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Definition of  Mixed Models
by their component 

effects
1. Mixed Models contain both 

fixed and randomeffects
2. Fixed Effects:  factors for which 

the only levels under 
consideration are contained in 
the coding of those effects

3. RandomEffects: Factors for 
which the levels contained in the 
coding of those factors are a 
random sample of the total 
number of levels in the 
population for that factor.
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Examples of Fixed and 
Random Effects

1. Fixed effect:

2. Sex where both male and   
female genders are included in 
the factor, sex.

3. Agegroup:  Minor and Adult 
are both included in the factor of 
agegroup

4. Random effect: 
1. Subject:  the sample is a random 

sample of the target population
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Classification of effects
1. There are maineffects: Linear Explanatory Factors 
2. There are interaction effects: Joint effects over and 

above the component main effects.
3. There are nestedeffects. Hierarchical designs 

contained nested effects: Patients are nested within 
doctors and doctors are nested within hospitals

4. Such effects may sometimes befixed or random. 
Their classification depends on the experimental 
design

5. Between-subjects effectsare those who are in one 
group or another but not in both. Experimental 
group is a fixed effect because the manager is 
considering only those groups in his experiment. 
One group is the experimental group and the other is 
the control group.  Therefore, this grouping factor is 
a between- subject effect.  

6. Within-subject effectsare experienced by subjects 
repeatedly over time.Trial is a random effect when 
there are several trials in the repeated measures 
design; all subjects experience all of the trials.  Trial 
is therefore a within-subjecteffect.

7. Operator may be a fixed or random effect, 
depending upon whether one is generalizing beyond 
the sample

8. If operator is a random effect, then the 
machine*operator interaction is a random effect.

9. There are contrasts:  These contrast the values of 
one level with those of other levels of the same 
effect.
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Classification of Effects-
cont’d

Hierarchical designs have nested 
effects.  Nested effects are those 
with subjects within groups.

An example would be patients 
nested within doctors and doctors 
nested within hospitals

SAS expresses nesting of effects by:

patients(doctors)

doctors(hospitals)
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The General 
Linear Model

1. The main effects general linear 
model can be parameterized as

( )

( )
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exp ~ ( , )
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A factorial model

If an interaction term were included, the 
formula would be

ij i i ij ijy eµ α β αβ= + + + +
The interaction or crossed effect is the joint effect, over and 
above the individual main effects.  Therefore, the main effects 
must be in the model for the interaction to be properly specified.

( )( ) ( )i j ij

ij

y

y

αβ µ α µ β µ
α β µ

= − − − − −
= − − +
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Higher-Order Interactions

If 3-way interactions are in the 
model, then the main effects and 
all lower order interactions must 
be in the model for the 3-way 
interaction to be properly 
specified.   For example,  a 

3-way interaction model would 
be:

ijk i j k ij ik jk

ijk ijk

y a b c ab ac bc

abc e

µ= + + + + + +
+ +
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The General Linear Model

• In matrix terminology, the general 
linear model may be expressed as

Y X

where

Y theobserved data vector

X the design matrix

thevector of unknown fixed effect parameters

thevector of errors

β ε

β
ε

= +
=
=
=
=
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Programming the General 
Linear Model

• In the GLM procedure, one saves the 
data set plus the residuals, predicted 
values, and studentized residuals with 
an output statement in a data set called 
resdat.

PROC GLM;

class machine operator;

Model yield=machine|operator;

output out=resdat r=resid    p=pred 
student=stdres rstudent=rstud
cookd=cksd h=lev;

Run;
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Assumptions of the 
general linear model

( )
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GLM Assumptions-cont’d

1. Residual Normality.

2. Homogeneity of error variance

3. Functional form of Model:   
Linearity of Model

4. No Multicollinearity

5. Independence of observations

6. No autocorrelation of errors 

7. No influential outliers

We have to test for these to be sure that the model is
valid.   
We will discuss the robustness of the model in face
of violations of these assumptions.

We will discuss recourses when these assumptions are
violated.
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Residuals Diagnostics

• Residual diagnostics test the 
fulfillment of the assumptions of 
the general linear model
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SAS test for residual 
normality.

Proc univariate data=resdat normal 
plot;

var resid;
Run;
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Testing the assumption of 
Homogeneity of Error 

Variance
Levene’s test is performed by 

computing   

.

'

. | |

.

