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Source of some of the quotes: 
http://math.furman.edu/~mwoodard/mqs/ascquotg.html 

• “[Statistics are] the only tools by which an 
opening can be cut through the formidable 
thicket of difficulties that bars the path of 
those who pursue the Science of Man.” 

    Reportedly from  
    Pearson, The Life and Labours of Francis 

Galton, 1914. downloaded from the above source on 30 
June 2009. 
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Introduction to Stata  I 
• Invocation of Stata 
• Why Stata? 

– Best bang for the buck 
– Easier than R or S+ 
– Cheaper than SAS 
– Example datasets are free and included 
– Updated regularly from the web 
– SSC program archive 
– Can handle panel data 
– Can handle complex sample analysis 
– Can handle advanced models 
– Web interface 
– Stata list server 
– Stata Journal 
– Users Group meetings 

• Approaches to learning Stata 
– Menus for novices 
– Batch for professionals 
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Grand outline II 
• Introduction to Stata  --- continued 

– Configuration of Stata (adding your own editor) 
– Free data sources 
– Variable construction ( including date and time variables, etc.)  
– Variable transformations (recoding, replacing, functional, and power) 
– Missing value management  (single and multiple imputation) 
– Codebook construction  
– Dataset construction:  cross-sectional, longitudinal, time series, panel, survival 
– File management  (appending and merging, wide-long conversion)   

• Data cleaning 
– Range and consistency checks 
–  file comparison 

• Exploratory graphical visualization   Edward Tufte’s contribution 
– Histograms , Bar graphs, Line graphs, matrix scatterplots, Pie charts, Panel 

graphs, and Annotation 
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Grand Outline-III 
• Research Project planning concerns 

– Power and sample size analysis   Jacob Cohen’s contribution 
– Sampling  (simple random, stratified, clustered, stratified -clustered) 
– Attrition  and censoring in longitudinal studies 
– Hypothesis testing 

• Item analysis and scale construction 
– Reliability and validity analysis 

• Summary statistics for sample description 
• Categorical data analysis   Leo Goodman’s contribution 

– Tabulations 
– Cross-tabulations 
– Statistical tests 

• T-tests      William Gossett’s contribution 
– One-sample 
– Two independent samples 
– Paired 
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Grand outline IV 
• ANOVA  contribution of R.A. Fisher 

– Assumptions and tests for them 
– One-way ANOVA 
– Two-way ANOVA 

• Random, Fixed, and Mixed models 
– Repeated Measures WSANOVA 

• Regression analysis   contributions from Gauss and Legendre 
– Univariate 

• Assumptions and tests for them 
• Modeling strategies and critiques 
• General-to-specific (David F. Hendry  Jean Francois Richard)  Hierarchical, All 

possible subsets 
•  Robust regression  (Halbert White and Huber and others) 

– Heteroscedastically consistent estimation 
– Outlier down-weighting 

• Bootstrapping regression models   Brad Efron’s contribution 
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Grand Outline V if time permits 

• Regression analysis with Limited Dependent 
Variables 
– Poisson count models 
– Logistic and Probit models for binary dependent 

variables 
– Skewed logistic models 
– Ordered Logistic and Ordered Probit regression 

models for ordinal dependent variables 
– Multinomial logistic regression models for 

categorical dependent variables 
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Configuration, logging, execution, and 
output 

• Configuring your Stata 
– Preferences 
–  profile.do command file 
– Logging your own work 
–  smcl files 
– Translate command 
– Saving graphs 

• Running Stata 
– Saving output 
– Printing output 
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Configuring Stata: 
Double click on Stata icon 

Stata platform appears 
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Click Edit, preferences, General 
Preferences 
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Select White background and click 
“OK” 
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The Background color is now white 
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Changing font size in any window 

• You may for presentation or personal display, 
right click on any window, and alter the font 
size. 

• This can make the output easier to read for 
those who are viewing the output.  
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Getting help with Stata 

• F1 is help 
• You can type: help command, 

– where command is any command you need help 
with for the proper syntax 

– you can type:   find keyword                                       
on the command line where a keyword will help 
the search progress among the Stata help files and 
on the internet 

– You can google a Stata command and get help on 
the internet 
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Type: help  or 
help keyword 
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Type: findit keyword 
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Important Stata Resources 
• Stata has excellent manuals 
• Stata offers first rate technical support 
• Stata can download from the web 
• UCLA ATS has excellent Stata help 
• It has movies which teach Stata for those who need or wish visual 

instruction 
• Stata Press publishes texts  dealing with Stata commands 
• It has a list of command examples 
• Type: findit keyword  on command line while connected to web.  

Keyword is any name in which you are interested. 
• FRED  St. Louis Federal Reserve Economic Database : freduse 

command 
• Yahoo 
• Economic report to the President 
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SSC archive 

• Be sure you are connected to the www 
• Type: ssc describe a 
• Type: ssc describe b 
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Installing from the web 
• Suppose you wish to download the datasets and do files 

from Regression models and categorical variables using 
Stata by J. Scott Long and Jeremy Freese.  You could use 
the following commands: 
 

•  net search spost 
•   if you are using version 9, you can execute the          

following commands: 
•   net get rmcdvs 
•   net from http://www.indiana.edu/~jslsoc/data 
•   net get spost9_do 
•   net install spost9_ado 
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File construction and data definition 

• File construction 
– Input command 

• Id variables  
– For rectangular datasets 
– For hierarchical datasets 

• Date variables 
– For time series datasets 

• Panel variables and date variables  
– For panel datasets 

• Variable definition 
– Numeric 
– String 
– dates 

• Variable labels 
• Formats 
• Linking formats 
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Data definition-continued 

– missing data management 
– Wide files 
– Long files 
– Save 
– Saveold  
– Do files 
– Ado files 
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File  Construction:  for raw data input, 
the input command can be used 
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Type “end” to complete data input 
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Accessing a Stata dataset 
file1.dta with the use command 
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Saving a Stata dataset 

• You can type: save filename 
– If this is the first time you are saving it. 

• You can type: save filename, replace 
– If you are replacing an earlier version with a newer 

one. 

• You can type: saveold filename 
– If you wish to save it in Stata9 format 
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Saving a Stata dataset 
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Data definition 
Variable labels 
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Data definition 
Value labels or formats 

28 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Missing values in Stata 

• Missing values in Stata are treated as large 
positive numbers 

• They may be system missing and represented by 
a . 

• They may be 26 other codes from .a to .z 
– For missing values analysis. 

• Therefore, when executing operations in Stata,  
you might want to qualify your requests for 
estimations with the condition if not equal to 
missing, for example 

•  list income, if income < . 
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Stata will omit these system missing 
values from computations 
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Variable construction:  
with generate  

When constructing variables, be sure you don’t 
recode the missing into 0 by using an if 
income < . 

generate wealthy = 0 if income < . 
replace wealthy = 1 if income < . & income > 7 
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Dummy Variable construction 
Long and Freese, op cit, 68-70. 
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Stata egen functions 

The egen rowwise functions all ignore missing values .   
They will only return a missing if all components are 
missing.  For example: 

egen x123max= rowmax(x1,x2,x3) computes row 
maximum of the three variables specified.  

 egen x123mean=rowmean(x1,x2,x3) computes row 
mean of x1,x2, and x3. 

 egen x123total=rowtotal(x1,x2,x3) computes rowtotal of 
x1,x2, and x3. 

 egen rowmss = rowmiss(x1,x2,x3,x4)  indicates number 
of missing values in the row of x1 through x4 variables. 
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Other Stata egen functions 

•  egen rnk=rank(v1) 
– Will rank  the cases according to variable v1  

34 

Anycount(varlist), values( numlist)   
Anyvalue (varlist), values(integer numlist) 
Mean(varlist )      
Median(varlist)              creates a constant                 
mode( “)       in a list containing                   
        this statistic 
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ICD9 codes are stored within 

35 

Medical researchers  use the 
international statistical  codes 
for diseases and related health 
problems 
 
Stata has them built in. 
 
