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Definition of Mixed Models

1.

2.

by their component
effects

Mixed Models contain both
fixed andrandomeffects

Fixed Effects factors for which
the only levels under
consideration are contained In
the coding of those effects

RandonEffects: Factors for
which the levels contained in the
coding of those factors are a
random sample of the total
number of levels in the
population for that factor.



4.

Exampleof Fixed and
Random Effects

Fixed effect

Sex where both male and
female genders are included In
the factor, sex.

Agegroup: Minor and Adult
are both included in the factor of
agegroup
Random effect:

1. Subject: the sample is a random
sample of the target population
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Classification of effects

There arenaineffects: Linear Explanatory Factors

There arenteractioneffects: Joint effects over and
above the component main effects.

There areesteceffects. Hierarchical designs
contained nested effects: Patients are nested within
doctors and doctors anested within hospitals

Such effects may sometimesfb&d or random.
Their classification depends on the experimental
design

Between-subjects effecse those who are in one
group or another but not in both. Experimental

group is a fixed effect because the manager is
considering only those groups in his experiment.

One group is the experimental group and the other is
the control group. Therefeythis grouping factor is

a between- subject effect.

Within-subject effectare experienced by subjects
repeatedly over timd.rial is a random effect when
there are several trials in the repeated measures
design; all subjects experienak of the trials. Trial
IS therefore avithin-subjecteffect.

Operator may be a fixed or random effect,
depending upon whether orgegeneralizing beyond
the sample

If operator is a random effect, then the
machine*operator interaction isandom effect

There areontrasts These contrast the values of
one level with those of other levels of the same
effect.



Classification of Effects-
cont’'d

Hierarchical designs have nested
effects. Nested effects are those
with subjects within groups.

An example would be patients
nested within doctors and doctors
nested within hospitals

SAS expresses nesting of effects by:
patients(doctors)
doctors(hospitals)




The General
Linear Model

1. The main effects general linear
model can be parameterized as

Yij:y+ai+ bj + &

where

Y, = observation for ith «

u = grand mean (an unknown fixed parm)
a. = effect of ith value of o (a — )

b, = effect of jth value of b (b, — )

&; = experimental error ~N Q o)



A factorial model

If an interaction term were included, the
formula would be

yij::u_l_ai_l_/gi_l_aﬂij_l_aj

The interaction or crossed effect is the joint effect, over and
above the individual main effects. Therefore, the main effects
must be in the model for the interaction to be properly specified.

af; = (Y, —u)—(a—u) — (B—p)
=Y, —a—-p + u



Higher-Order Interactions

If 3-way Interactions are in the
model, then the main effects and
all lower order interactions must
be in the model for the 3-way
Interaction to be properly
specified. For example, a

3-way Interaction model would
be:

Vick =M +a + b + ¢ +ab +ag +bc,

+ abGy, + &



The General Linear Model

e |n matrix terminology, the general
linear model may be expressed as

Y= Xp[+¢

where

Y = theobserved datavector

X =thedesign matrix

S =thevector of unknown fixed effect parameters
¢ = thevector of errors
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Programming the General
Linear Model

 |nthe GLM procedure, one saves the
data set plus the residuals, predicted
values, and studentized residuals with
an output statement in a data set called
resdat.

PROC GLM,;
class machine operator,
Model yield=machine|operator;

output out=resdat r=resid p=pred
student=stdres rstudent=rstud
cookd=cksd h=lev:

Run;
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Assumptions of the
general linear model

E(e)=0
var(s)=o"
var(Y )= o’
E(Y)=X/



GLM Assumptions-cont’'d

1. Residual Normality.
2. Homogeneity of error variance

3. Functional form of Model:
Linearity of Model

4. No Multicollinearity

5. Independence of observations
6. No autocorrelation of errors

/. No influential outliers

We have to test for these to be sure that the model is
valid.
We will discuss the robustness of the model in face
of violations of these assumptions.
We will discuss recourses when these assumptions are; 3
violated.



Residuals Diagnostics

 Residual diagnostics test the
fulfillment of the assumptions of
the general linear model
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SAS test for residual
normality.

Proc univariate data=resdat normal
plot;

var resid;
Run;
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Testing the assumption of
Homogenelty of Error
Variance

Levene’s test Is performed by
computing

Levene's test for homogeneity of variance

l.compute Z; = |Y, - Y, |

2. Perform an F test on the | groups

3. A nonsignificant result indicates no
heter oskedasticity

means factor/ hovtest=levene(type=abs);
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Graphically examining
residuals for homogeneity

Proc gplot data=resdat;
plot resid * pred,;
Run;

e Analysis for lack of pattern;
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Testing for outliers

Proc freq data=resdat;
tables stdres cksd:
Run;

1. Look for standardized residuals
greater than 3.5 or less than — 3.5

2. And look for high Cook’s D (greater
than 4*p/(n-p-1).

Proc gplot data=resdat;
plot stdres*cksd,;

Title ‘Leverage of outliers’;

Run;
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Assessing the leverage of
outliers

e Construct and analyze studentized
residuals

e Construct and analyze the
leverage of the high and low
studentized residuals

 Use Cook’s D to help determine
how problematic the outliers are.
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Studentized Residuals

S i
Q —_—

where

g = studentized residual
Siy = standard deviation whereith obsisded eted
h = leverage statistic

Belsley et al (1980) recommend the use of studentized
Residuals to determine whether there is an outlier.
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Influence of Outliers

1. Leverage Is measured by the
diagonal components of the hat
matrix.

2. The hat matrix comes from the
formula for the regression of Y.

Y=X8=X'(X"'X)X"Y
where X'(X'X)*X'= the hat matrix, H
Therefore,

e

Y = HY

21



Leverage and the Hat
matrix

The hat matrix transforms Y into the
predicted scores.

The diagonals of the hat matrix indicate
which values will be outliers or not.

The diagonals are therefore measures of
leverage.

Leverage is bounded by two limits: 1/n and
1. The closer the leverage is to unity, the
more leverage the value has.

The trace of the hat matrix = the number of
variables in the model.