.

ij ij j

Levene s test for homogeneity of variance

compute Z Y Y

Perform an F test on the j groups

A nonsignificant result indicates no

heteroskedasticity

= −1

2

3

means  factor/  hovtest=levene(type=abs);
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Graphically examining 
residuals for homogeneity

Proc gplot data=resdat;

plot resid * pred;

Run;

• Analysis for lack of pattern;
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Testing for outliers

Proc freq data=resdat;

tables stdres cksd;

Run;

1. Look for standardized residuals 
greater than 3.5 or less than – 3.5

2. And look for high Cook’s D (greater 
than 4*p/(n-p-1).

Proc gplot data=resdat;

plot stdres*cksd;

Title ‘Leverage of outliers’;

Run;
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Assessing the leverage of 
outliers

• Construct and analyze studentized 
residuals

• Construct and analyze the 
leverage of the high and low 
studentized residuals 

• Use Cook’s D to help determine 
how problematic the outliers are.
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Studentized Residuals

( )

( )

( )
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e studentized residual

s standard deviation whereithobs is deleted

h leverage statistic

= −

=
=
=

2 1

Belsley et al (1980) recommend the use of studentized
Residuals to determine whether there is an outlier.
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Influence of Outliers

1. Leverage is measured by the 
diagonal components of the hat 
matrix.

2. The hat matrix comes from the 
formula for the regression of Y.

ˆ '( ' ) '

'( ' ) ' ,

,

ˆ

Y X X X X X Y

where X X X X the hat matrix H

Therefore

Y HY

β −
−

= =
=

=

1

1
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Leverage and the Hat 
matrix

1. The hat matrix transforms Y into the 
predicted scores.

2. The diagonals of the hat matrix indicate 
which values will be outliers or not.  

3. The diagonals are therefore measures of 
leverage.

4. Leverage is bounded by two limits: 1/n and 
1.  The closer the leverage is to unity, the 
more leverage the value has.

5. The trace of the hat matrix = the number of 
variables in the model.

6. When the leverage > 2p/n then there is high 
leverage according to Belsley et al. (1980) 
cited in Long, J.F. Modern Methods of 
Data Analysis(p.262). For smaller samples, 
Vellman and Welsch (1981) suggested that 
3p/n is the criterion.
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Cook’s D

1. Another measure of influence.

2. This is a popular one.  The 
formula for it is:

'
( )

i i
i

i i

h e
Cook s D

p h s h

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠⎝ ⎠
2

2

1
1 1

Cook and Weisberg(1982) suggested that values of 
D that exceeded 50% of the F distribution (df = p, n-p)
are large.
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Cook’s D in SAS

Finding the influential outliers

Select those observations for which 
cksd > 4*p/n

Belsley suggests  4*p/(n-p-1) as a 
cutoff

If cksd > 4*p/(n-p-1);

Proc print; var cksd;

Run;
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What to do with outliers

1.  Check coding to spot typos
2.  Correct typos
3.  If observational outlier is correct, 

examine the dffits option to see 
the influence on the fitting 
statistics.  

4.  This will show the standardized 
influence of the observation on 
the fit.  If the influence of the 
outlier is bad, then consider 
removal or replacement of it with 
imputation.  
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Decomposition of the 
Sums of Squares

1. Mean deviations are computed 
when means are subtracted from 
individual scores.

1. This is done for the total, the 
group mean, and the error terms.

2. Mean deviations are squared and 
these are called sums of squares

3. Variances are computed by 
dividing the Sums of Squares by 
their degrees of freedom.

4. The total  Variance =  Model 
Variance + error variance
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Formula for Decomposition 
of Sums of Squares

SS total  =      SS error        +            SSmodel



28

Variance Decomposition

Dividing each of the sums of 
squares by their respective 
degrees of freedom yields the 
variances.

Total variance= error variance
+    model variance.

in fixed effects models

model variance
F

error variance
=

SStotal SSerror SSmodel

n n k k
= +− − −1 1
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Proportion of Variance 
Explained

R2  =  proportion of variance 
explained.

SStotal = SSmodel + SSerrror

Divide all sides by SStotal

SSmodel/SStotal

=1 - SSError/SStotal

R2=1 - SSError/SStotal
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The Omnibus F test

The omnibus F test is a test that all of the means of the
levels of the main effects and 
as well as any interactions specified
are not significantly different from one another.

Suppose the model is a one way anova on breaking
pressure of bonds of different metals.

Suppose there are three metals: nickel, iron, and
Copper.