They are regularly updated 
 
You can generate new variables 
with them or search old 
variables for elaborated 
definitions. 
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Standardization of variables 
Long and Freese, op. cit., p.96 

• X standardized coefficients 
Suppose you have a regression formula,  
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Interpretation of x-standardization 

• For a continuous variable,  for an increase in 
one standard deviation of x,  the amount of 
change in the dependent variable, y,  holding 
all other x variables constant, associated with 
this increase in x  is : 
 

• This amount =             βs  =  σb 
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y standardization 

• When we divide a continuous dependent 
variable by its standard deviation, we have to 
divide the whole equation by the same 
amount.  This is called y standardization. 
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Y standardization 
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Interpretation of Y standardization 
Long and Feeze, op. cit., 97 

• For an increase in one unit of xk, the amount 
of change  in Y associated with that change is 
βsy  standard deviations, holding all other 
variables constant. 

• For a dummy variable having characteristic x 
as opposed to not having it, the amount of 
change in Y is βsy  standard deviations, holding 
all other variables constant. 
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Y standardization with latent variable 
y*  Long and Freese, op. cit.,97 

• We divide the whole equation by the standard 
deviation of y.     It is assumed that the 
variance of the error in a probit model=1. 

• To estimate the variance of the latent variable 
y*,   we find that 

• Var(y*)=  βVar(x)β+Var(e)  so that 
• Var(y*) *)=  βVar(x)β + 1   
• Where Var(x)=Covariance matrix of xs from 

the real data. 
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Full Standardization 
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Interpretation of Full Standardization 
Ibid. 

• After full standardization, the interpretation of 
change of the regression coefficient in such a 
model is: 

• “ For a standard deviation increase in xi, y is 
expected to change by          standard 
deviations, while holding all other variables 
constant.” 

• Type:   listcoef after running the regression 
analysis using OLS. 
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s
iβ
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 net install spostado 
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Covariance 
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Covariances in Stata 
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Francis Galton 

• Invented the correlation coefficient and laid 
the groundwork for regression analysis. 
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Karl Pearson 

48 

He read mathematics at Cambridge University in the latter 19th Century. 
His name is attached to the Chi-square goodness of fit test and the 
Pearson correlation coefficient.   Francis Galton invented the correlation 
coefficient, but it was named after Karl Pearson. 
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Pearson product-moment correlations 

• Used when both variables are continuous or 
highly ordinal (with 15 or more levels) 
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Covariances and Correlations 
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 Francis Galton: the father of Correlations  

correlate computes listwise  
 correlations 
 
pwcorr computes pairwise  
 correlations, though there is 
 a listwise option.  You can also 
    get nobs and sig as options for this command. 
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Pairwise correlations 
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Properties of Pearson Correlations 

• They measure only the significance, direction, 
and strength of linear relationships.  They are not 
designed to work with binary or ordinal variables. 

• If the relationship is quadratic or mostly 
nonlinear, these correlations may not detect 
them. 

• Therefore,  do scattergrams between the two 
variables first. 

• Then do a lowess plot to detect nonlinearity in 
the relationship. 
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Charles Spearman’s  ρ  correlation for ordinal variables  
  Stata Release 10 Reference Manual Q-Z, (2007).  College 

Station, Tx: StataCorp, 321.  

 
• Spearman’s rho was named after Charles Spearman, who 

used ranks to compute the correlation formula  and handled 
ties with average ranks of the ordinal variables. 
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Significance testing. 
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Spearman correlations for ordinal 
variables 

56 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Sir Maurice George Kendall’s 
 rank correlations : Tau a and Tau b 

•   Stata Reference Release 10, Manual R-Z, StataCorp,  College Station, Tx: 321-322.   
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Kendall’s correlation for ordinal 
variables (Ibid) 
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Kendall’s Corr significance tests 
• Stata Base Release 10 , 2007, Reference Manual,  Q-Z, 

StataCorp, College Station, Tx, 322. 
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Tetrachoric Correlations  
for Binary Variables. 

Stata Release 10 Base Reference Manual (2007). College Station, Tx.: StataCorp, 480. 
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Tetrachoric correlations  
for binary variables 
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Checking the dataset for missing 
values 
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Detecting missing value patterns 
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Recoding missing values 

• mvdecode  and mvencode commands 
• mvdecode permits you to recode various 

values of a variable to missing. 
• mvencode permits you to recode missing 

values to a nonmissing value.  For example: 
mvencode income, mv(-9=.a) 
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mvencode: converting from special to 
numeric missing value codes 
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Mvdecoding:  converting from one to 
another missing value codes 
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Missing value replacement 

• Stata can perform multiple imputation the its 
mice procedure developed by Patrick Royston. 

• It is available as a free download from  Stata 
Software Components archive 

• ssc install mice can be typed on the command 
line. 
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Variable transformation:  
Recoding variables 

recode income (1/3=1)(4/6=2)(7/12=3) 
   or 
generate incgrp = 1 
replace incgrp=2 if income > 3 | income < 8 
replace incgrp = 3 if income > 6 & income < . 
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Variable formats 

• String: alpha     %9s 
• Numeric:  numeric  %8.2g 
• Date :   day %td, week %tw, month %tm, 

quarter %tq, year %ty 
• Panel:   it  where i=group and t = date  
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Variable format conversion:  
from string to numeric 
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Converting a numeric to a string 
variable 
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Variable format conversion: 
converting numeric to string 

72 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Variable transformation: 
converting string to numeric variables 
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Exercises 1 
1. Get help on the egen command within Stata 
2. Use the findit command to obtain help on a keyword 

of interest 
3. Get help on datasets available 
4. Download from the web the lifeexp.dta dataset 
5. Describe the dataset 
6. Use the inspect command to check for missing values 
7. Examine the variables for missing values 
8. Give the variable safewater a variable label. 
9. Do a frequencies analysis on the variable, safewater 
10. List the countries with 100%  safewater 
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Exercises 1 continued 
1. List countries with less than 75% safewater 
2. List countries with more than 75% and less than 96% safewater 
3. List countries with less than 10% population growth   
4. Download bpwide.dta from web 
5. Crosstabulate sex and agegroup (show counts, row and column percentages) 
6. What is the Pearson correlation between the blood pressure before and after? 
7. Is this a significant correlation? 
8. Is this a linear relationship? 
9. Construct your own dataset with  3 discrete variables and 2 continuous variables 

with 5 observations. Label the variables and the values of the discrete variables.   
Tabulate the variables.   Crosstabulate two of the discrete variables and obtain a 
chi-square test for significance between them.   If they are ordinal obtain a 
Gamma and a Kendall’s tau a correlation between them.   

