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Outline 

–  1. Outline 
–  2. The problem of survival analysis  

•  2.1 Parametric modeling  
•  2.2 Semiparametric modeling  
•  2.3 The link between the two approaches  

–  3. Basic Theory of Survival analysis  
•  3.1 The survivorship and hazard functions  

–  the Survival function 
–  the Cumulative hazard  
–  the Hazard rate  

•  3.4 Censoring  
–  3.4.1 Right censoring  
–  3.4.2 Interval censoring  
–  3.4.3 Left censoring  

–  4. Formatting and summarizing 
•  survival data   

–  5. Nonparametric models: Life Tables  
–  6. Nelson-Aalen Cumulative Hazard rates 
–  7. Semi-Parametric Models: The Cox Model 

•  Derivation of the model 
•  Fitting the model 
•  Interpretation of coefficients 
•  Assumptions 
•  Tests of assumptions 

–  Recapitulation 
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Preparing survival data 
 

•  In this lecture we present methods 
for describing and summarizing 
data, as well as nonparametric 
methods for estimating survival 
functions.  
–  1. (st) Setting your data  

•  1.1 The purpose of the stset command  
•  1.2 The syntax of the stset command  
•  1.3 List some of your data  
•  1.4  stdes  
•  1.5 stvary  
•  1.6 Example: Hip fracture data  

–  From Hosmer and Lemeshow 
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Describing the Survival 
Data 

•  The Kaplan-Meier product-limit 
estimator of the survivor curve  

–  2.1 The sts graph command  
–  2.2 The sts list command  
–  2.3 The stsum command  

•  2.2 The Nelson-Aalen estimator of 
the cumulative hazard  

•  2.3 Comparing survival experience  
–  2.3.1 The log-rank test  
–  2.3.2 The Wilcoxon test  
–  2.3.3  Other tests 
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The Problem of Survival 
Analysis 

•  We are studying time till an event 
•  The event may be the death of a 

patient or the failure of a system 
•  These are sometimes called event 

history studies or failure time 
models 

•  If we model the survival time 
without assuming statistical 
distributions pertain, this is called 
nonparameteric survival analysis. 
–  In this case we use life tables analysis 

•  If we model the survival time 
process in a regression model and 
assume that a distribution applies 
to the error structure, we call this 
parametric survival analysis. 
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Censoring defined 

1)  Definition: Censoring occurs when 
cases are lost 

2)  What are the types: 
1)  Left censoring:  When the patient 

experiences the event in question before 
the beginning of the study observation 
period. 

2)  Interval censoring:  When the patient is 
followed for awhile and then goes on a trip 
for awhile and then returns to continue 
being studied.  

3)  Right censoring:   
1)  single censoring: does not experience event 

during the study observation period 
2)  A patient is lost to follow-up within the study 

period. 
3)  Experiences the event after the observation 

period 
4)  multiple censoring: May experience event 

multiple times after study observation ends, 
when the event in question is not death. 



7 

Censored data 

1)  Definition: Data where the event  
beyond a particular temporal point 
was unobserved.  The data within 
a particular range are reported at 
a particular limit of that range. 

2)  How it controls for the dropout 
1)  The likelihood formula contains a 

probability factor that has an 
exponent of 1 when the event 
occurred and 0 when it was 
censored. 

3)  How we investigate it: We try to 
determine whether censoring is 
random or informative. 
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Censoring Depicted 

Time of study observation

Basic Types of Censoring

A

C

B

Subject

X

O

O

X

X

D

E

No censoring

Left censoring

Interval censoring

Right censoring

Subjects D and E are right censored 

Subject lost to follow-up not shown  
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Censoring and 
Truncation 

•  Truncation: Complete 
ignorance about the event of 
interest 

•  Left Truncation:  Delayed entry 
– This could happen when the 

researchers do not administer 
the baseline interview before the 
patient dies 
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Survival Analysis 
Preprocessing 

•  The stset command 
– This command identifies the 

survival time variable as well as 
the censoring variable. 

–  It sets up stata variables that 
indicate the entry, exit, and 
censoring time. 

stset studytime, failure(died) 



11 

stset command 

stset studytime, failure(died) 
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Summary description of 
survival data set 

stdes  
•  This command describes 

summary information about the 
data set.  It provides summary 
statistics about the number of 
subjects, records, time at risk, 
failure events, etc. 

Summary statistics about the total, mean, median, 
minimum and maximum of number of subjects, records, 
entry time, exit time, subjects with gap, time at risk and 
number of failure events. 
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stdes 
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Describing the Survival 
Data 

stsum  stvary 
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Graphing the data 
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Survival Probability of 
data set 
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As the study proceeds, this probability 
declines. 

sts graph, studytime   is the stata 
command 
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Basic Survival Analysis 
Theory 

•  We are interested in the 
Survivorship function S(t) 

•  The Survivorship function is a 
function of the probability of 
surviving plotted against time. 

•  We use the cancer.dta 
provided with STATA 7 

•  We graph the survivorship 
function 
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Computation of S(t) 

1)  Suppose the study time is divided into 
periods, the number of which is 
designated by the letter, t. 

2)  The survivorship probability is 
computed by multiplying a proportion 
of people surviving for each period of 
the study. 

