Generalized Autoregressive Score (GAS) or Dynamic Scoring models (Dysco) models

Robert A. Yaffee

New York University

May 16, 2014

NYUSilver Silver School of Social Work

590

Robert A. Yaffee (New York University) Generalized Autoregressive Score (GAS) or D

May 16, 2014 1 / 11

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Acknowledgment

NYUSilver Silver School of Social Work

590

2/11

< 17 ▶

→ ∃ →

May 16, 2014

We are deeply grateful to the following developers for their work in creating and developing the GAS (Dysco) models:

 Siem Jan Koopman, Jurgen Doornik, Andrew C. Harvey, and to Sebastien Laurent for incorporating these models into G@RCH.

Silver School of Social Work

3/11

A B b 4 B b

- Timberlake Consultants, Ltd. Union, NJ 908-686-1251
- http://www.timberlake-consultants.com
- Teresa and David Corbett
- Noelia Germino

Independent developers

Andrew Harvey Professor at Cambridge University

NYUSilver Silver School of Social Work

590

May 16, 2014 4 / 11

Model developers

• Siem Jan Koopman (Vrie University of Amsterdam and Tinbergen Institute) giving a lecture at the Royal Statistical Society in London

Robert A. Yaffee (New York University) Generalized Autoregressive Score (GAS) or D

May 16, 2014 5 / 11

- 2008 Creal, Koopman, and Lucas developed a new class of observation driven models, called GAS models.
- Harvey and Tirthankar Chakravarty (2008): "Beta-t-(E)GARCH" developed the model called it a dynamic scoring model

6/11

- 2008 Creal, Koopman, and Lucas developed a new class of observation driven models, called GAS models.
- This is an observation driven model with a scaled score function and hence the name—generalized autoregressive score model.
- Harvey and Chikratarvey (2008) independently developed the model and called it a dynamic scoring model.
- Parameter driven models are stochastic models that have their own source of error.

Silver School of Social Work

7/11

May 16, 2014

- Includes time varying parameters in the models.
- models include non-linear regression models with time-varying parameters.
- include multivariate point process models with time varying parameters.
- includes models for time-varying higher moments.
- includes multivariate models.
- can include some dynamic factor models
- include Engle's ARCH, ACD, ACI, ACM, and DCC models

Silver School of Social Work

8/11

→ ∃ → < ∃</p>

Rob Engle NYU Stern Finance

 Rob Engle Noble Laureate author of Autoregressive Conditional Heteroscedastic, Autoregressive Conditional Duration, Autoregressive Conditional Intensity, Autoregressive Conditional Multinomial and Dynamic Conditional Correlation models

Robert A. Yaffee (New York University)

Generalized Autoregressive Score (GAS) or D

May 16, 2014 9 / 11

- Let *y*^{*t*} be a dependent variable of interest,
- Let *f*_t be a time-varying parameter,
- Let *x*_t = a vector of exogenous variables, all at time t, and
- Let θ = a vector of static parameters.
- Assume that observation y_t is generated by observation density

$$\rho(y_t|f_{t-1}, Y^{t-1}, X_1^t, F_1^{t-2}; \theta)$$
(1)

10/11

• So the updating equation is:

$$f_t = \omega + \sum_{i=0}^{p-1} A_i s_{t-i} + \sum_{j=1}^{q} B_j f_{t-j}$$
(2)

Silver School of Social Work

11/11

May 16, 2014

- s_t = some scaled score function.
- *f_t* would have to evolve subject to its own independent source of error.
- unknown coefficients in ω , A_i , and B_j are functions of θ as well.

 Simulations are often effective when based on second-order expansions of the log observation density.

$$s_t = S_{t-1} * \bigtriangledown_t \tag{3}$$

where ∇ = score or gradient = $\frac{\partial ln(p)}{\partial t_{t-1}}$ and S_{t-1} = pseudo-inverse information matrix: = $I_{t-1}^{-1} = E_{t-1} [\nabla t \nabla'_t]^{-1}$

NYUSilver Silver School of Social Work

12/11

GAS models are speccified by the orders of A and B parameters- e.g.

$$GAS(p,q)$$
 (4)

May 16, 2014

- where p=order of A_i and q = order of B_i ۰
- ۰ If we let $y_t = \sigma_{t-1} \epsilon_t$.
- Therefore a GAS(1,1) model is equivalent to a GARCH(1,1) model in specification. ۰

Sac

13/11

That is, because Rob Engle defined $\epsilon_t = \sigma_t z_t \quad z_t \sim N(0, 1)$, this GAS model is formulated as:

$$\sigma_t^2 = \omega + \alpha_1 z_{t-1}^2 \sigma_{t-1}^2 + \phi_1 \sigma_{t-1}^2$$
(5)

and the Exponential GAS model is formulated as

$$\ln \sigma_t^2 = \omega + \alpha_1 u_{t-1} \sigma_{t-1}^2 + \phi_1 \ln \sigma_{t-1}^2$$
(6)

Silver School of Social Work

14/11

May 16, 2014

where $u_{t-1} = z_t^2 - 1$ when $z_t \sim N(0, 1)$.