10. Construct a variable that gives the row average of three of your variables in that 
dataset.  Be sure that this variable does not use missing values. 
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A comment by Hadamard 

• Hadamard, Jacques 
 

• The shortest path between two truths in the 
real domain passes through the complex 
domain. 

• Quoted in The Mathematical Intelligencer, v. 
13, no. 1, Winter 1991. 
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File management 
Codebook construction 
 inspection 
 recoded variables 
 tabulations 
 summaries 
 missing value analysis 
 basic histograms and boxplots 
File merging 
File appending 
File conversion 
 from wide to long 
 from long to wide 
Construction of special files 
 Time series datasets 
 Panel datasets 
 Survival datasets 
 complex survey analysis 
Do Files 
Ado Files 
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Import- export 

• Importing data 
– Transferring data from excel 
– Insheet command with raw files 
– Statransfer 
– DBMSCopy 

• Exporting data 
– Saveasas 
– Save as excel 
– Save as access 
– Statransfer 
– DBMSCopy 
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Importing data 

• From ascii text 
• From spreadsheet files 
• from other statistical packages  

– With stat transfer 
– With dbmscopy 

 

 

79 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Importing data from ascii text files 
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Post-importation refinement 
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Transferring from Excel to Stata 

• This is performed with a copy and paste 
operation.  Suppose we have an excel 
worksheet 97-2003 file: excel1.xls 
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We can select all and paste it into a 
Stata datasheet 

83 

Be sure your data are cleared out. 
On the command line, type: edit 
A data editor opens below 
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Select your data including the first line 
on which the variable names are 
contained.  Right click on copy: 
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Paste in row1 column1 the selected 
data 
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The data are pasted into the Stata  
data editor, click on preserve, and x 

out  
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The data set is preserved in Stata. 
Save the file with the save filename 

command. 
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Importing an Excel file with ODBC 
MS open database connectivity 

• Save the excel file as file1.xls 
• Go to administrative tools in the control panel and 

select the odbc options 
• Setup the odbc dsn options in the control panel to 

include file1.xls 
 

88 Copyright @2009  Robert Alan Yaffee, Ph.D. 



In Stata, confirm listing 

• Confirm this by going back into Stata and 
typing: 

• odbc list and being able to see your file in the 
list. 
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This will import the file to Stata 
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Exporting data files 

• To other statistical packages 
– With DBMScopy 
– With Statransfer 

• Raw data files 
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Exporting a raw data file 
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outsheet using file1out 
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Accessing example datasets 

• Type:  help datasets 
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On command line: type: webuse auto 
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Combining datasets 

• Appending: adding cases to the same 
variables 

• Merging: adding variables to the same cases 
• Mixtures 
• Caveats:   be sure that the missing values are 

coded the same and designated missing 
• Sort both datasets by the same variables 

before combining. 
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Appending datasets 

• Adding cases to the same variables can be done with the 
append command. This concatenates the data.  
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Merging datasets 
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Reshaping files:  
Wide to long and Long to Wide 
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Output of reshape from wide to long 
(person-period dataset) 
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Reshape from long to wide 
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Output from reshaping from long to 
wide 
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sort var1 var2 

• You may reorganize your data with a sort 
command.  You may sort by a series of 
variables. 
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Data management 
• Data management 
 Data cleaning range checks with tabulate 
 summary statistics with summarize 
 consistency checks with pwcorr 
 file comparison utilities   
 

 
– Codebook maintenance 

• Summary statistics 
• Recoded variables 
• New variables 
• Multiple sorts 
• Basic graphs 
• Missing values 

– Variable transformations 
• Rename 
• Recode 
• Replace if 
• Generate if 
• Egen 
• List if 

– Missing value management 
• Storage as very large numbers 
• Mvdecode 
• Mvencode 
• Drop  
• Keep 
• Imputation 

– Single 
– Multiple with mice 

– Log files contain time and date 
• Headers 
• Why use log files? 
• Need to keep record and log of work 
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We wish to examine the dataset 

• Type: describe 
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Data Scan: reveals histograms and 
missing data. 
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Type:  inspect on the command line 
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Inspect-continued 
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codebook command 
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Codebook command-continued 
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Data cleaning 
• codebook 
• inspect 
• list 
• assert 
• count 
• extremes 
• duplicates 
• format 
• Missing functions 
• Range checks with tabulate 
• Consistency checks with correlate or pwcorr 
• File comparison utilities 
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We can list out data 
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Double data entry 
and file comparison 

• We can have 2 people enter the data and then 
compare the files to see if they differ. 
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We can check for extreme values of a 
variable 
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Checking for duplication of 
observations:  duplicates report 
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Missing values Review 

• Be sure missing values are properly coded for 
your purposes. 

• gen mymis= missing(var1-var10)  constructs 
variable, mymis, which is coded 1 for a line on 
which any of these variables has a missing 
value and 0 for a case with no missing values. 

•  egen rowm = rowmis(var1-var10) 
•  count if a==.| b==. | c==. 
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Missing value functions-continued 
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Inspect 

• This will indicate the proportion of missing 
values and the numbers of them for each 
variable in the dataset. 
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Range checks 
 (with the tab command) 
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Graphical consistency checks with a 
matrix plot 
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Consistency checks with pwcorr 
(pairwise Pearson correlations) 
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Consistency checks with listwise 
correlate command 
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Problems with bivariate correlations 

• They are dependent on the levels of measurement of 
the variables to which they are applied. 

• They do not detect nonlinear correlations. 
• They do not detect influence of intervening variables. 
• They do not detect the influence of antecedent 

variables. 
• “All the world is multivariate (Edward Tufte)” 
• They are not sufficient statistics.  They are not 

adequate for an analysis. 
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Variable construction 

1. Subset(conditional) if  is used to qualify 
commands:  

 summarize if _n < 100, detail 

2. Generate is used to create new variables 
generate newvar=oldvar + 1 
generate  dummy=0 if oldvar ~=. 
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Variable construction and 
transformation 

1. Replace is used to recode existing variables 
replace newvar = -9 if newva r==. 
replace dummy = 1 if oldvar < 12 & oldvar ~=. 

2.  Egen command is used to construct variables 
across the rows of the dataset. 

egen rownmis = rownonmissing(var1,var2,var3) 
egen meanr= rowmean(var2,var4,var7) 
egen maxr=rowmax(var4-var6) 
egen sdr = rowsd(var5-var9) 
egen rowtot = rowtotal(var1,var2,var3) 
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Variable construction and 
transformation  

• Observation numbering with _n and _N 
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Indexing date – time variables 
for time series analysis 

• You can index a dataset by time and construct a date (time ) variable in 
order to perform time series analysis. 
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Time variable formats 
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More time variable formats 
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Time variables 
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Indexing the observations by time 

• After the time variable is formatted, 
• Type:  tsset  ‘name of time variable’   (tip: 

don’t use the quotes) 
• Then type: tsline ‘name of variable to analyze’ 
• Add a title to the graph 
•    tsline gdp, title(time plot of GDP) 
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Indexing Panel datasets 
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Loop programming 

• For recodes 
• For aggregation 
• For simulation 
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The forvalues loop 
for looping over consecutive values 
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The foreach loop 
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The foreach Loop 
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Converts the data set on the right to that on 
the left. 