When the leverage > 2p/n then there is high
leverage according to Belsley et al. (1980)
cited in Long, J.F. Modern Methods of

Data Analysiqp.262). For smaller samples,
Vellman and Welsch (1981) suggested that
3p/n is the criterion.
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Cook’'s D

1. Another measure of influence.

2. This s a popular one. The
formula for it Is:

e (Yol
p){ 1-h J{ s°(1-h)

Cook and Weisberg(1982) suggested that values of
D that exceeded 50% of the F distribution (df = p, n-p)
are large.
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Cook’'s D In SAS

Finding the influential outliers

Select those observations for which
cksd > 4*p/n

Belsley suggests 4*p/(n-p-1) as a
cutoff

f cksd > 4*p/(n-p-1);
Proc print; var cksd,;
Run;

24



What to do with outliers

1. Check coding to spot typos
2. Correct typos

3. If observational outlier I1s correct,
examine the dffits option to see
the influence on the fitting
statistics.

4. This will show the standardized
Influence of the observation on
the fit. If the influence of the
outlier 1s bad, then consider
removal or replacement of it with
Imputation.
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Decomposition of the
Sums of Squares

1. Mean deviations are computed
when means are subtracted from
Individual scores.

1. This is done for the total, the
group mean, and the error terms.

2. Mean deviations are squared and
these are called sums of squares

3. Variances are computed by
dividing the Sums of Squares by
their degrees of freedom.

4. The total Variance = Model
Variance + error variance

26



Formula for Decomposition
of Sums of Squares

= 0 T 6F)

fnfal mean deviation = arvor within + group affect

and squaring terms (y{?.-yujz = (y{?.—yl?.jz + ':J’;'J"..)E
and supmmang the tarms

Yo v) = Yoyt Loy

SStotal = SS error + SSmodel
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Variance Decomposition

Dividing each of the sums of
squares by their respective
degrees of freedom yields the
variances.

SSotal SSarror SSnoddl

_|_
n-1 n—Kk k-1
Total variance= error variance
+ model variance.

model variance
error variance

E _

in fixed effects models
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Proportion of Variance
Explained

R? = proportion of variance
explained.

SStotal = SSmodel + SSerrror
Divide all sides by SStotal

SSmodel/SStotal
=1 - SSError/SStotal

R?=1 - SSError/SStotal
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The Omnibus F test

The omnibus F test is a test that all of the means of the
levels of the main effects and
as well as any interactions specified
are not significantly different from one another.

Suppose the model is a one way anova on breaking
pressure of bonds of different metals.

Suppose there are three metals: nickel, iron, and
Copper.

H,: Mean(Nickel)= mean (lron) = mean(Copper)
H, Mean(Nickel) ne Mean(lron) or
Mean(Nickel) ne Mean(Copper)
or Mean(lron) ne Mean(Copper)
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Testing different Levels of a
Factor against one another

e (Contrast are tests of the mean of
one level of a factor against other
levels.

Ho gy =1, = Uy
(ﬂliﬂz
H, @ Y, # Uy
H F M3
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Contrasts-cont’d

e A contrast statement computes

LY(L'V L)L

rank(L)

The estimated V is the generalized inverse of the
coefficient matrix of the mixed model.
The L vector is the K'b vector.

The numerator df is the rank(L) and the denominator

df is taken from the fixed effects table unless otherwise
specified.
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Estimate statements

 This is exactly like a contrast
statement except only one-row L
matrices are permitted. The
actual estimatd-' 5 IS printed
along with its approximate
standard error, t-test, and t-
probabillity.

 They are useful in estimating
random effects and their
significance.
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Testing Statistical Significance
of Differences of levels of a
factor or interaction

We may test whether different levels of a factor differ with
respect to the mean level of the dependent variable in several
ways. If there are three levels of a metal and we wish to test
whether levels 2 and 3 are different, we would be asking
whether Copper has a statistically significantly different
In its breaking pressure from that of Iron.

We may use A Priori Contrasts or Estimates
An a priori contrast is a t-test between levels:
t= mean(Copper) — mean(lron)/Se
the SAS syntax for testing it is:

Contrast ‘Copper v lron’ metal 01 -1

An estimate is the mean response
= mean(copper) - mean(iron) + 0*mean(nickel)
The SAS syntax for estimating this is:

Estimate ‘Copperviron’ metal01-1

We may use Post Hoc Tests. These are different sorts of
tests that may or may notgqwire equal variances to test
whether one level of a factor or interaction is different

from other levels.
34
means metal /scheffe alpha=.017;



Construction of the F tests
In different models

The F test is a ratio of two variances (Mean Squares).

It is constructed by dividing the MS of the effect to be

tested by a MS of the denominator term. The division

should leave only the effect to be tested left over as a remainder.

A Fixed Effects model F testfora= MSa/MSerror.
A Random Effects model F test for a = MSa/MSab

A Mixed Effects model F test for b = MSa/MSab

A Mixed Effects model F test for ab = MSab/MSerror

Expected Mean Squares for Different Designs
source: Michaels, Brown, & Winer, 1993, Siagistical Principles of Experimenicl Design,
304

Mean Squares | Case 1: Fixed Case2: Mixed Case 3: Random
a fixed, b fixed | afixed b random arandom
b random
NS, o’ +nag,’ o’ tngs’+ ngo’ o’ tnge’ + ngo’
Ms o’ tnag? o’ + nRgy o’ tnga’ + npa’
MS o ! +nop? ¢ + oo &+ o
M ey & % o
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The Mixed Model

The Mixed Model subsumes fixed and
random effects.

It can be used to model merely fixed or
random effects, by zeroing out the
other parameter vector.

The F tests for the fixed, random, and
mixed models differ.

Because the Mixed Model has the
parameter vector for both of these and
can estimate the error covariance
matrix for each, it can provide the
correct standard errors for either the

fixed or random effects.

36



Mixed Model Theory

Y = X + Zu + ¢

where

Y = the data vector

X = the design matrix

p = fixed effects parameter estimates
Z = design matrix for random effects
u = random effects

& = error vector
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Mixed Model Theory-
cont’d

Little et al.(p.139) note that u and e are
uncorrelated random variables with 0 means
and covariances, G and R, respectively.

Because the
covariance matrix
V=7GZ"'+ R,
the solution for

B=(X'VIX) X'V1ly
u= GZ'V (y-Xp)

V- is a generalized inverse. Because V is
usually singular and noninvertible AVA =\

an augmented matrix that is invertible. It can
later be transformed back to V.

The G and R matrices must be positive definite.
In Proc Mixed, A random statement defines G

) 38
and a repeated statement defines R.



Linear Combinations

V(B)=(X'V*X)
If L isestimable, thenV (8) = L'(X'V X)L

39



Mixed Model
Assumptions




Z and G matrices for the
mean and variances of
random effects
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R matrix, the covariance
structure of which is defined
with a type option Iin the
repeated command

g+ g a )
a q+o q
a q qg+o
q+o° q q
a q+d q
\ qa gq qg+d)

repeated / type=cs subject=id
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GLM < Mixed Model

The General Linear Model is a special case of the
Mixed Model with Z = 0 (which means that
Zu disappears from the model) aRd ol
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SAS may require data set
conversion for Mixed Model
Processing

 The data structure for a repeated
measures GLM is not the same as
that for a Proc Mixed. One has to
convert a horizontally repeated
observation data set to a vertically
repeated observation data set.