H0:   Mean(Nickel)= mean (Iron) = mean(Copper)
Ha:    Mean(Nickel) ne Mean(Iron) or 

Mean(Nickel) ne Mean(Copper)
or Mean(Iron) ne Mean(Copper)
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Testing different Levels of a 
Factor against one another

• Contrast are tests of the mean of 
one level of a factor against other 
levels.

:

:a

H

H

µ µ µ
µ µ
µ µ
µ µ

= =
≠⎧⎪ ≠⎨⎪ ≠⎩

0 1 2 3

1 2

2 3

1 3
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Contrasts-cont’d

• A contrast statement computes 

' ˆ'( ' )

( )

L L V L L
Z Z

F
rank L

β β− −⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦=
1

The estimated  V- is the generalized inverse of the
coefficient matrix of the mixed model.
The L  vector is the k’b vector.

The numerator df is the rank(L) and the denominator
df is taken from the fixed effects table unless otherwise
specified.
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Estimate statements

• This is exactly like a contrast 
statement except only one-row L 
matrices are permitted.   The 
actual estimate            is printed 
along with its approximate 
standard error, t-test, and t-
probability. 

• They are useful in estimating 
random effects and their 
significance.

'L β
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Testing Statistical Significance 
of Differences of levels of a 

factor or interaction

We may test whether different levels of a factor differ with
respect to the mean level of the dependent variable in several
ways.  If there are three levels of a metal and we wish to test
whether levels 2 and 3 are different, we would be asking
whether Copper has a  statistically significantly different
in its breaking pressure from that of Iron.

We may use A Priori Contrasts or Estimates
An a priori contrast is a t-test between levels:
t= mean(Copper) – mean(Iron)/Se
the SAS syntax for testing it is:

Contrast  ‘Copper v Iron’  metal  0 1 –1

An estimate is the mean response 
= mean(copper) - mean(iron)  + 0*mean(nickel) 
The SAS syntax for estimating this is:

Estimate  ‘Copper v Iron’  metal 0 1 – 1

We may use Post Hoc Tests.  These are different sorts of
tests that may or may not require equal variances to test
whether one level of a factor or interaction is different
from other levels.
means  metal /scheffe alpha=.017;
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Construction of the F tests 
in different models

The F test is a ratio of two variances (Mean Squares).
It is constructed by dividing the MS of the effect to be
tested by a MS of the denominator term.   The division
should leave only the effect to be tested left over as a remainder.

A Fixed Effects model  F test for a =   MSa/MSerror.
A Random Effects model F test for a = MSa/MSab
A Mixed Effects model F test for b =  MSa/MSab
A Mixed Effects model F test for ab =  MSab/MSerror
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The Mixed Model 

The Mixed Model subsumes fixed and 
random effects.

It can be used to model merely fixed or 
random effects, by zeroing out the 
other parameter vector.

The F tests for the fixed, random, and 
mixed models differ.

Because the Mixed Model has the 
parameter vector for both of these and 
can estimate the error covariance 
matrix for each, it can provide the 
correct standard errors for either the

fixed or random effects.
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Mixed Model Theory

Y X Z u

w h e r e

Y t h e d a t a v e c t o r

X t h e d e s i g n m a t r i x

f i x e d e f f e c t s p a r a m e t e r e s t i m a t e s

Z d e s i g n m a t r i x f o r r a n d o m e f f e c t s

u r a n d o m e f f e c t s

e r r o r v e c t o r

β ε

β

ε

= + +
=
=
=
=
=
=
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Mixed Model Theory-
cont’d

Little et al.(p.139) note that u and e are 
uncorrelated random variables with 0 means 
and covariances, G and R, respectively.

' ,

ˆ ˆ ˆ( ' ) '

ˆ ˆˆ' ( )

Because the

covariance matrix

V ZGZ R

the solution for

X V X X V y

u GZ V y X

β
β

− − −
−

= +

=
= −

1 1

V- is a generalized inverse.  Because V is 
usually singular and noninvertible  AVA = V- is 
an augmented matrix that is invertible.  It can 
later be transformed back to V.
The G and R matrices must be positive definite.
In Proc Mixed, A random statement defines G 
and a repeated statement defines R.
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Linear Combinations

( ) ( ' )

, ( ) '( ' )

V X V X

If L is estimable then V L X V X L

β
β

− −
− −

=
=

1

1
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Mixed Model 
Assumptions

0
u

E ε
⎡ ⎤ =⎢ ⎥⎣ ⎦

0

0

u G
Variance

Rε
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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Z  and G matrices for the 
mean and variances of 

random effects

.