Loop.dta 
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conditional statistics:   
statistics by groups 
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Collapse command for aggregating 
datasets 
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Expand for elaboration by a 
subdivision 
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Simulation of distributions 
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The Father of the Gaussian 
Distribution 
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Normal Distribution  
Gaussian Distribution per C. F. Gauss) 
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Monte Carlo Simulations 
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Exercises 2 

1.  Construct two toy datasets, and merge them by 
a common id variable. 

2. Concatenate those two datasets. 
3. Download a dataset from ucla.ats  from yahoo 
4. Convert the dataset to a Stata dataset 
5. Graph the series  
6. Using the loop.dta dataset and a foreach loop in 

Stata, convert all values > 7 to missing 
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Exercises 2 

7. Construct a log of your work and then 
8. Convert the blood pressure dataset, 

bpwide.dta to a long dataset 
9. Convert the wide dataset to a long one,  
10.Close the log file 
11.Convert the smcl file to a txt file 
12.Reshape the reshapeW.dta file to a reshape 

long form. 
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Exercises 2 
12. Use the dataset auto1.dta.   Obtain the means of the mpg and 

weight by foreign to obtain aggregate statistics. 
13. Plot a histogram of the mpg variable. 
14. List the extreme values of that variable. 
15.  What is the mode of the mpg of all the cars in the dataset?  What 

is the mean?  What is the range?    
16. Construct a table of means by car type (foreign). 
17. What is the Pearson correlation between mpg and weight?   
18. What is the correlation between mpg and foreign? 
19. Is the relationship between repair record 1978 and car type 

significant?  What is the Gamma correlation of that relationship? 
20.  How do we show whether this relationship is statistically 

significant? 
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Statistical and project planning 
• Size matters 

– Power and sample size analysis: A priori versus 
– Post-hoc.   

• Sampling planning 
– Probability sampling, clinical trials, and other respectable methods of data collection 
– Stata is wonderful for complex samples 

• Respondent protection 
– Informed consent 
– Confidentiality 
– Anonymity 
– Protection of health related information by law 

• Pilot studies 
– Proper size 
– Control groups 
– Random selection and random assignment 
– Matching 

• Data security 
– Storage 
– Off-site storage  
– Masking of id 

• Longitudinal analysis 
– TIME SERIES DATA 
– PANEL DATA 
– SPATIAL DATA 
– For longitudinal studies, censoring and sample attrition must be estimated and planned for.  Comparison of pretest scores. 
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Power and sample size analysis 

• Conventional statistics are asymptotic.  They work 
when the same size becomes large (and often do 
not work with smaller samples). 

• The question becomes how large a sample is 
large enough? 

• Power and sample size analyses usually indicate 
the sufficiency of the sample size. 

• To properly plan a research project, we must 
determine how many subjects or respondents we 
must interview or question. 
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Statistical Power Analysis for the 
Behavioral Sciences (1988) was at NYU  
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Power analysis 

• There are 3 types of errors that can be made.  
The type 1 error is rejecting a true null 
hypothesis.  The probability of this type of error is 
called alpha, α.   This is a false negative. 

• The type 2 error is accepting a null hypothesis 
when it is false and should be rejected. The 
probability of this type of error is called beta,β, 
and is not to be confused with a standardized 
regression coefficient, also called beta.    
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Type 3 errors 

• Not asking the correct question in the first 
place  
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What significance level should be 
used? 

• The level of significance to be used depends on 
the consequences of making a mistake.  

• For social sciences, alphas of .05 are generally 
used by convention.   A scholar’s reputation may 
be at stake here.   

• For medical and toxicological studies, much more 
stringent standards are required because the 
consequences of making a mistake may be life-
threatening.  Alphas of 0.01 to 0.001 are often 
used in these cases. 
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Power and Sample size analysis 

• The power of a statistical test is defined as      
1 – β.     

• The power to reject a false positive depends 
on the ability to detect an effect of that size. 

• Jacob Cohen (1988) Statistical Power Analysis 
for the Behavioral Sciences,  Lawrence 
Erlbaum Associates: Hillsdale, NJ has 
formulated  conventional (small, medium, and 
large) effect sizes for basic statistical tests. 
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Tables given the n needed are 
supplied. 

The conventional standard is that the project 
director should enough respondents or 
subjects to have a sample large enough to 
detect a medium or small effect size with a 
power of at least 0.80. 

If performing a t-test, small, medium, and large 
effect sizes are d=2.,.5,.8., where  
d = (m1-m2)/(stdev) 
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Cohen’s effect sizes 
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Cohen’s effect sizes 
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Stata can compute  
post-hoc power and sample size 

• For t-tests and proportions 

156 

For repeated measures contrasts 
For  survival analysis problems 
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Attrition is to be compensated for in 
the planning of the sample size. 

• A pilot study will indicate the rate of attrition if it is representatively sampled and 
collected. 

• If there is five percent attrition, then 105% of the sample size should be collected.  
Sample size = Number to be collected/.95 = 211 (rounded to nearest integer) 

• If the margin of error is 5 more %, then 110% of the needed sample size should be 
collected for the larger sample.  Sample size to be collected = 211/.95 = 223 
(rounded to nearest integer). 

• If the pilot study indicates that 10 percent of the items will on the average not be 
answered for those who remain in the study, then add another 10% to the 110% of 
the needed sample size that must be collected.  120% of the needed sample size 
must be obtained in the planning stage.   Sample size to be collected = 223/.90 = 
248. 

• If you are studying a hard to reach minority,  increase your safety margin.  If you 
are conducting a longitudinal study in an area that is politically unstable,  be  
careful, focus on your primary objective and avoid unnecessary entanglements or 
distractions.   
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Attrition and censoring in longitudinal 
studies 

• Attrition is accounted for by censoring.   There 
is right censoring when a person is lost to 
followup. 

• There is right censoring when the event has 
not occurred prior to the end of the study. 

• There is interval censoring when the patient is 
in jail for 2 weeks and cannot attend his 
midterm interview. 

158 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Sample size reduction 

• Bubble sheets cannot always be read clearly if the 
survey is on both sides of the paper.  Machines make 
many mistakes in scanning such sheets. 

• Bubble sheets cannot always be read clearly if the 
answers are not closed ended. Avoid open-ended 
questions 

• Transmission over the web must be double checked to 
be sure that there was not information corruption in 
transmission of data. 

• Do not allow people not to answer if the answer is 
negative.  This breeds confusion and uncertainty. 
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Indexing survival-time data  
for bio-statistical analysis 
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Indexing survival time data for 
prostate cancer 
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Kaplan Meier Survival curves by 
gender adjusted for age 
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Visualization for exploratory data 
analysis and model diagnosis 

• 1-dimensional Univariate 
– Histograms 
– Box plots 
– Stem and leaf plots 
– Quantile plots 
– Bar graphs 
– Pie charts 

• 2-dimensional Scatterplot matrices 
– Scatterplots 
– Time series plots 

• Multi-dimensional plots 
– Panel plots 
– 3-D scatterplots 

• Graphics editor 
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Exploratory Data Analysis 
Edward Tufte  (Princeton Univ) 
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Matrix scatterplots for exploring 
functional form of relationships 

165                                 graph matrix mpg-foreign Copyright @2009  Robert Alan Yaffee, Ph.D. 