 The Horizontally repeated data set
In sas appears as follows:

44



Horizontally Repeated
(wide format) Data

data Miss:

iInput influentl influent2 influent3 influent4
Influent5 influent6;

datalines;
21212014 741
27 1119 24 15 42
2918 20 30 18 35
17 91121 4 34
1913 14 31 28 30
1223 .27 . .

29 . . ...

20 . . . ..
proc print;
titleb5 'data miss'; run:
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Horizontally Repeated
(Wide) Data

— 11y ' - ' —_

Command === |
Mizssissippi River Influents 1
Data from Littell et al. (1996), p. 141
Mitrogen measurements in parts per million
Random Effectz Model
data miss 07:47 Tuesday, November 5, 2002
Ob= influentl influent?2 influent3 influent4 influenth influentb
1 21 21 20 14 fi 41
2 27 11 19 24 15 42
3 29 18 20 30 18 a5
4 17 9 11 21 4 34
5 19 13 14 21 28 30
[ 12 23 . 27 . .
) 29 . . .
g 20
9 20

46



Vertically Repeated
(Long) Data Set

Hississippi River Influents Z2
Data from Littell et al. (1996), p. 141
Hitrogen measurements in parts per million
Random Effectz Model

new? 07 47 Tuesday, Hovember 5, 2002
Ob= n) influent

1 21 1
2 21 2
3 20 3
4 14 4
5 i 5
[ 41 [
7 27 1
g 11 2
9 19 3
10 24 4
11 15 LY
12 42 6
13 29 1
14 18 2
15 20 3
16 30 4
17 18 5
18 35 6
19 17 1
20 9 2
21 11 3
22 21 4
23 4 5
24 24 [
25 19 1
26 13 2
27 14 3
28 31 4
29 28 5
30 30 6
a1 12 1
a2 23 2
33 3



Two Ways to Convert the data
sets from Horizontally
repeated (wide) to Vertically
repeated (long) data sets

data new?2;

set miss;

[* Here we restructure the data set */

label type="Type of influent’;

y = influentl; influentd; output;
y = influent2; influent2; output;
y = influent3; influent3; output;
y = influent4; influent4; output;
y = influent5; influent; output;
y = influent6; influent®; output;

drop influentl-influent6;

proc print data=new2,;

title5 'new?2";

run;

48



More Elegant Conversion
with Arrays

data news;
array influentf} influentl-influent6;

input influentl influent2 influent3 influent4 influent5
Influent6;

do type =110 6;
y = influent(type);
output;
end;
drop influentl-influent6;
cards;
21212014 741
27 1119 24 1542
29 18 20 30 18 35
17 91121 434
1913 14 31 28 30

1223 .27 . .

29 . . . ..

20 . . . ..

20 . . . ..

proc print data=news3;
title5 'New3';

run;
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The Fixed-Effects Model

Suppose there are three groups: experimental control standard
and three treatments: lowdose, medose, hidose. The
dependent variable, Y, is the completeness of recovery. We
assume that we have population data. We are not generalizing
to larger levels than those we have in our sample. Therefore,
all of our effects are deemed to be fixed. We analyze
our model as a fixed effects model.

The Fixed Effects models may be programmed in SAS with
PROC ANOVA, PROC GLM, or PROC MIXED. PROC
ANOVA and PROC GLM have similar syntax.

PROC GLM,;
Class group treatment;
Model Y = group treatment group*treatment;
Means group treatment group*treatment/
hovtest=Levene(type=abs)
Scheffe alpha=.017;
output out=resdat p=pred r=resid,;
run;
PROC UNIVARIATE normal plot data=resdat; var resid,;
Title ‘“Test of Normality of Residuals’;
Run;

PROC MIXED;
Class group treatment;
Model Y = group|treatment;
Lsmeans group|treatment/pdiff;
run;
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Proc GLM vs.
Proc Mixed

GLM has
means
Ismeans
sstype 1,2,3,4
estimates using OLS or WLS
one has to program the corréctests for random effects.

cannot handle cases with missinglues and drops them from the
analysis.

Mixed has
Ismeans
sstypes 1 and 3

estimates using maximum likelihood, general methods of moments,
or restricted maximum likelihood

ML

MIVQUEO

REML
gives correct std errors and comte intervals for random effects
Automatically provides correct standard errors for analysis.
Can handle observation with missing data.

Can handle a wide variety of covamce structures for random effects,
repeated effects.

More robust analysis.
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Analysis of Fixed Effects
model in the Mixed Model

SAS tests these effects by constructed a type Il
L matrix.

We analyze the breaking pressure of bonds made
from three metals. We assume that we do not
generalize beyond our sample and that our
effects are all fixed.

Tests of Fixed Effects is performed with the help of
the L matrix by constructing the following F test:

CBLILXVIX) LT LS
- rank(L)

-

Numerator df = rank(L)
Denominator df = RESID (n-rank(X) 52
df = Satherth



SAS Command Syntax:
Comparison of SAS Syntax
for Fixed Effects ANOVA

with GIm and Mixed

titlel 'General Linear and Mixed Models';
title2 'Ingot Data from SAS Course Notes',
title3 'p.11 SAS Institute, Cary, NC';
options 1s80 ps=55;
proc format;
value metl="Nickel’
2="lron’
3='Copper’;
data metalic;
input ingot metals $ pressure;
If metals = 'nickel 'then metal;-
If metals ='iron 'then metel;-
if metals = 'copper 'then met8l=
format metal met.;

53



Data and Preliminary

datalines;

1 nickel 67.0
liron 71.9
1 copper 72.2
2 nickel 67.5
2 iron 68.8

2 copper 66.4
3 nickel 76.0
3iron 82.6
3 copper 74.5
4 nickel 72.7
4iron 78.1
4 copper 67.3
5 nickel 73.1
5iron 74.2

5 copper 73.2
6 nickel 65.8
6 iron 70.8

6 copper 68.7
7 nickel 75.6
7 iron 84.9

7 copper 69.0
proc print;
run;

proc sort; by metal,

run,

Analysis

proc means; by metal; var pressure;
title 'Mean Pressure of ingots';

run,

proc univariate plot; var pressure; by metal;

title 'Comparative Box Plots';

run;
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Proc Means Output

Lommana ===3
Mean Pressure of ingots b4
08:16 HWednesday, Hovember &, 2002
--------------------------------- metal=Nickel --=-----—-—mmmmmmcmm e
The MEANS Procedure
finaly=zis Variable : pressure
N Mean Std Dew Min imum Max i mum
7 f1.1000000 4.2559762 65.8000000 f6.0000000
---------------------------------- metal=lron =====ceccsmcccsmcccscc e s e ——————
finaly=ziz Variable : pressure
N Mean Std Dew Min imum Maz i mum
T 75.9000000 6.1378606 68.8000000 84.9000000
--------------------------------- metal=Copper ==—=—=————ccccmecmmcmmcc—mm— e
finalysiz Variable : pressure
N Mean S5td Dew Minimum Max i mum
7 70.1857143 3.1098321 66.4000000 74.5000000
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Box Plot Output from
Proc Univariate

Lommand ===>

_______

m———— !