. .

. .

.

Z G

σ
σ

σ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

2
1

2
1

2
1

1

1

1

1

1

1

1

1

1
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R matrix, the covariance 
structure of which is defined 

with a type option in the 
repeated command

.

.
R

σ σ σ σ
σ σ σ σ
σ σ σ σ

σ σ σ σ
σ σ σ σ
σ σ σ σ

⎛ ⎞+⎜ +⎜⎜ +⎜⎜⎜=⎜⎜ +⎜⎜ +⎜⎜ +⎝ ⎠

2
1 1 1

2
1 1 1

2
1 1 1

2
1 1 1

2
1 1 1

2
1 1 1

repeated / type=cs subject=id
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GLM      Mixed Model⊂
The General Linear Model is a special case of the
Mixed Model with Z = 0 (which means that
Zu disappears from the model) and 2R Iσ=
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SAS may require data set 
conversion for Mixed Model 

Processing
• The data structure for a repeated 

measures GLM is not the same as 
that for a Proc Mixed. One has to 
convert a horizontally repeated 
observation data set to a vertically 
repeated observation data set.

• The Horizontally repeated data set 
in sas appears as follows:
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Horizontally Repeated 
(wide format) Data

data Miss;
input influent1  influent2 influent3 influent4 

influent5 influent6;
datalines;
21 21 20 14  7 41
27 11 19 24 15 42
29 18 20 30 18 35
17  9 11 21  4 34
19 13 14 31 28 30 
12 23  . 27  .  .
29  .  .  .  .  .
20  .  .  .  .  .
20  .  .  .  .  .
proc print;
title5 'data miss‘; run;
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Horizontally Repeated 
(Wide) Data
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Vertically Repeated 
(Long) Data Set
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Two Ways to Convert the data 
sets from Horizontally 

repeated (wide) to Vertically 
repeated (long) data sets

data new2;
set miss;

/* Here we restructure the data set */
label type='Type of influent';
y = influent1; influent=1; output;
y = influent2; influent=2; output;
y = influent3; influent=3; output;
y = influent4; influent=4; output;
y = influent5; influent=5; output;
y = influent6; influent=6; output;

drop influent1-influent6;
proc print data=new2;
title5 'new2';
run;
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More Elegant Conversion 
with Arrays

data new3;
array influent{6} influent1-influent6;
input influent1  influent2 influent3 influent4 influent5 

influent6;
do type = 1 to 6;

y = influent(type);
output;
end;

drop influent1-influent6;
cards;
21 21 20 14  7 41
27 11 19 24 15 42
29 18 20 30 18 35
17  9 11 21  4 34
19 13 14 31 28 30 
12 23  . 27  .  .
29  .  .  .  .  .
20  .  .  .  .  .
20  .  .  .  .  .
proc print data=new3;
title5 'New3';
run;
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The Fixed-Effects Model
Suppose there are three groups: experimental control standard
and three treatments:  lowdose, medose, hidose.   The 
dependent variable, Y,  is the completeness of recovery.  We 
assume that we have population data.  We are not generalizing
to larger levels than those we have in our sample. Therefore,
all of our effects are deemed to be fixed.   We analyze 
our model as a fixed effects model.

The Fixed Effects models may be programmed in SAS with 
PROC ANOVA,  PROC GLM, or PROC MIXED.  PROC 
ANOVA and PROC GLM have similar syntax.

PROC GLM;
Class group treatment;
Model Y = group treatment group*treatment;
Means group treatment group*treatment/

hovtest=Levene(type=abs)
Scheffe alpha=.017;

output out=resdat p=pred r=resid;
run;

PROC UNIVARIATE normal plot data=resdat; var resid;
Title ‘Test of Normality of Residuals’;
Run;

PROC MIXED;
Class group treatment;
Model Y = group|treatment;
Lsmeans group|treatment/pdiff;

run;
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Proc GLM vs.
Proc  Mixed

GLM has
means
lsmeans
sstype 1,2,3,4
estimates using OLS or WLS
one has to program the correct F tests for random   effects.
cannot handle cases with missing  values and drops them from the 
analysis.