Exploratory data analysis 

sort foreign 
graph box mpg, over(foreign) title(Comparison of box 

plots) 
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Horizontal bar charts 
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Nesting horizontal bar charts  
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Pie Charts 
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Comparative histograms 
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Comparative stem and leaf plots 

171 Copyright @2009  Robert Alan Yaffee, Ph.D. 



The relationship between fuel 
economy and luxury in auto purchases 
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Comparison of mpg per price between 
foreign and domestic cars 
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 Nonlinear fit between mpg and 
price 
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Identifying the most and least 
expensive cars  
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Paneled graphs 
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Fit and confidence intervals  
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Time series plot of life expectancy by 
gender 

178 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Life expectancy by sex and race  
over time 
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Survival Analysis 
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Dot plot of public and private 
education by country 
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How much air conditioning is needed 
on average in the U.S. each year? 
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Saving and Exporting graphs 
You can save a Stata graph with the command: 
  graph save ch1fig1.gph 

The gph suffix indicates that it is a Stata graph. 
If you wish to resave this graph later, attach the replace option after 

the graph name. 
You can export a Stata graph with the command: 
  graph export ch1fig1.wmf, replace 
  graph export ch1fig1.emf, replace 
  graph export ch1fig1.eps, replace 
  graph export.ch1fig1.tif 
  graph export.ch1fig1.pdf 
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Distributional analysis 

• Simulation with random number generators of 
normal, poisson, chi square, binomial, gamma, 
hypergeometric , and other distributions 

• Kernel density plots (distributional structure) 
• Histograms (with superimposed normal curves) 
• Lowess plots (linearity and functional form) 
• Quantile plots 
• Stem and leaf plots 
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Kernel density plots 

• Nonparametric density plots 
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Some Kernel functions 
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Quantile normal plots 
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3d Graphs can be generated with 
some user effort 
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• Scale construction 
• Alpha reliability 
• Kappa reliability 
• ICC23 reliability is also possible but will not be 

shown here.   You have to download icc23 
from the ssc archive. 
 

 
 

Item and Scale analysis  
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Exercises 3 
1. Plot a matrix scatterplot of headroom to weight in the 

dataset auto1.dta 
2. Plot a lowess graph between mpg and weight 
3. Use a horizontal bar chart to show the mpg of foreign and 

domestic cars.   Put a main and axis titles in it. Put in a 
note or caption describing it. 

4. Generate a stem-leaf plot of weight by foreign. 
5. Generate a dot plot of make by mpg. 
6. Generate a kernel density plot  of mpg. 
7. Generate a time plot of GDP downloaded from FRED. 
8. Generate an overlay time plot of CPI and GDP over the 

same range of time, downloading both from FRED. 
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Cronbach Alpha reliability  
(internal consistency of scale items) 

191 

baseline 
Incorrect coding 
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Do we reverse code? 

• If  (-0.20 <= correlation => .20), we can reverse 
code if this improves scale alpha. 

• Otherwise, we delete the item. 
• We iterate until scale alpha is greater than 

0.70.   If scale alpha <  0.70, we use individual 
items instead of scale. 
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Cohen’s Kappa Reliability 

• Kappa reliability is a form of interrater agreement 
that is evidence of independent corroboration of  
concurrence of interpretation.  The higher this 
agreement, the more there appears to be a 
consensus about the meaning of the object of 
evaluation. 

• Kappa is designed to correct for chance 
agreement. 
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Cohen’s kappa (1960) 
for two raters classifying n items into C categories 

• The denominator in the ratio corrects for 
chance agreement 
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[ ]
[ ]Cohen

Pr(observed  agreement)- Pr(expected by chance agreement)
1- Pr(expected by chance agreement)

κ =

0 = no agreement 
0-.20   very low agreement 
.21-.40 low agreement 
.41-.60  moderate agreement 
.61-.8 full agreement 
.81-1.00  almost perfect agreement     
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Joe Fleiss (Columbia )and Jack Cohen (NYU) came up 
with the weighted kappa 

• Fleiss and Cohen(1973), “The Equivalence of the 
weighted Kappa and the intraclass correlation 
coefficient as measures of reliability” in Educational 
and Psychological Measurement, Vol. 33, pp. 257-268 
wrote that the weighted Kappa was equivalent to the 
intraclass correlation coefficient as a measure of 
reliability. 
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Fleiss developed the  
modern Intra-Class 
correlation coefficient with 
Pat Shrout ( 
formerly of 
Columbia and now 
at NYU) 
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Fleiss’s Kappa (1981) 

• Joe Fleiss’s kappa 
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Intra-class correlation Coefficient as a 
measure of reliability  Winer, Brown, and Michaels (1991) 

Statistical Principles of Experimental Design, McGraw Hill: New York, 127-129. 

• If the model is a two-way ANOVA layout, are the judges fixed 
or random?     The targets are deemed random.  If the judges 
are fixed, the model is a two-way mixed effects ANOVA.  If 
they are random, the model is a two-way random  
(randomized block design) effects ANOVA.  Another effect to 
be controlled for is he error variance. 
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Intra-class correlation in a nutshell 

• It is the proportion of agreement to the total 
amount of variation (from agreement,  
disagreement, possible interaction, and error). 

• There are more than 5 ways of computing this 
ICC. 
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For fixed treatments    

• Stata can compute omega squared: 
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Kappa reliability 
• Corrects for chance and applicable with multiple raters. 
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Multi-rater kappa  κ 
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Multi-rater multi-category fixed 
number of raters kappa 
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There are IntraClass Correlations 
available (types 2 and 3)  

• Download from SSC archive 
• ssc install icc23 
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Summary statistics 
including measure of central tendency. 
• Summarize   mean range, std deviation 
• Summarize, detail 
• Tabstat 
• Means 
• Group or aggregation statistics with statsby 
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Enligtenment in a taxi! 

• Hardy, Godfrey H. (1877 - 1947)  
• [On Ramanujan] 

I remember once going to see him when he was lying ill 
at Putney. I had ridden in taxi cab number 1729 and 
remarked that the number seemed to me rather a dull 
one, and that I hoped it was not an unfavorable omen. 
"No," he replied, "it is a very interesting number; it is 
the smallest number expressible as the sum of two 
cubes in two different ways."  
Ramanujan, London: Cambridge University Press, 
1940. 
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Variable transformations 

• To transform or not to transform 
– When to 
– When not to 

• Retransformation 
• Normalizing transformations 
• Variance stabilizing transformations 
• To log or not to log 

– Naturally 
– By another base 
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Henri Poincare 1854-1912 

• Later mathematicians will regard set theory as 
a disease from which one has recovered. 