1 1
-------

_______
_______

________________________________________________

Hickel @ lron = Copper

56



Graphing the Means

proc gplot data=metalic;

plot pressure*ingot=metal/haxis=axis1
vminor=0;

axisl offset=R,2) minor=none;
symboll v="n' c=blue i=join;
symbol2 v="I' c=brown I=join;
symbol3 v='c' c=red i=join,
title 'Pressure by Ingot Number’,
run;
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Proc Gplot Output

Lommand ===2 |

Pressure by Ingot Number

pressure
857

84
83
g2
g1
80 |
79
78
77
76
75
74
73
721 Iy
714
70
69
68
67
66
65 |

ingot
metal Mt Hickel —* Iron E—€T Copper




SAS syntax for One-Way
Fixed Effects model with
Proc GLM

proc glm data=metalic;
class metal;
model pressure = metal;

mleeans metal/hovtest=levene (type=abs) scheffe tukey
Sd,

contrast 'nickel v iron' metél-1 0;
contrast 'nickel v copper' methD -1;
contrast 'iron v copper' metall -1,
estimate ‘nickel v mn’ metal 1 -1 O;
estimate ‘nickel v gpper’ metal 1 0 -1,
estimate ‘iron v copper’ metal 0 1 —1;

output out=resdatl r=residl p=predl;

title 'One-Way Fixed Effects Model’;

title2 'With Proc GLM';

run;

proc univariate data=resdatl normal plot;
var residl;

title 'Test for normality of residuals';

run;
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Ccontrasts

Constrasts are comparisons among means.
They are t tests between different levels of the
same factor.

T = contrast/Se of contrast

cY,+cY,+..+CcY

t — p"p
n CZ

MSerror ZL

= N
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SAS contrast syntax

For simple contrasts of levels of a main effect,
use 1 and —1 to identify the levels being
contrasted.

contrast ‘copper v iron’ metal 1 -1 O;

Contrasts of interactions

Suppose you have 3 levels of a and 5 levels of b
and you wish to compare th&dZevel of a with the
5t level of b in an interaction
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In a 3 by 5 matrix, you are comparing

Cells 12 and 25

Variety
Method| 1 2 |3 |4 |5
A X
B X
C
Ho by, = s

In other words:
u+a +b, + ab,

u+a,+ b, + ab,
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An Interaction contrast
of abl2 and ab25

In other words:
(u+a +b, +ab,)-(u+a, + by + ab,)=0
a—a +b, —b, +ab,—- ab,=0

al-a2+0a3+ 0ol + b2+ b3+ 0b4-Db5

+ Oabl1l + abl? + Oab13+ Oabl4 + Oab15

+ 0ab21+ (ab 22+ @b 23+ @b 24-ab 25
+0ab3l + Oab3R+0abB +0ab3HA +0abH=0

Contrast 'A2 vB5' method 1-10Ovariety 0100-1
method *variety 01 0000000~ 100000;
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Interpretation of the GLM
output-1

One-Hay Fixed Effects Model 145
Hith Proc GLM
08:16 Hednesday, Hovember 6, 2002
The GLM Procedure

Class Level Information

Clas= Levels Values
metal 3 Copper lron Hickel
Humber of obserwvations 21
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GLM output-2

Lommand ===2
One-Hay Fixed Effects Model 146
With Proc GLH
08:16 Hednesday, Wovember 6, 2002

The GLM Procedure

Dependent VYariable: pressure

Sum of

Source DF Sguares Mean Square F Value Pr > F
Model 2 131.9009524 65.9504762 3.02 0.0738
Error 18 392.7485714 21.8193651
Corrected Total 20 L24.64952338

R=Square Coeff Yar Root HMSE pressure Mean

0.251408 6.452248 4 671120 F2.39524
Source DF Twpe | 55 Mean Sguare F VYalue Pr > F
metal 2 131.9009524 65.9504762 2.02 0.0738
Source DF Twpe 111 55 Mean Sguare F Yalue Pr > F
metal 2 131.9009524 65.9504762 3.02 0.0738

The R = Model Variance/Total Variance
The Coeff Var = sd/mean
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SAS syntax for One-Way
Fixed Effects model with
PROC Mixed

SAS Command Syntax

Class effects are all factors.
Only thefixed effects are specified in the model statement.

“proc mixed data=wetalic covtest mmed:
class metal;
model pressure = metal;
lameans metal/pdiff:
lameans metal/adjust=hon;
Title 'One-Way Fixed Effectzs Model!:
titlezZ 'With PROC Mixed';
run;
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Mixed statements

Proc Options:

mmeq . model equation reported
Class: specifies the discrete factors
Model statement:

model pressure=metal;

(model statement indicates the dependent
variable=fixed effect;) Only fixed effects
are included in the model statement.

LSmeans metal/pdiff;

There are only Ismeans statements in proc
model. The pdiff statement requests that
the differences between the levels of the
fixed effects be estimated and reported.

LSmeans metal/adjust=bon,;
Perform a bonferroni correction to the
probability for multiple comparisons.
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Mixed Model Syntax

For Models with random effects:
Random variety/type = cs subject=id,;

The random statement contains only
random effects of the model. This
specifies the parameters of the
random effects of the Zu part of
the model- the variance matrix of
which is the G matrix.
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The Random statement

1. This specifies the random
effects. Interactions with random
effects are also random effects.

2. The solution option requests that
the solution for the random
parameters be printed. These
estimates are best linear
unbiased predictors:
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The Repeated Statement

The repeated statement specifies the
covariance structure for repeated observations
on the subjects, as in a repeated measures
design.

“In repeated measures situations, the Mixed
model approach is both more flexible and
applicable than the conventional univariate
and multivariate appraches [SAS Stat
Software: Changes and Enhancements
through 6.11.7(1996). Cary, NC:SAS
Institute, p.536].