Mixed has
lsmeans
sstypes 1 and 3 
estimates using maximum likelihood, general methods of moments, 
or restricted maximum likelihood

ML
MIVQUE0
REML

gives correct std errors and confidence intervals for random effects 
Automatically provides correct standard errors for analysis.
Can handle observation with missing data.
Can handle a wide variety of covariance structures for random effects, 
repeated effects.
More robust analysis.
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Analysis of Fixed Effects 
model in the Mixed Model

SAS tests these effects by constructed a type III
L matrix.

We analyze the breaking pressure of bonds made
from three metals.  We assume that we do not
generalize beyond our sample and that our
effects are all fixed.

Tests of Fixed Effects is performed with the help of
the L matrix by constructing the following F test:

ˆ ˆˆ' '[ ( ' ) ']

( )

L L X V X L L
F

rank L

β β− − −= 1

Numerator df = rank(L)
Denominator df = RESID (n-rank(X)

df = Satherth  
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SAS Command Syntax: 
Comparison of SAS Syntax 
for Fixed Effects ANOVA 

with Glm and Mixed
title1 'General Linear and Mixed Models';
title2 'Ingot Data from SAS Course Notes';
title3 'p.11  SAS Institute, Cary, NC';
options ls=80 ps=55;
proc format;
value met 1='Nickel'

2='Iron'
3='Copper';

data metalic;
input ingot metals $ pressure;
if metals = 'nickel  ' then metal=1;
if metals = 'iron    ' then metal=2;
if metals = 'copper  ' then metal=3;
format metal met.;
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Data and Preliminary 
Analysis

datalines;
1 nickel  67.0
1 iron   71.9
1 copper 72.2
2 nickel 67.5
2 iron  68.8
2 copper  66.4
3 nickel 76.0
3 iron    82.6
3 copper  74.5
4 nickel  72.7
4 iron    78.1
4 copper 67.3
5 nickel  73.1
5 iron  74.2
5 copper 73.2
6 nickel 65.8
6 iron  70.8
6 copper 68.7
7 nickel 75.6
7 iron  84.9
7 copper 69.0
proc print;
run;
proc sort; by metal;
run;
proc means; by metal; var pressure;
title 'Mean Pressure of ingots';
run;
proc univariate plot; var pressure; by metal;
title 'Comparative Box Plots';
run;
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Proc Means Output
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Box Plot Output from 
Proc Univariate
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Graphing the Means

proc gplot data=metalic;

plot pressure*ingot=metal/haxis=axis1 
vminor=0;

axis1 offset=(2,2) minor=none;

symbol1 v='n' c=blue i=join;

symbol2 v='i' c=brown i=join;

symbol3 v='c' c=red i=join;

title 'Pressure by Ingot Number';

run;
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Proc Gplot Output



59

SAS syntax for One-Way 
Fixed Effects model with 

Proc GLM
proc glm data=metalic;
class metal;
model pressure = metal;
means metal/hovtest=levene (type=abs) scheffe tukey 

lsd;
contrast 'nickel v iron' metal 1 -1 0;
contrast 'nickel v copper' metal 1 0 -1;
contrast 'iron v copper' metal 0 1 -1;
estimate ‘nickel v iron’ metal 1 –1 0;
estimate ‘nickel v copper’ metal 1 0 –1;
estimate ‘iron v copper’ metal 0 1 –1;

output out=resdat1 r=resid1 p=pred1;
title 'One-Way Fixed Effects Model';
title2 'With Proc GLM';
run;
proc univariate data=resdat1 normal plot;
var resid1;

title 'Test for normality of residuals';
run;
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Contrasts

Constrasts are comparisons among means.
They are t tests between different levels of the
same factor.

T =    contrast/Se of contrast

1 .1 2 .2 .

2

1

... p p

n
j

j j

c Y c Y c Y
t

c
MSerror

n=

+ + +=
∑
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SAS contrast syntax

contrast  ‘copper v iron’  metal 1 –1 0;

For simple contrasts of levels of a main effect,
use 1 and –1 to identify the levels being
contrasted.