207 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Summary univariate statistics 
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Basic categorical data analysis 
 

• Tabulate    Tables and Crosstabulations 
– With labels 
– Without labels 
– Inference with  

• Chi-square    χ2 
• Likelihood ratio chi-square    LR   χ2 
• Gamma   γ 
• Kendalls   τ 

 

• Tabstat 
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One-way tabulations  
(Frequencies analysis) 
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Multiple response using 
(dummy indicators) courtesy of Ben Jann  ETH 
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Multiple response (polytomous 
categories) courtesy of Ben Jann (ETH) 
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Two-way Tabulations  
with and without labels    

Leo Goodman developed much categorical data analysis. 
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Bivariate tabulation inference 
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Pearson Chi-square 

• Named after Karl Pearson 
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Multiple Response 
courtesy of Ben Jann, ETH 
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Customized tables 
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Means 
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Comparison of two means 

• Parametric t-tests 
– Assumptions 

• Observations are i.i.d. 
• Variances may be equal or corrected for nonequality 

– One sample 
– Two independent sample 
– Paired  

• Alternative Nonparametric  rank tests 
– Man-Whitney U test 
– Wilcoxon  signrank 
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William S. Gosset 
 (a.k.a. Student) 

• Worked at Guiness’s brewery in Dublin and 
developed the t tests and t distribution to 
solve problems he encountered there. 
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One sample t-test 

221 

ixOne sample t df nsd
n

µ−
= = −2 0 1
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Independent samples t-test 

222 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Independent sample t-test 

• Separate sample t test: 
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Satterthwaite  (1946) and Welch (1997) df 
corrections for unequal variances 

Stata Release 10 Reference Guide Q-Z (2007). StataCorp: College Station, Tx: 539. 
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Welch’s correction for unequal 
variances 
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Paired t-test 
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ANOVAs for comparisons  
of more than two means 

• Anova 
– Main effects 

• Fixed  
• Random 
• Mixed 

– Interactions 
• Proper specification 
• Plots 
• Tests of 

– Repeated measures models 
• Anova postestimation 

– Contrasts 
– Post-hoc tests with multiple comparison adjustments 
– Assumptions 

• Linearity 
• iid observations 
• Residual diagnostics 

– Homogeneity tests 
– Normality tests 
– Outlier detection(developed by R. A. Fisher) 
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The {Omnibus} F test   
(named after R.A. Fisher) 
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Interaction terms 

• Sum of squares        df                   Variance 
• SSx                  #   x levels – 1       SSx/(xlev-1) 
• SSy                  #   y levels – 1        SSy  /(ylev-1) 
• SSx * SSy        (x-1)(y-1)     Ssxy/(ylev-1)(xlev-1) 

 
• Proper specification 
• X  Y and x*y  must all be in the model 
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One-Way ANOVA 
 with residual diagnostics 

231 

 
 
 
 
 
 
Heteroscedasticity problem 
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One-way ANOVA with post-hoc tests 
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Nonparametric one-way 
alternative 

• Kruskall-Wallis one way nonparametric ANOVA 

233 

Distribution free one-way  nonparametric  ANOVA by rank sum  
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Kruskall -Wallis  
nonparametric multiple comparisons 
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Main effects ANOVA 
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Factorial Anova   
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Anova Contrasts 
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Arguments to pass on 
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ANOVA Postestimation 
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lvr2plot  
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Full-factorial model and model 
comparison 
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Final model with  
residual normality diagnosis  
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Graphical review of residuals 
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Nonparametric Friedman 2-way 
ANOVA written in Stata by Richard 

Goldstein 
• Type: findit friedman 
• Install snp-1 
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Repeated measures ANOVAs 
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Repeated measures ANOVAs 
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Fixed, random, and  
mixed effects models 

• Fixed effects are clearly specified with all 
levels being sampled-e.g., gender. 

• Random effects are those which are 
supposedly randomly sampled with only some 
of the levels included in the study:  e.g., 
subjects. 

• Mixed effects models have both fixed and 
random effects in the model. 
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The error variance for such effects differ 
and therefore must be clearly identified. 

• F tests have to be properly constructed with 
these different effects. 
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Expected mean squares (Variances) 
Expected Mean Squares for Different Designs 
Source: Michaels, Brown, & Winer, 1993, Statistical Principles of Experimental Design, 304 
 
                Case 1: Fixed                Case 2: Mixed       Case 3: Random  
             a  fixed, b fixed              a fixed b random                 a random  b random  
 
MSa               σ e 

2   + nqσ a
2            σe

2   + nσ ab
2 +  nqσa

2 σe
2   + nσ ab

2 +  nqσa
2  

Msb              σ e2   + nqσ b
2            σe

2   +              npσ b
2 σe

2   + nσ ab
2 +  npσb

2  

MS ab           σ e2   + nσab
2               σe

2   + nσab
2                              σe

2   + nσab
2  

MS error         σ e2              σe
2                                                             σe

2  

 
  F test for fixed effect =   MS a/MS error 

  F test for random effect = MSb/MS error 
  F-test for mixed effect :  fixed =MSa/Msab     Random=MSb/MSerror 
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Repeated measures with 
wsanova 
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Residual diagnostics 
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Within-subject residual serial 
correlation confirmed 
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Residual diagnostics of 
heteroscedasticity 

253 Copyright @2009  Robert Alan Yaffee, Ph.D. 



George E. P. Box   
(“All models are wrong, but some happen to be useful.” 
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Albert Einstein 
Institute of Advanced Studies Princeton, NJ 

• Formulated the principle of parsimony:  
Keep it as simple as possible, but not 
simpler. 

• So far as the theories of mathematics are 
about reality, they are not certain; so far 
as they are certain, they are not about 
reality. 

• Do not worry about your difficulties in 
mathematics, I assure you that mine are 
greater.  
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 OLS regression analysis 
Adrien-Marie Legendre and C. F. Gauss 

256 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Regression models 

• Basic theory 
• Graph the data first (graph matrix of 

dependent with candidate independent 
variables).  Search for possible good 
relationships.  (p. 105) 

• Ask if transformations to linearity are needed?  
Power transformations?  Regression splines 
for piecewise models? 
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Assumptions of Ordinary Least Squares (OLS)  
(classical) regression analysis 

 
– Linear functional form 
– Normality of residuals 
– Homogeneity of variance 
– Observations are iid.   Errors are not correlated 

with the predictor variables. 
– No outliers distorting the mean 
– No multicollinearity 
– Predictors are fixed or deterministic 

• If they are stochastic due to measurement error that 
could bias the model. 
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Regression analysis 
developed  by C.F. Gauss and Adrian Marie LeGendre 

• Simple OLS theory  if the dependent var is 
continuous 
– If assumptions are fulfilled 
– Polynomial regression 
– All possible subsets regression 

• Problems with stepwise regression 
• Regression postestimation 

– For normality 
– For heterogeneity of residuals 
– For multicollinearity 
– For functional form 
 

259 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Basic Regression model theory 

260 

Yhat =  a + b*x + e

Y
error or residual

Y hat (model)

10
20

30
40

2,000 3,000 4,000 5,000
Weight (lbs.)

Mileage (mpg) Fitted values

Y bar

X bar

Y hat

Y
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Omnibus F test 
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We can solve for b 
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We can also solve for a 
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Diagnosing functional form with a 
matrix graph 
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Functional form 

• Are any of the foregoing plots indicative of 
possible nonlinear relationships? 

• Which ones? 
• Mpg and weight? 
• Mpg and forxwt? 
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A lowess plot 

268 

Frank E. Harrell Jr. (2001) Regression Modeling Strategies,  Springer: New York.    
advocated using lowess and/or splines to model the nonlinearity   
found in most  n relationships.  Chapter 2. 
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Polynomial regression 
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xi: Interaction analysis 

• Macro for converting categorical data to 
dummy variables for analysis. 