SAS Proc Mixed can handle a wide variety of
covariance structures that none of the
mentioned approaches can deal with; the
conventional approaches depend on a
Gaussian residual distribution.
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-ommand

Output Interpretation

===)
One=-Hay Fixed Effectz Model 19
HWith PROC Hixed
10:48 Thursday, Hovember 7, 2002
The Hixed Procedure
Model Information
Data Set WORK .METAL IC
Dependent VYariable pressure
Covariance Structure Diagonal
Eztimation Method REML
Re=sidual VYariance Hethod Profile
Fixed Effects SE Method Mode1-Based
Degrees of Freedom Method Residual

Class Level Information
Class Levels Values

metal 3 Copper Iron Nickel

Dimensions

Covariance Parameters 1
Columns in X 4
Columns in £ 0
Subjects 1
Max Obz= Per Subject 21
Observations Used 21
Obzervations Not Used 0
Total Observations 21
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Output Interpretation-
cont’d

 Mixed Model equations from option mmeqg
and covariance parameter estimate from
option covtest

Lommand ===32
Mixed Model Equations
Row Effect metal Coll Col?2 Col3 Col4 Col5s
1 Intercept 0.9624 0.3208 0.3208 0.3208 69.6766
2 metal Copper 0.3208 0.3208 22.5167
3 metal lron 0.3208 0.3208 24 .3499
4 metal Hickel 0.3208 0.3208 22.8100
Covar iance Parameter Estimnates
Standard £
Cov Parm Eztimate Error Yalue Pr 2
Residual 21.8194 7.2731 3.00 0.0013
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Information Criteria and
Fixed Effect test

& One-Hay Fixed Effects Model 20
Hith PROC Mixed
10:48 Thur=day, Hovember 7, 2002

The Mixed Procedure
Fit Statistics
=2 Res Log Likel ihood 112.4
AIC (smaller is better) 114.4
AICC (=maller i= better) 114.7
BIC (smaller is better) 115.3

Twpe 3 Testz of Fixed Effects

Hum Den
Effect DF DF F Yalue Pr > F
metal 2 18 3.02 0.0738

Akaike Information Criterion

AIC=-2LL + 2d

where d = p+q q=number of covariance parameters
p=rank of matrix

Schwarz Information criterion

BIC =—-2LL + dIn(n)

Hurvich & Tsay

AICC =—-2LL + 2g(N/N-g-1)

The latter is best for smaller samples.
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Fixed Effects Output
Interpretation-cont’d

The Fixed effect is the independent
factor in the one-way layout.

The Fixed effects are always
specified only in the model
statement.

The Type 3 test is one where the
Sums of Squares can handle
unbalanced designs. This Is a
simultaneous sums of squares,
unlike that of a type | sum of
sguares, which is a sequential sum
of squares.
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Least Square Means and
differences among them

Least Sguares Means

Standard
Effect metal Estimate Error DF t Value Pr » It}
metal Copper 70.185%7 1.7655 18 39.75 <.0001
metal Iron 75.9000 1.7655 18 42.99 <.0001
metal Mickel 71.1000 1.7655 18 40.27 <.0001
metal Copper 70.185%7 1.7655 18 39.75 <.0001
metal Iron 75.9000 1.7655 18 42.99 <.0001
metal Mickel 71.1000 1.7655 18 40.27 <.0001
Differences of Least Sguares Means
Standard
Effect metal _metal E=zt imate Error DF t Value Pr > it}
metal Copper lron =5.7143 Z2.4968 18 -2.29 0.0344
metal Copper Hickel =-0.9143 Z2.4968 18 =-0.37 0.7185
metal lron Hickel 4 _8000 2.4968 18 1.92 0.0705
metal Copper lron =5.7143 2.4968 18 -2.29 0.0344

Bonferroni adjustment for multiple comparisons

Differences of Least Squares Heans

Effect metal _metal Adjustment Aadj P
metal Copper Iron .
metal Copper Hickel .
metal Iron Hickel .
metal Copper Iron Bonferroni 0.1032
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Two-Way Random Effects Models
with Proc Mixed
from Milliken and Johnson’s
Analysis of Messy Data Course.

Elproc mixed: /% THE NEW PROC MIXED +/
class row col;
model ¥ = ;
random row col row*col / =solution:
estimate 'grand mean' intercept 1:

eztimate 'row 1 col 1' intercept 1 | row 1 col 1 row* col 1)

estimate 'row 1 col Z' intercept 1 | row 1 col 0 1 row* col O 1;

eztimate 'row 1 col 3' intercept 1 | row 1 col 0 0 1 row¥col O O 1:;

estimate 'row 2 col 1' intercept 1 | row 0 1 col 1 row¥col O O O 1:;

estimate 'row 2 col 2' intercept 1 | row 0 1 col 00 1 row* ol O O O O 1;

estimate 'row 2 col 3' intercept 1 | row 0 1 col OO0 1 row#*col O O O O O
!

titlez 'Two-Tay ERandom Effects Model
titlei ' With the Mixed Procedure':
rumn;

=
"

There are no fixed effects specified on the right-hand side of the
Model statement.

Both discrete factors specified in the class statement are mentioned
in the random statement, along with their interaction.

The random specification is followed by the solution option.
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The Random statement

1. This specifies the random
effects. Interactions with random
effects are also random effects.

2. The solution option requests that
the solution for the random
parameters be printed. These
estimates are best linear
unbiased predictors:
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Estimate statements

 This is exactly like a contrast
statement except only one-row L
matrices are permitted. The
actual estimatd-' 5 IS printed
along with its approximate
standard error, t-test, and t-
probabillity.

 They are useful in estimating
random effects and their
significance.
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Output Interpretation

Lommand ===

Two-Hay Random Effects Model
Hith the Hixed Procedure
The Mixed Procedure

Hodel Information

Data Set WOBK . THOWAY
Dependent Yariable Y

Covariance Structure Variance Components
Eztimation Method REML

Residual Variance Method Profile

Fixed Effectz 5E Method Mode 1 -Bazed

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values
rou z 1 2
col 3 1 2 3

Dimensions

Covar iance Parameters 4
Columns in X 1
Column=s in £ 11
Subjects 1
Hax Ob= Per Subject 14
Obserwvationzs Used 14
Obzervationz Hot Used 0
Total Obserwvations 14
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More output

Covar iance Parameter
Eztimates

Cov Parm E=zt imate
row 0
col 0
row¥col 9.2425
He=sidual 3.8398

Command ===2>

lteration Evaluations
1] 1
1 3
2 2
2 1
4 1

lteration History

-2 Hez Log Like

71.76960400
66.41375224
66.38519638
66.38203013
66.38201547

Convergence criteria met.