Contrasts of interactions

Suppose you have 3 levels of a and 5 levels of b
and you wish to compare the 2nd level of a with the
5th level of b in an interaction



62

C

XB

XA

54321Method

Variety

In a 3 by 5 matrix, you are comparing
Cells  12 and 25

0 12 25

1 2 12 2 5 25

:

:

H

In other words

u a b ab u a b ab

µ µ=
+ + + = + + +
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An Interaction contrast
of ab12 and ab25

1 2 12 2 5 25

1 2 2 5 12 25

:

( ) ( ) 0

0

1 2 0 3 0 1 2 0 3 0 4 5

0 11 12 0 13 0 14 0 15

0 21 0 22 0 23 0 24 25

0 31 0 32 0 33 0 34 0 35 0

' 2 5'

In other words

u a b ab u a b ab

a a b b ab ab

a a a b b b b b

ab ab ab ab ab

ab ab ab ab ab

ab ab ab ab ab

Contrast A v B m

+ + + − + + + =
− + − + − =

− + + + + + −
+ + + + +
+ + + + −
+ + + + + =

1 1 0 0 100 1

*var 0 1 0000000 1 00000;

ethod variety

method iety

− −
−
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Interpretation of the GLM 
output-1
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GLM output-2

The R2 =   Model Variance/Total Variance
The Coeff Var =   sd/mean
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SAS syntax for One-Way 
Fixed Effects model with 

PROC Mixed

SAS Command Syntax

Class effects are all factors.
Only the fixed effects are specified in the model statement.
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Mixed statements

Proc Options:  
mmeq : model equation reported

Class:   specifies the discrete factors
Model statement:
model pressure=metal;

(model statement indicates the dependent 
variable=fixed effect;)  Only fixed effects 
are included in the model statement.

LSmeans  metal/pdiff;
There are only lsmeans statements in proc 

model.  The pdiff statement requests that 
the differences between the levels of the 
fixed effects be estimated and reported.

LSmeans metal/adjust=bon;
Perform a bonferroni correction to the 
probability for multiple comparisons.
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Mixed Model Syntax

For Models with random effects:
Random variety/type = cs subject=id;

The random statement contains only 
random effects of the model. This 
specifies the parameters of  the 
random effects of the Zu part of 
the model– the variance matrix of 
which is the G matrix.
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The Random statement

1. This specifies the random 
effects. Interactions with random 
effects are also random effects.

2. The solution option requests that 
the solution for the random 
parameters be printed.  These 
estimates are best linear 
unbiased predictors:
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The Repeated Statement

• The repeated statement specifies the 
covariance structure for repeated observations 
on the subjects, as in a repeated measures 
design.

• “In repeated measures situations, the Mixed 
model approach is both more flexible and 
applicable than the conventional univariate 
and multivariate appraches [SAS Stat 
Software: Changes and Enhancements 
through 6.11.”(1996). Cary, NC:SAS 
Institute, p.536].

• SAS Proc Mixed can handle a wide variety of 
covariance structures that none of the 
mentioned approaches can deal with; the 
conventional approaches depend on a 
Gaussian residual distribution. 
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Output Interpretation
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Output Interpretation-
cont’d

• Mixed Model equations from option mmeq  
and covariance parameter estimate from 
option covtest
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Information Criteria and 
Fixed Effect test

cov

ln( )

&

( / )

Akaike Information Criterion

AIC LL d

where d p q q number of ariance parameters

p rank of matrix

Schwarz Information criterion

BIC LL d n

Hurvich Tsay

AICC LL q N N q

= − +
= + =

=
= − +
= − + − −

2 2

2

2 2 1

The latter is best for smaller samples.
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Fixed Effects Output 
Interpretation-cont’d

The Fixed effect is the independent 
factor in the one-way layout.  

The Fixed effects are always 
specified only in the model 
statement.

The Type 3 test is one where the 
Sums of Squares can handle 
unbalanced designs. This is a 
simultaneous sums of squares, 
unlike that of a type I sum of 
squares, which is a sequential sum 
of squares.
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Least Square Means and 
differences among them

Bonferroni adjustment for multiple comparisons
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Two-Way Random Effects Models
with Proc Mixed

from Milliken and Johnson’s
Analysis of Messy Data Course.

There are no fixed effects specified on the right-hand side of the
Model statement.
Both discrete factors specified in the class statement are mentioned
in the random statement, along with their interaction.
The random specification is followed by the solution option.
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The Random statement

1. This specifies the random 
effects. Interactions with random 
effects are also random effects.

2. The solution option requests that 
the solution for the random 
parameters be printed.  These 
estimates are best linear 
unbiased predictors:
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Estimate statements

• This is exactly like a contrast 
statement except only one-row L 
matrices are permitted.   The 
actual estimate            is printed 
along with its approximate 
standard error, t-test, and t-
probability. 

• They are useful in estimating 
random effects and their 
significance.