• The macro will also construct all of the main 
effects and first-order interaction terms for 
such an analysis. 
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xi:  and i. prefixes for dummy coding 
categorical variables with main effects  
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272 

 xi:  and i.x1*i.x2 construct dummy 
variables for all main effects and 

interactions for the model 
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OLS regression with some residual 
diagnostics 
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More residual diagnostics 
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Other residual diagnostics 
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Outlier diagnosis 
(residuals larger than 3 std errors) 
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Testing for influential outliers 
(Bollen, K. and Jackman, R.W., 1990) 
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Extremes cooksd 

278 

When Cook’s 
distance > n/4 
then it may be a 
problem 
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How can you deal with the extreme 
values? Winsorizing 

279 

Taking the  
extreme non-
missing ordered 
values of x and 
sets  equal to the 
next highest  and 
lowest values. 
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Automatic Interaction construction 

280 

First check the 
variables for missing 
values 
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Construct dummy variables 
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Construct indicator variables with xi 
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Construct interactions with xi 
Cameron and Trivedi, op cit, p49. 

283 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Demeaning variables 
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Modeling and Graphing Interactions 

• Interactions are defined as the joint effect 
over and above the main effects. 

• Therefore, both main effects must be in the 
model whether or not they are significant, to 
properly specify an interaction term. 
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When one variable is dummy-coded 
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Stata commands for plotting the  
interaction 
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Interaction graph 
a non-crossed interaction 
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Graphing the interaction 

289 Copyright @2009  Robert Alan Yaffee, Ph.D. 



The male and female equations 
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Modeling the gender effects and its 
interaction 

• Both equations can be inferred from the 
interaction model with its main effects 
included. 
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:
. * *
. * . * . * *
. *
:
. * . * . * *

( .

Male equation
Achievement reading gender reading gender if gender

reading reading
reading

Female equation
Achievement reading reading if gender

= + + + ==
= + + +
= +

= + + + ==
= +

5 2 2 0
5 2 2 58 4 0 5 88 0
5 2 2

5 2 2 58 4 1 5 88 1 1
5 2 . ) *reading+58 4 8

Copyright @2009  Robert Alan Yaffee, Ph.D. 



Commands for generating the first 
order linear interaction graph 
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Graph of the gender by reading 
interaction for academic achievement 
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When 2 variables are continuous 

• Split one at the mean. 
• Cut it off 1 sd above and 1 sd below the mean. 
• Run the regression for all three portions. 
• You will get a different regression line for each  
• Then plot those regression lines 
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Modeling strategies 

• Hierarchical regression (Jack and Pat Cohen 
popularized this approach  sequential set inclusion, 
not multilevel modeling) 
– From specific to general 
– Two levels of analysis                         Sir David F. Hendry 

• Stepwise regression 
– Problems with it. 

• General-to-specific modeling 
– Specification error can bias results more than 

• multicollinearity 
– Avoidance of specification error 
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Robust regression 
 

– Outlier diagnosis 
• Outlier downweighting 

– White estimators 
– Weighted Least Squares for heteroscedastic 

correction 
– Median regression 
– Quantile regression 
– Bootstrapped regression for empirical standard 

errors 
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Halbert White 
Father of the Sandwich Variance  (White) estimator 

297 

This variance 
estimator is robust 
to moderate 
violations of 
heteroscedasticity 
when the sample 
gets large.  
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Robust regression with outlier 
downweighting 
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Amount of weight given to an observation given 
distance t from mean of bandwidth 
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A Gaussian weight 
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Weighted Least squares regression 
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Robust regression 
(heteroscedastically consistent) 

302 

Using a sandwich estimator of the variance developed by Hal 
White in 1980, which is asymptotically  heteroscedastically  
consistent 
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Median regression 
predicts the 50th percentile of the dependent variable 
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Variance weighted least squares regression for severe 
heteroscedasticity   Stata Reference Guide Q-Z(2007), 

pp 554-559. 
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Graphical diagnosis 
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Weighting the variables by inverting s2 

• Stata can weight each variable xi by its variance, thus 
normalizing the effect of the variable by its spread across the 
line of estimation (prediction). 

• Thus, heteroscedasticity is automatically corrected for by this 
procedure. 
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Stata command: vwls 
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Bootstrap Methods (Efron, B.) 
Cameron and Trivedi, 417. 

• Resampling methods. 
– Saving the means for repeated samples.  
– Obtain a sampling distribution of means. 
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Bradley Efron  (Stanford University 
developed bootstrapping 
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Bootstrap confidence intervals 

• 95%  confidence intervals 
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*ˆ% .b bootconfidence intervals Varθ= ±95 1 96
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Bootstrap estimate of bias 

• Suppose that the       estimator of  θ is biased: 
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How many bootstraps are needed? 

• Efron and Tibshirani(1993),  B=50 is good 
enough and very seldom are more than 200 
needed. 

• Cameron and Trivedi suggest 400.   When I 
read Efron, I recall the number 10000 seems 
to be the number of replications needed. 
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Bootstrapped Regression 
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BCA option 

• Bias correction: Corrects for bias in the 
bootstrap. 

• Acceleration: allows for more asymmetric 
distributions. 
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Poisson count models 
• “ Much of the world is distributed lognormally, “   E. Tufte.  

– when the dependent variable is an integer or a rare event. 
– Disadvantage with this model is that it assumes that the mean= 

variance. 

 

315 

( ) ln( )
:

, , , ,...
!

p px x x
p p

y

Poisson model :

e or x x x
Poisson distribution

eProb(y | μ) for y
y

where
μ = expected count      and  is called the rate parameter

and  when dealing  with 1 time 

β β β β

µ

µ µ β β β β

µ

µ

+ + + +

−

= = + + + +

= =

0 1 1 2 2
0 1 1 2 2

0 1 2




,

frame (the predicted # events)
y observed count
assumes

mean = variance.
µ

µ

=
>

=
0

Copyright @2009  Robert Alan Yaffee, Ph.D. 



Poisson regression model 
 

• named after Simeon–Denis Poisson, who discovered 
the distribution on which this was based. 
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Poisson regression
standard model :  ln(E(Y))= a+bx+e

Poisson regression
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Poisson count models 
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Comparing Poisson models 
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Poisson model assumptions 

• Observations are independent 
• Measures integers (counts ) of events   
• No multicollinearity 
• Residuals are skewed; in OLS they are symmetric. 
• Variance increases as the mean increases whereas in 

traditional regression models the variance is constant. 
• Overdispersion (the variance is larger than the mean) 

for any number of cases does not exist. 
– If it occurs, there are corrections for it that can be applied 

as in the next model we discuss. 
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Test for overdispersion 
Cameron and Trivedi Microeconomics using Stata (p.561) 

• Overdispersion is where the conditional 
variance is greater than the conditional mean. 

• If you have a random variable with 
measurement error, v,  you could have an 
error such as uv instead of just u.   If E(v)=1, it 
would preserve the mean but increase the 
variance (for logged dependent variables).  

• E(y)=μ,  Var(y)= μ(1+ μσ2 ) 
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Test for Overdispersion--continued 

• Test =   if x = (resid^2 – dv)/dv 
• We regress dv on x, and if it is significant, 

there is overdispersion. 
• If  p(b)  < 0.05, then we use the negative 

binomial model. 
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Negative binomial Models 
nbreg models 

• Also used for count data  
• The mean does not have to equal the variance  

– Stata has this for zero-inflated and regular 
– It has it in the complex survey module as well as in 

the regular options. 
– It fits both the Poisson and the Negative binomial 

regression. 
• A Poisson likelihood with a gamma prior (for 

all the Bayesians) 
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Assumptions of the negative binomial 

• no multicollinearity 
• Overdispersion is permitted here 
• The Poisson parameter is itself a gamma 

distribution. 
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Binary dependent variable models 

• The probit regression model 
– Assumes an underlying latent variable that is normally 

distributed.  The proportions determine the cut-point 
in the normal distribution.  If the value is greater than 
the cut-point, the respondent gets a 1, otherwise his 
value is scored as a zero. 