Criterion

0.00177521
0.00014277
Q. 00000069
0. 00000000
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Solutions and Estimates
for Random Effects

Two-Uay Random Effects Model ST
Hith the Hixed Procedure
The Mixed Procedure

Fit Statistics

=2 Res Log Likel ihood b6 .4
IC (smaller iz better) To.4
ICC (=maller i= better) 71.6
IC (smaller is better) G7.8

Solution for Random Effects

5td Err

ffect Fow col Est imate Pred DF t Value Pr > 1t}
ow 1 0
ou 2 0
ol 1 0
ol Z 0 .
ol 3 0 . . . .
ow¥*col 1 1 =-3.3858 1.5909 8 =-2.13 0.0660
ow*col 1 2 =0.¥07Y 1.6852 8 =-0.42 0.6856
ow*col 1 3 4.2604 1.6852 8 2.53 0.0354
ow*col 2 1 1.7763 1.6852 8 1.405 0.3226
ow*col 2 2 0.4204 1.5909 8 0.26 0.7982
ow*col 2 3 =-2.3637 1.6852 8 =1.40 0.1983

Eztimates

Standard
abel Est imate Error DF t Value Pr > 1t}
rand mean 14.8547 1.3503 1 11.00 0.0577
ow 1 col 1 11.4689 1.0729 1 10.69 0.0594
ow 1 col 2 14.1470 1.2820 1 11.03 0.0575
ow 1 col 3 19.1150 1.2820 1 14.91 0.0426
ow 2 col 1 16.6310 1.2820 1 12.97 0.0490
ow 2 col 2 15.2751 1.0729 1 14.24 0.0446
ow 2 col 3 12.4910 1.2820 1 9.74 0.0651
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The Mixed Model: A
Two-Way Layout

data grass;
input method $ variety @;
doi=lto6;
input yield @;
output;
end;

datalines;

AA 1 22.124.119.122.125.118.1
AA 2 27.115.120.6 28.6 15.124.6
AA 3 22.325.822.828.321.318.3
AA 4 19.8 28.3 26.8 27.3 26.8 26.8
AA 5 20.017.024.022.528.022.5
BB 1 13514511.56.0 27.018.0
BB 2 16.917.410.419.411915.4
BB 3 15.710.216.719.7 18.212.2
BB 4 15.1 6.517.1 7.613.621.1
BB 5 21.822.818.821.316.314.3
CC 1 19.022.020.014.519.016.0
CC 2 20.022.025.516.518.017.5
CC 3 16.414421.419.910421.4
CC 4 24516.011.0 75145155
CC5 11.814.321.3 6.3 7.813.8
proc print;

var method variety yield;

title3 'Advanced Linear Modeisth Emphasi®n Mixed Models’;

title4 'Two-Way Fixed Effects Model’;
title5 'Data from p. 45

run;
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Mixed Model Syntax

method Is a fixed effect
variety and its interaction with method
are random effects

Eproc mixed data=grass covtest ratio ;

claszzs mwethod wvariety:

model wvield= method:

random wvariety method¥variety:

lameans method/ pdiff:

contrast
CORtrast
Ccontrast
Ccontrast
estimate
ezt imate
et imate
ezt imate

'method
'method
'"method
'mmethod
'method
'method
'method
'"method

1 -

A
4 od o4 g g

1

w

Z' method 1 -1 0:
3" method 1 0 -1;
32" method 0 1 -1;
2 and 3' method 2 -1 -1;
Z2' method 1 -1 0O;
' method 1 0 -1:;
3" method 0 1 -1;
2 and 3' mwethod 2 -1 -1;

title 'Two-Way Full-Factorial Mixed HModel':
titlez 'Mixed Effects Model';

el Mmmmiammm P Trrmd o s TTmamd s |
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Mixed Model Output

Lo T T

Two-Hay Full-Factorial Mixed Model 45
Mixed Effectz Model
11:56 Thuwrsday, November 7, 2002
The Mixed Procedure
MHodel Information
Data Set WOREK . GRASS
Dependent Yariable vield
Covar iance Structure Var iance Components
Ezstimation Method REML
Re=sidual Variance Method Profile
Fixed Effectz SE Method Mode1-Based
Degrees of Freedom Method Containment
Clas=s Level Information
Class Levels Yalues
method 3 fAfA BB CC
variety LY 12345
Dimens ions
Covar iance Parameters 3
Columnz in X 4
Columnz in # 20
Subjects 1
Max Obs Per Subject 90
Observationz Used 90
Obzerwvations Not Used 0
Total Obszservations 90
Iteration History
lteration Evaluations -2 Bes Log Like Criterion

0 1 523.51269564




Convergence attained

Class Lewvel Information

Class Levels Values
me thod 3 fAf BB CC
variety L 123405

Dimensions

Covar iance Parameters 3
Column=s in X 4
Columns in # 20
Subjects 1
MHax Ob=s Per Subject 90
Observationz Used 90
Observationzs Hot Used 0
Total Obserwvations 90

lteration History

|teration Evaluations -2 Aez Log Like Criterion
1] 1 L23.51269564
1 2 L22.10817863 0.00003194
2 1 L22.10265442 0.00000013
2 1 L22.10263051 0.00000000

Convergence criteria met.
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Lommand ===

Cov Parm

variety
mnethod*variety
Residual

Label

method 1
method 1
method 2
method 1

L4
Mo cang

a

IXxed Output-cont’d

-2 RBes Log Likel ihood L22.
AIC (=smaller is better) 526.
AICC (smaller is better] 526.
BIC (=maller is better) 525,
Twpe 3 Tests of Fixed Effects
Hum Den
Effect DF DF F WYalue
method 2 8 14.82

nd 3

Two=-Hay Full-Factorial Hixed Model

MHixed Effects MHodel

46

11:56 Thursday, Hovember 7, 2002

The Mixed Procedure

Covar iance Parameter Eztimates

Standard

Ratio E=ztimate Error
0 0 .
0.1061 2.0842 2.2523
1.0000 19.6502 3.2089

Fit Statistics

E=ztimates

Standard
Estimate Error DF
¥.3133 1.4641 ]
6.4033 1.4641 g
-0.9100 1.4641 g
13.7167 2.5360 ]

0 Pl -

Pr > F
0. 0020

t Value

4.99
4.37
-0.62
5.41

Pr £

0.1774
<. 0001
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Contrasts from Mixed
output

—ommand ===>

Contrasts

Hum Den
Label DF DF F VYalue Pr »F
method 1 « 2 1 ] 24 .95 0.0011
method 1 + 3 1 ] 19.13 0.0024
method 2 v 3 1 8 0.39 0.5515
method 1 + 2 and 3 1 ] 29.26 0.0006



LSmeans and Differences
among them

Lommand === |
Two=lHay Full-Factorial Mixed MHodel 47
Mixed Effects MHodel
11:5%6 Thursday, Movember 7, 2002
The Mixed Procedure
Least Sguares Means
Standard
Effect me thod Eztimate Error DF t Value Pr > it}
method fif 23.0100 1.035%3 g 22.23 <. 0001
method BB 15.6967 1.035%3 g 15.16 <.0001
method cC 16.6067 1.035%3 g 16.04 €.0001
Differences of Least Sguares Means
Standard
Effect method _method Est imate Ervror DF t Value Pr » it}
method faf BB i.3133 1.4641 8 4.99 0.0011
method fif cC 6.4033 1.4641 8 4. 37 0.0024
method BB CcC =0.9100 1.4641 8 -0.62 0.5515
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Repeated Measures Anova
with Proc Mixed