'L β
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Output interpretation
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More output
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Solutions and Estimates 
for Random Effects
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The Mixed Model: A 
Two-Way Layout

• data grass;
• input method $ variety @;
• do i = 1 to 6;
• input yield @;
• output;
• end;
• datalines;
• AA  1   22.1 24.1 19.1 22.1 25.1 18.1
• AA  2   27.1 15.1 20.6 28.6 15.1 24.6
• AA  3   22.3 25.8 22.8 28.3 21.3 18.3
• AA  4   19.8 28.3 26.8 27.3 26.8 26.8
• AA  5   20.0 17.0 24.0 22.5 28.0 22.5
• BB  1   13.5 14.5 11.5 6.0  27.0 18.0
• BB  2   16.9 17.4 10.4 19.4 11.9 15.4
• BB  3   15.7 10.2 16.7 19.7 18.2 12.2
• BB  4   15.1  6.5 17.1  7.6 13.6 21.1
• BB  5   21.8 22.8 18.8 21.3 16.3 14.3
• CC  1   19.0 22.0 20.0 14.5 19.0 16.0
• CC  2   20.0 22.0 25.5 16.5 18.0 17.5
• CC  3   16.4 14.4 21.4 19.9 10.4 21.4
• CC  4   24.5 16.0 11.0  7.5 14.5 15.5
• CC  5   11.8 14.3 21.3  6.3  7.8 13.8
• proc print;
• var method variety yield;
• title3 'Advanced Linear Models with Emphasis on Mixed Models';
• title4 'Two-Way Fixed Effects Model';
• title5 'Data from p. 45';
• run;
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Mixed Model Syntax
method is a fixed effect

variety and its interaction with method 
are random effects
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Mixed Model Output
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Convergence attained
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Mixed Output-cont’d
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Contrasts from Mixed 
output
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LSmeans and Differences 
among them



89

Repeated Measures Anova 
with Proc Mixed
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Data for Repeated Measures 
ANOVA from Millikin and 
Johnson Analysis of Messy 

Data• title 'Repeated Measures Analysis of Variance';
• title2 'Source is Millikin and Johnson       ';
• title3 'The Analysis of Messy Data           ';
• data repeat;
• input t1 t2 t3 t4 treatmt $;
• label t1='Time1' t2='Time2' t3='Time3'
• t4='Time4';
• datalines;
• t1 t2 t3 t4 trt
• 72 86 81 77 ax23
• 78 83 88 81 ax23
• 71 82 81 75 ax23
• 72 83 83 69 ax23
• 66 79 77 66 ax23
• 74 83 84 77 ax23
• 62 73 78 70 ax23
• 69 75 76 70 ax23
• 85 86 83 80 bww9
• 82 86 80 84 bww9
• 71 78 70 75 bww9
• 83 88 79 81 bww9
• 86 85 76 76 bww9
• 85 82 83 80 bww9
• 79 83 80 81 bww9
• 83 84 78 81 bww9
• 69 73 72 74 control
• 66 62 67 73 control
• 84 90 88 87 control
• 80 81 77 72 control
• 72 72 69 70 control
• 65 62 65 61 control
• 75 69 69 68 control
• 71 70 65 65 control
• ;
• /* Example of Repeated Measures Analysis Millikin and Johnson */
• /* The Analysis of Messy Data 26.1 
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Repeated Measures Proc 
Mixed Syntax

data times; set lsm;
period = substr(_NAME_,2,1);

symbol1 i=join c=green;
symbol2 i=join c=blue;
symbol3 i=join c=brown;
symbol4 i=join c=red;
proc gplot;

plot lsmean*period=treatmt;
run;
data mixed; set repeat;

person = _N_;
y = t1; period = 1; output;
y = t2; period = 2; output;
y = t3; period = 3; output;
y = t4; period = 4; output;
drop t1--t4;

run;
proc mixed data=mixed;  /* repeated measures using proc mixed */

class treatmt period person;
model y = treatmt|period;
repeated / type=ar(1) sub=person(treatmt);
lsmeans treatmt*period;

run;
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Repeated Measures Mixed 
Syntax

• Repeated Statement 
– Specifies the error matrix of 
– This is called the R matrix in SAS
– There is only 1 repeated statement
– The within-subject (split plot) effect is 

specified.

• Repeated time/type=ar(1) subject=id;
• Subject =  specifies the units of 

measurement which can be correlated 
within the id.

• Type=     specifies the structure of the 
error covariance matrix R.  Some types 
are un, ar(1), arh(1), cs, csh, hf, toep, 
etc.