Our mean model for female anxiety is

$$femanx = .242 + \epsilon_t \tag{7}$$

and our EGAS model is

$$ln\sigma_t^2 = -.906 + 0.377\sigma_{t-1}^2 + 0.874 ln\sigma_{t-1}^2$$
(8)

NYUSilver Silver School of Social Work

Sac

15/11

イロト イヨト イヨト

EGAS diagnostics for female Anxiety model

TESTS :						
Information Criter	.a (to be minim	(zed)	c20704			
AKOLKE -2.:	Akaike -2.594384 Shibata -2.628784					
Schwarz -2	Hereos numum	-quinn -	2.330203			
Normality Test						
	Statistic	t-Test	P-Value			
Skewness	-0.23534	0.53422	0.59319			
Excess Kurtosis	-0.0062462 0	.0072772	0.99419			
Jarque-Bera	0.25850	.NaN	0.87875			
Digamostic test based on the news impact curve (FGARCH vs. GARCH)						
		Test P	-value			
Sign Bias t-Test		2.01201 0	.04422			
Negative Size Bias t-Test 2.18704 0.02874						
Positive Size Bias	t-Test	0.96190 0	.33610			
Joint Test for the	Three Effects	7.65660 0	.05367			
ADCU 1 2 Annalis	(2.21) 0	20000 50 01	247			
ADCH 1 E kocks	(2,21) = 0.	20303 [0.01	24]			
ARCH 1-10 test.	(10.5) = 0.	74825 [0.47	527			
	(10,5) - 0.	1025 20101	503			
Joint Statistic of	the Nyblom tes	t of stabil	ity: 1.79629			
Tedicidual Muhlom (tabletice.					
(st(M) A	73528					
(st(V) Ø	28970					
GAS(Alpho1) 0	44980					
GAS(Phi1) 0	26934					
Rem: Asymptotic 1%	critical value	for indivi	dual statistics = 0.75.			
Asymptotic 5%	critical value	for indivi	dual statistics = 0.47.			
Adjusted Pearson C	ni-square Goodn	ess-of-fit	test			
# Cells(g) Statist	tic P-Valu	e(g-1)	P-Value(g-k-1)			
40 34.85	1 0.65	9297	0.474996			
50 36.28	i7 0.91	1016	0.819660			
60 57.714	3 0.52	3005	0.375235			
Rem.: k = 4 = # est	Rem.: k = 4 = # estimated parameters					

Figure 4: Diagnostics for EGAS female anxiety model

Robert A. Yaffee (New York University) Generalized Autoregressive Score (GAS) or D

```
May 16, 2014 16 / 11
```

NYUSilver Silver School of Social Work

EGAS Graphics for female Anxiety model

EGAS forecasts

** CODECASTS **					
FORECASTS					
Number of	Forecasts	: 30			
Horizon	Mean	Variance			
1	0.2422	0.004994			
2	0.2422	0.003928			
3	0.2422	0.003184			
4	0.2422	0.00265			
5	0.2422	0.002257			
6	0.2422	0.001961			
7	0.2422	0.001735			
8	0.2422	0.001558			
9	0.2422	0.001419			
10	0.2422	0.001307			
11	0.2422	0.001217			
12	0.2422	0.001143			
13	0.2422	0.001082			
14	0.2422	0.001031			
15	0.2422	0.0009887			
16	0.2422	0.0009531			
17	0.2422	0.000923			
18	0.2422	0.0008975			
19	0.2422	0.0008758			
20	0.2422	0.0008572			
21	0.2422	0.0008413			
22	0.2422	0.0008277			
23	0.2422	0.0008159			
24	0.2422	0.0008057			
25	0.2422	0.000797			
26	0.2422	0.0007894			
27	0.2422	0.0007828			
28	0.2422	0.0007771			
29	0.2422	0.0007721			
30	0.2422	0.0007678			

** VaR FORECASTS **

-- VOR FURELASTS *

Number of Forecasts: 30

lorizon	0.05	0.95
1	0.126	0.3584
2	0.1391	0.3453
3	0.1494	0.335
4	0.1575	0.3269
5	0.1641	0.3203
6	0.1693	0.315
7	A 1737	A 31A7

Figure 6: EGAS forecasts for female anxiety model

Robert A. Yaffee' (New York University) Generalized Autoregressive Score (GAS) or D

- E

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A