¥ 5AS - [GRAPH1 WORK.GSEG.GPLOT3] i o (0l
5§ Fle Edt Yiew Tooks Solitions Window  Help -lﬁ|_XJ
|] E[EIEE |
FETTE | Fomand == 2
Conmand ===> : :
s Repeated Measures Analysis of Variance
LB Print; General Linear and Mi Source is Millikin and Johnson
[+ Means: Mean Pressure of ir The finalysis of Messy Data
[H-15) Univariate: Comparative Bo LSHEAN
[#45) Gplat: Pressure by Ingat b 94
45 LM Orie-Way Fived EFfec!
[#-{8) Univariate: Test for narmal 83 7
{5 Miced: One-Way Fixed Effe 82 1
[45) GLM: One-Way Random EFF
[J-L@ Mixed: Two-Way Main Effec 81 1
(4,5 Print: Two-Way Main Effect
45 Gplat: Yield Yersus Varisty 80 1
[#4E Gplot: Interaction Plot 79 ]
[0 GLM: Two-Way Full Fackoriz
[F-{5) GLM: Two-Way Full Factorie 78
45 LM Two-Way Full Fackorie
{5 Mixed: Full-Factorial Mized | 7]
[#45) GLM: Repeated Measures o 76 1
HL@ Gplot: Repeated Measures
g'J Flat of LSMEAR * perind 75
B Mived: Repeated Measures
[J-L@ Mixed: Repeated Measures 747
5 GLM: Repeated Measures & 73]
727
711 k.
701
T T T T
1 Fd 3 4
period
treatmt 4t ax23 -+ buwd £ control
a | ol z
Fesits W Qutput - (Unkitled) | @ Log - {Linkitled) | @ mixed.sas  PROC GLM r| 'fij GRAPHL WORK.GSEG.G,., |
| |=ICAWINT systemaz | y




Data for Repeated Measures
ANOVA from Millikin and
Johnson Analysis of Messy

title 'Repeated Measures Analysis of \/Qcata

title2 'Source is Millikin and Johnson "

title3 "The Analysis of Messy Data "

datarepeat;

input t1 t2 t3 t4 treatmt $;

label t1="Timel' t2="Time2' t3="Time3"'
t4="Time4",

datalines;

t1 t2 t3 t4 trt

72 86 81 77 ax23

78 83 88 81 ax23

718281 75 ax23

72 83 83 69 ax23

66 79 77 66 ax23

74 83 84 77 ax23

62 73 78 70 ax23

69 75 76 70 ax23

85 86 83 80 bww9

82 86 80 84 bww9

7178 70 75 bww9

83 88 79 81 bww9

86 85 76 76 bww9

85 82 83 80 bww9

79 83 80 81 bww9

83 84 78 81 bww9

69 73 72 74 control

66 62 67 73 control

84 90 88 87 control

80 81 77 72 control

72 72 69 70 control

65 62 65 61 control

75 69 69 68 control

71 70 65 65 control

[* Example of Repeated Measures Analysis Millikin and Johnson */
[* The Analysis of Messy Data 26.1
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Repeated Measures Proc
Mixed Syntax

datatimes; set Ism;
period = substr( NAME2,1);
symboll i=join c=green;
symbol2 i=join c=blue;
symbol3 i=join c=brown;
symbol4 i=join c=red;
proc gplot;
plot Ismean*period=treatmt;
run;
data mixed; set repeat;
person=_N_;
y = t1; period =1; output;
y = t2; period =22; output;
y = t3; period =3; output;
y = t4; period =4; output;
drop t1--t4;
run;
proc mixed data=mixed; /* repeated measures using proc mixed */
class treatmt period person;
model y = treatmt|period,;
repeated / type=dl)] sub=person(treatmt);
Ismeans treatmt*period;
run;
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Repeated Measures Mixed

Syntax

Repeated Statement

— Specifies the error matrix of

— This is called the R matrix in S

— There is only 1 repeated statement

— The within-subject (split plot) effect is
specified.

Repeated time/type=ar(1) subject=id,;

Subject = specifies the units of

measurement which can be correlated
within the id.

Type= specifies the structure of the
error covariance matrix R. Some types
are un, ar(1), arh(1), cs, csh, hf, toep,
etc.
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Selected Covariance

Structures
e Type=VC
670 0 0
0 0,0 0
VC(default) =
0 0 620
00 0 o/

Type=Unstructured

2 2 2 2
011 0412 O3 Oy

2 2 2 2
Unstructured = | 2 722 92 ©a

2 2

2 2

O31 O3, Og33 O3y
2 2 2 2

Ou O Oyz Oy |
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Selected Covariance
Structures-Cont’d

« Compound Symmetry type=CS

2 2 2 2
+o0,° O o o

2 2 2 2
o, oc’+o’ o o,

CS - 2 2 2 2 2
o, o, c°+o, o

2 2 2 2 2
K o, o,” o°to;

* First-Order Autoregressive
type=AR(1)

,0

,02

AR(1) =

bléhb

VN P

1
0
p° p
Jo, 1 |
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Basic Repeated Measures
Output

¥ 5A5 - [Dutput - (Untitled) ] -0 x|

File Edit Yiew Tools Solutions ‘Window Help -8 x|

| v] IR IE Y R

Results #|Command ===} .
C q === Repeated Measures finalysis of Variance 65 J
onnand ===) Source is Millikin and Johnson

@Results The finalysis of Messy Data

Prink: General Linear and Mi 13:02 Thursday, November 7, 2002
Means: Mean Pressure of ir
Univatiate: Comparative Ba

Gplat: Pressure by Ingak N Model Information
&L One-Way Fived EFfec!