Σ
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Selected Covariance 
Structures

• Type=VC
2

1

2
2

2
3

2
4

0 0 0

0 0 0
( )

0 0 0

0 0 0

VC default

σ
σ

σ
σ

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
2 2 2 2

11 12 13 14

2 2 2 2
21 22 23 24

2 2 2 2
31 32 33 34

2 2 2 2
41 42 43 44

Unstructured

σ σ σ σ
σ σ σ σ
σ σ σ σ
σ σ σ σ

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Type=Unstructured 
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Selected Covariance 
Structures-Cont’d

• Compound Symmetry type=CS

• First-Order Autoregressive  
type=AR(1)

2 2 2 2 2
1 1 1 1

2 2 2 2 2
1 1 1 1

2 2 2 2 2
1 1 1 1

2 2 2 2 2
1 1 1 1

CS

σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ

⎡ ⎤+⎢ ⎥+⎢ ⎥= ⎢ ⎥+⎢ ⎥⎢ ⎥+⎣ ⎦

2 3

2

2

3 2

1

1
(1)

1

1

AR

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
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Basic Repeated Measures 
Output
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Convergence attained
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Fit statistics and Type 3 
tests of Fixed Effects
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LSMeans
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Fitting Mixed Models

There are a number of error covariance matrix 
patterns that can be used to estimate the 
model.

Several patterns are used.
Caveat:As long as these models are nested, the 

model with the lowest AICC is the one that is 
selected.  Unless the models are nested, this 
criterion should not be used.

Among the types available:
Unstructured with :   Type=un     
Compound symmetry with: Type=cs
First-Order Autoregressive with 

Type = ar(1)

Teopliz with : Type = toep
Compound symmetry with heterogeneity with:  

Type = csh
Etc.



100

Other Experimental 
Designs

• Multi-location designs
– The tests are nested in the location

– Such designs can include crossover 
designs where instead of doctors, there 
would be locations.
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Latin Square Designs

Shrinkage may be a function 
of the material

Indicated by the letter and the 
setting of heat

Indicated by the position as 
well as the setting for the 
treatment.

This is an orthogonal design 
where the dv is a function of
Position, setting, and type 
of material.
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Other Experimental 
Designs-cont’d

• Lattice Square Designs (an 
orthogonal design)

4

3

2

1

Sequence 4321

Position

ACDB

CABD

DBAC

BDCA
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Cross-over Design

• Crossover Designs:  Used to 
compare 2 or more drugs or 
treatments.  The treatment or drug 
is administered in a particular 
sequence to a patient over the 
time periods of observation.

• To counter the carryover 
effects of using the same sequence 
of treatment for each patient, the 
sequence is varied.  One way to 
do this is to use a double latin 
square design.
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Crossover Design-cont’d

• Suppose there are 6 patients, who all get a baseline 
physical.  After that, they are given a sequence of three 
drugs—a placebo, a standard drug, and a test drug.  
Therefore, they have four visits to the 2 doctors running 
the tests.

• The structure of the experiment after the baseline visit 
might look like a double latin square:

Visit

patient

BACBAC4

ACBACB3

CBACBA2

Baseline visit1

654321

Doctor 2Doctor 1
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The Cross-over Design 
Model

( )

_ _

( )

( )

ijky seq patient sequence visit treatmnt

resid pat resid trtmt

patient sequence is random

sequence
is type I SS

patient sequence

visit
type IIISS

treatment

µ= + + + +
+ +

⎫⎬⎭
⎫⎬⎭
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Crossover design SAS 
Syntax

Proc mixed order=internal;

class sequence patient visit trt;

Model hr = sequence visit drug

resid_trt resid_pat/solution

ddfm=satterth;

random patient(sequence);

lsmeans drug/pdiff cl e;

run;
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Hierarchical Linear 
Models 

1. Hierarchical linear models multilevel 
random coefficient models.

2. SAS Proc Mixed can be used to model 
multi-level models.

3. Suppose we have a two level model
4. We need a random statement for 

coefficients of the first level of the model 
and meanses and sector are the second level 
predictors (Prof. Judy Singer,in “Using SAS 
Proc Mixed to Fit Multilevel models” gives 
the example):

Proc mixed covtest noitprint;
class school;
model mathach= meanses sector meanses*cses

sector*cses/solution ddfm =   bw;
random intercept cses/subject=school;

Run;
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