• The logistic regression model 
– Uses the natural log of the odds ratio (the logit) as the 

dependent variable. 
– Odds ratio = prob(event)/(1-prob(event)) 
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Logistic regression 

• Formula for logistic regression: 
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Converting an odds to a probability 

• Odds=  prob/(1-prob) 
• Odds(1-prob)=prob 
• Odds- Odds*prob=  prob 
• Prob =  Odds/(1+Odds) 
• Prob =   e^(X’B)/[1+  e^(X’B)] 
• Prob =  e^(a + b1x1 + …)/[1 + e^(a + b1x1 + …)] 
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Cumulative Density Function  
of Logistic transformation 
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Logistic regression 
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Converting coefficients to percentage 
change 
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lsens and lroc 
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estat class and estat gof 
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Comparing nested models with 
information criteria 
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Information Criteria 

Information Criterion =   deviance + penalty for 
number of parameters 

 
-2LL ~ SSE (deviance) 
AIC =  -2LL + 2p 
BIC =  - 2LL + plog(n) 
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Receiver Operating Characteristic 
Analysis 
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Screening analysis 
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Comparison of ROC curves to compare 
logistic models 
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Logistic regression 
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Testing multiple coefficients 
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Logistic regression postestimation 
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Fitstat, save 
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Formulae for fitstats 
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 More Fitstat 
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More fitstat 

• Source of fitstat info:  Long and Reese, op. cit., 
pp. 107-111. 
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ROC curve 
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Save and analyze predicted 
probabilities of outcome 

• Command:  predict prvalue, pr 
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Storing results for model comparison 
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Assumptions of binary logistic 
regression 

• Linearity:  The model is linear for logits. 
• Additivity:  There are no significant interactions. 
• The residuals are binomially distributed until the 

sample size gets large when the binomial 
assumes a normal shape.   Therefore, large 
samples are necessary for such Maximum 
likelihood estimation. 

• No multicollinearity. 
• No overly influential observations (Daniel 

Pregebon) 
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Model Validation by testing 
assumptions  

• Test each assumption to be sure it holds for 
the model.   Check the sample size to be sure 
that it is large. 

• Check for multicollinearity with the iv corr 
matrix. 

• Test for interactions between variables.  
• Plot the probabilities to check for linearity. 
• . 
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Validating tests 
• Check the Classification chart to be sure that the 

percentage correctly classified is high. 
• Test for predictive validity of classification on an out-of-

sample analysis.  You can use Brier’s Score =   Error variance 
(with n as denominator).   Nonparametric correlation 
between observed and predicted scores (Somer’s D) should 
be high. 

• Bootstrap or jacknife to be sure that the empirical std 
errors do not deviate much from those estimated. 

• Compute the Q (the overall quality index).  Q = D-U,  
– where D=discrimination score ( LR  chi-square-1)/n and the U = 

unreliability index ( - 2LL between uncalilbrated XB and the 
calibrated XB (with overall intercept and slope calibrated to the 
test sample). 
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Model comparison tables 
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Other model comparison tables 
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Model comparison with information 
criteria 
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Probit regression model  
introduced by Chester Ittner Bliss (1935) 

• It assumes that the underlying  area of the 
normal curve is bifurcated so the proportions 
of counts in one group and those in the other 
represent the percentages of counts in the 0s 
and 1s. 
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Probit model 
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An assumption of an underlying 
normal variable 
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Classification table 
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Fitstat, diff force 
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Receiver Operating Characteristic 
Curve 
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Stata Postestimation command: lsens 
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Regression analysis for Ordinal 
Dependent Variables 

• Ordinal logistic regression using cumulative 
logits 
 

• Ordinal probit regression 

361 Copyright @2009  Robert Alan Yaffee, Ph.D. 



Ordinal logistic regression 

• Is the dependent variable an ordered typology?  
Is it actually an ordered variable? 

• Ordinal logistic regression uses cumulative logits. 
• Several cutpoints split the dependent variable 

into a reference set and the remainder for 
comparison with the reference set.  These 
cutpoint usually increase with the number of 
levels in the dependent variable. 

• There are  # levels minus 1 cutpoints for the 
dependent variable.  
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Cumulative logits 

• Suppose a dependent variable has three 
ordered categories:  low, medium, and high. 
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High 

Med. 

low 

Dependent 
variable 

Cutpoint 1 

Cutpoint 2 
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Cumulative logits 

• Logit 1 uses cutpoint 1  to divide the sets into 
probability 1 and 1- probability 1. 
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High 

Med. 

low 

Cutpoint 
1=1.15 

prob1 

1 – prob1 

Logit1 =  ln(p/(1-p)  
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Cumulative logits 

Logit 2 uses cutpoint 2  to divide the sets into 
probability 2 and 1- probability 2. 

                            
•                                       prob2  
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High 

Med. 

low 

Cutpoint 2=3.24 

Logit2 =  ln(prob 2/(1-prob2)  

1-  prob2 
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Assumptions of the  
ordinal logistic regression model 

• Logits (ln(odds)) are linearly related to the predictors, such 
that an ordered structure of response (is preserved  
without necessarily revealing the precise extent of this 
ordering ) of the dependent variable is maintained with 
respect to each predictor variable.   

•  Linearity and additivity: Regression coefficients are 
independent of the cut-point for the level of Y employed.  
This prevents any interaction between the X variables from 
being significant. 

• Additivity: Proportional odds assumption( parallel 
regression assumption) holds:   There are no significant 
interactions among independent variables.  If interactions 
were significant, then there would be valid nonlinear or 
multiplicative effects. 
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Formulation of this assumption 

• Assume that the cutpoints are represented by 
τ1, τ2, and τ3 .  The response variable 
measure low, medium, and high satisfaction 
wrt a treatment. 
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F=cumulative 
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Stata’s estimate 
Model 
parameter 

Stata 
estimate 

different 
Parameter- 
ization 

β0 Β0    -  Β0   =0 Β0  -   τ1 

τ1 τ1    -   Β0  τ1  -   τ1  =0  

τ2 τ2  -    Β0  τ2  -   τ1 

τ3 τ3   -   Β0  τ3   -   τ1 
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Tau values are the cutpoints    

J. Scott Long and Jeremy Freese  ,2nd ed., 2006,  p.196 
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The Brant test of this assumption 
significant result=> violation of || odds 
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Graphical test of the Proportional 
Odds assumptions 
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tests for proportionial odds assumption
  do  graphpodds 
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Ordinal logistic regression 
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Testing proportional odds 
assumption 
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Testing the interaction  is a test of the proportional odds assumption. 
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Corrected Ordinal Logistic Regression 
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Ordered Probit models  
are an alternative 

• Assumptions include constant proportionality  
across the cutpoints. 

• An underlying normal distribution is assumed. 
• The scale is such that one is dealing with 

standardized units. 
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Multinomial logistic regression 
for ordinal or categorical choice in the dependent variable 
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