The Mixed Procedure

Univariate: Test for narmal Data Set . HORK .M IXED
Mixed: One-Way Fixed Effe L gl 4
' Covariance Structure Compound Symmetry
GLM: One-Way Random EFf Subject Effect person( treatmt )
Mixed: Two-Way Main Effec Estimation Hethod REML
Print: Twa-Way Main Effect Residual Variance Method Profile
Fixed Effects SE Method Mode 1-Based

Gplat: Yield Yersus Varisty
Gplot; Interaction Plat

GLM: Two-Way Full Fackoriz
LM Twa-Way Full Fackorie Class Level Information

LM Two-Way Full Fackorie

Degrees of Freedom Method Between=Hithin

Mixed: Ful-Factorial Mixed | =S LGS S
GLM; Repeated Measures A treatnt 4 ax23 bwwd control trt
Gplot: Repeated Measures per iod 4 1234
¢ L) Plot of LSMEAN * periad person 25 123456789310111213
i ) 14 15 16 17 18 19 20 21 22 23
EI--EEj Mixed: Repeated Measures 94 ot
[ Model Information
B Class Level Infarmation
[ Dimensions Dimensions
Iteration History Covariance Parameters 2
Convergence Status Columns in X 20
Covariance Parameter E Columns in 2 0
B Fit Statistics ﬁthSEtSP Subiast 23
Hull Model leellholod Rat Ugiervg tiﬁ;s ESJE sc 96 e
Type 3 Tests of Fixed Ef Observations Not Used 4
[ Least Squares Means Total Observations 100

[#-{5) Mixed: Repeated Measures
[#-{5) GLM: Repeated Measures &

b3
@ Results | §| Explorer I I Output - (Untitled) @ Log - {Unkitled) | @ mixed.sas * PROC GLM | 5] GRAPHL WORK G5EG.G... |
| | CAWINNTsystem3z | Y




Convergence attained

lteration History

lteration Evaluations =2 Rez Log Like Criterion
0 1 LLF.242125%30
1 1 487 . 17690350 0.00000000

Convergence criteria met.
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Fit statistics and Type 3
tests of Fixed Effects

~ommand ===}
The fAnalv=sis of Messy Data
13:02 Thursday, Hovember ¥, 2002
The Hixed Procedure

Covar iance Parameter Estimates

Cov Parm Subject Eztimate
cCsS personl treatmt ) 25.8016
Rezidual F.2773

Fit Statistics

-2 Res Log Likel ihood 487 .2
AIC (smaller i= better) 491.2
AICC (=maller is better) 491.3
BIC (=maller is better) 493 .6

Hull Model Likelihood Ratio Test
DF Chi=Sqguare Pr » ChiSqg
1 70.07 <.0001

Tvpe 3 Tests of Fixed Effects

Hum Den
Effect DF DF F Value Pr »F
treatmt 2 21 £.95 0.0090
per iod 3 63 12.95 <.0001
treatmt*per iod [ 63 12.16 <.0001
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Effect

treatmt¥period ax23
treatmt¥period ax23
treatmt¥*period ax#3
treatmt¥period ax23
treatmt¥period buwwi

treatmt¥period buwwi
treatmt*period bwwi
treatmt¥period control
treatmt¥period control

LSMeans

Least Squares Means

Standard

treatmt period Estimate Error DF t Yalue Pr > it
1 70.5000 2.0334 63 34 .67 <. 0001
2 80.5000 2.0334 63 39.59 <. 0001
3 81.0000 2.0334 63 39.83 <.0001
4 73.1250 2.0334 63 35.96 <. 0001
1 81.7500 2.0334 63 40.20 <. 0001
treatmt*period buwwd 2 84 . 0000 2.0334 62 41.31 <.0001
3 78.6250 2.0334 63 38.67 <. 0001
4 79.7500 2.0334 63 39.22 <. 0001
1 f2.7500 2.0334 63 35.78 <. 0001
2 f2.3750 2.0334 63 35.59 <. 0001

14:Uf INUFS0ay, NOVEMDEr {, £UUs

Effect

treatmt¥*per iod
treatmt¥per iod

The Mixed Procedure

Least Sqguares Means

Standard
treatmt period Estimate Error
control 3 71.5000 2.0334
control 4 f1.25%00 2.0334

DF

63
63

t Value

35.16
35.04

Pr > It}

<.0001
<.0001
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Fitting Mixed Models

There are a number of error covariance matrix
patterns that can be used to estimate the
model.

Several patterns are used.

CaveatAslong asthese models ar e nested, the
model with the lowest AICC Is the one that Is
selected. Unless the models are nested, this
criterion should not be used.

Among the types available:

Unstructured with : Type=un

Compound symmetry with: Type=cs

First-Order Autoregressive with
Type = ar(1)

Teopliz with : Type = toep

Compound symmetry with heterogeneity with:
Type = csh

Etc.
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Other Experimental
Designs

e Multi-location designs
— The tests are nested in the location

— Such designs can include crossover
designs where instead of doctors, there
would be locations.
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Latin Square Designs

Shrinkage may be a function
of the material

Indicated by the letter and the
setting of heat

Indicated by the position as
well as the setting for the
treatment.

This Is an orthogonal design
where the dv Is a function of

Position, setting, and type
of material.
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Other Experimental
Designs-cont’d

o Lattice Square Designs (an
orthogonal design)

Position
Sequence 1 2 3 4
1 A C D B
2 C A B D
3 D B A C
4 B D C A .




Cross-over Design

Crossover Designs. Used to
compare 2 or more drugs or
treatments. The treatment or drug
IS administered in a particular
seguence to a patient over the
time periods of observation.

To counter the carryover
effects of using the same sequence
of treatment for each patient, the
sequence Is varied. One way to
do this is to use a double latin
sguare design.
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Crossover Design-cont’d

Suppose there are 6 patients, who all get a baseline
physical. After that, they are given a sequence of three
drugs—a placebo, a standard drug, and a test drug.
Therefore, they have four visits to the 2 doctors running
the tests.

The structure of the experiment after the baseline visit
might look like a double latin square:

Doctor 1 Doctor 2

patient 1 |23 |4 |5 |6

1 Baseline visit

st 12 1A |B|C |A |B [C
3 |[B [C|A |[B |C |A
4 |(C |[AB |[C |A |B
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The Cross-over Design
Model

Vi = 4 + Seq + patient(sequence) +visit + treatmnt
+ resid _pat + resid _trtmt
patient (sequence) is random
uence
patient(ssegquence)} 'stype | S5
visit

type 1SS
treatment} P
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Crossover design SAS
Syntax

Proc mixed order=internal,
class sequence patient visit trt;
Model hr = sequence visit drug
resid_trt resid_pat/solution
ddfm=satterth;
random patient(sequence);
Ismeans drug/pdiff cl e;
run;
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1.

> W

Hierarchical Linear
Models

Hierarchical linear models multilevel
random coefficient models.

SAS Proc Mixed can be used to model
multi-level models.

Suppose we have a two level model

We need a random statement for

coefficients of the first level of the model

and meanses and sector are the second level
predictors (Prof. Judy Singer,in “Using SAS
Proc Mixed to Fit Multilevel models” gives
the example):

Proc mixed covtest noitprint;

class school:
model mathach= meanses sector meanses*cses

sector*cses/solution ddfm = bw:

random intercept cses/subject=school,

Run;
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