 

A sample of 12 clustered forecasts or 36 iterated forecasts was not large enough to 

distinguish one from the other in cases where the forecast accuracies of several of these 

methods were almost identical.  

We used readily available weather variables to form our causal models. Success 

of one or more of these models would have allowed prediction of local deer mouse 

population abundance and, by inference, human disease risk with the greatest lead time, 

using reliable, widely available, and inexpensive data. However, identical rainfall and 

temperature values may have different effects on habitat quality depending upon location, 

topography, and vegetative cover. Lacking the success of weather based models, the next 

best alternative is likely to be to avoid the problem of varying effects of weather on 
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vegetation by basing predictive models directly on measures of vegetation quality. 

Although they are more expensive than weather data, several satellite-derived indices 

(e.g., indices of greenness and plant primary productivity) provide relative measures of 

habitat quality and potential food availability. We plan to experiment with forecasting 

models based on these indices. Still, there are other factors besides weather and 

vegetation quality that affect monthly deer mouse populations. These include, but are not 

limited to predator-prey relationships, disease, interspecific competition, and intrinsic 

population processes that affect fecundity, territoriality, or migration. Thus, even more 

proximal models based on vegetation characteristics are not a guarantee of successful 

prediction.  

 

Implications 

In our models, the best predictor of future deer mouse population density was 

current deer mouse population density. This suggests that uninterrupted, regular sampling 

at frequent intervals of deer mouse populations at this time may provide useful data for 

local predictive models of deer mouse population density and associated risk of human 

disease due to infection with Sin Nombre virus.  

Forecasts with shorter time horizons may provide increased accuracy, but such 

models would have limited utility because they provide little time for preparation of 

public health interventions. More research into time series models with mixed frequency 

of regressors might improve forecasting accuracy. Weather variables, especially 

precipitation, might more successfully be used as a predictor for rodent populations in 

areas, such as the southwestern United States, where populations are more likely to be 
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moisture dependent. The comparative analysis performed on the data from Cascade, 

Montana should be tested on data from other sites to determine the applicability of our 

results to other deer mouse population datasets.  

Eleven years represents a tremendous trapping effort, but is nevertheless a very 

short time series on which to base a forecasting model. Surges in rodent population 

density (which are often associated with increased risk of human disease; Yates et al. 

2002) are infrequent -- our series contained only one large surge. Thus our 11-year data 

series distills to N=1 target events for epidemiological purposes. Although others might 

argue that there are two smaller surges, there appear to be too few such events to allow 

meaningful and reliable statistical modeling of associated ecological patterns and 

processes. Development of accurate predictive models for relatively rare public health 

emergencies, including outbreaks of HPS, may require data series measured in decades 

rather than a few years. 

With the publication of these results we describe and analyze an intensive effort 

to address an important public health forecasting problem. We also provide a careful 

consideration of possible explanations for the limited success of our models and offer 

very important guidance for follow-up studies. We hope that the publication of these 

results will stimulate others to experiment with alternative approaches to forecasting 

human risk due to zoonotic agents and provide a background for considering which 

predictor variables and which modeling techniques are likely to be useful. 
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    Appendix I  
Principal Formulae of five of the more accurate methods on the CDC Montana Deer 
Mouse Series: June 1994 to November 2005. The lowest number in ranking is most 
accurate. 
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3. 
Naïve Model:  Last value of MNAtotal carried forward over three month forecast 
horizon. 
 
4.    
Theta AN model:  The original version of the Assimakopoulos, V. and Nikolopoulos, K. 
Theta model, in which the forecast is average of simple exponential smoother and linear 
regression line derived from MNAtotal series data. 
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