3)  If we subtract the conditional 
probability of the failure event for 
each period from one, we obtain that 
quantity. 

4)  The product of these quantities 
constitutes the survivorship function. 
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Survival Function 
•  The survival probability is equal to the 

product of 1 minus the conditional 
probability of the event of interest. 

( ) ( ( ))

( )

( )

T

i

t

S t h t

where

S t estimated survivorship

function at time t

h t conditional prob of event

at time t

=

= −

=

=

∏
1

1
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Survival Function in 
Discrete Time 

•  The number in the risk set is 
used as the denominator. 

•  For the numerator, the number 
dying in period t is subtracted 
from the number in the risk set.  
The product of these ratios 
over the study time= 

( )

( ) t t

t i T t

n dS t
n≤

−
=∏
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Survival Function and 
censoring 

( )

( )
( ( / ))

t t

t i T t t

t

n dS t
n c

where c number censored
in interval t

≤

−
=

−

=

∏ 2
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The Survivorship Function 
is the complement of the 

cumulative density function 

( ) ( )
Pr( )

S t F t
T t

= −

= >

1

F(t)=cumulative distribution of waiting 
time 
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The nature of the data 

•  The data are non-normal in 
distribution. 

•  They are right skewed. 
•  There may be varying degrees of 

censoring in the data. 
•  We have to use a nonparametric 

test to determine whether the 
survival curves are statistically 
different from one another. 

•  The early developers of tests 
include Mantel, Peto and Peto, 
Gehan,  Breslow, and Prentice 
(Hosmer and Lemeshow, 1999). 
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The Structure of the Test 

Table Testing Equality (homogeneity) 
of Survival Functions at Survival Time 

Drug 

Event drug 1 drug 2 drug3 Total 

Die d1 d2 d3 di 

Not 
die 

N1-d1 N2-d2 N3-d3 Ni-di 

At 
risk 

N1 N2 N3 ni 
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Expected Value in the 
Table 

i i
i

i

n de
n

=
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Tests for Equality across 
Strata 

If  t1<t2<t3<…<tk are the event times and s=s1,s2,…,sc 
strata, then in this example c=3. 

Then the test has the form: 

ˆ( ( ))

log ,
,

,

k

i i j i
i

j k

i i i
i

i i

i

i i i

i i

w d e
Q

w v

where
v varianceof d

rank w
w weight Gehan w n

Tarone Ware w n

=

=

−
=

=

⎛ ⎞− =
⎜ ⎟

= =⎜ ⎟
⎜ ⎟⎜ ⎟− =⎝ ⎠

∑

∑

2

1

2

1

1
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Variance of di 

( )
( )

,

k
i i il ji ij il j i

jl
i i i

jl

ij

c

i ij i i i
j

C

j i j
j

w n n n n d s
Var

n n
where
i event times
j stratum

if j l and otherwise
n size of risk set of jth stratum

n n s n d

d d

δ

δ

=

=

=

−
=

−

=

=

= =

=

= = −

=

∑

∑

∑

2

2
1

1

1

1
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The Weights wi 

•  The Mantel Haenszel test or the 
Log-Rank test, developed by Peto 
and Peto in 1972, uses wi=1. 

•  Gehan(1965) and Breslow(1970) 
generalized this test to allow for 
censoring. The weights wi=ni the 
number of subjects at risk at each 
interval. 
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Standard Error of an 
Survival Function  

ˆˆ ( ( ))
i

i
i i

j j j

dS t
n s

σ
=

= ∑
1

Greenwood’s formula 
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Examining the Survival 
Probability 

Using the command,  sts list, 
generates the survival table: 
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The Life Tables 
Analysis 
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Graphing the survival 
probability 
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We need to develop 
tests that determine 
whether the survival 

rates are now 
statistically significantly 

different from one 
another 



34 

Stratifying the Survival 
Function 

If we were conducting a cancer 
clinical trial and were trying to slow 
down the impending death of 
terminally ill patients, we might test 
three different drugs. 
The drugs in the three treatment 
arms of this clinical trial, we 
designate as drugs 1, 2, and 3.   
We plot the survival functions of the 
three groups 

We test three drugs on the patients 
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Analyzing stratified 
survival rates 
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Stata command is 

Sts graph, by(drug)      
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One can also identify the 
times of failure events in 

the survival estimates   
sts graph, by (drug) lost 
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Kaplan-Meier survival estimates, by drug
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Identifying the censored 
times 

sts graph, by(drug)  censored(single) 

0.
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00
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drug = 1 drug = 2
drug = 3

Kaplan-Meier survival estimates, by drug

If there is multiple censoring, substitute multiple for 
single 
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Programming the 
Stratification Tests 

sts test studytime, logrank strata(drug) 

sts test studytime, wilcoxon  
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Logrank 
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Wilcoxon 



41 

Other tests 
Tarone-Ware Test 

This test is the same as the 
Wilcoxon test, with the exception 
that the weight function wt=n1/2  . 

The STATA command is: 
sts test studytime, tware 
Peto-Peto Prentice Test 
   The only difference between the  

Wilcoxon test and this one is that 
the weight function is 
approximately equal to the K-M 
survival Function 

ˆ( )wt S t≈
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Stata command for the Peto-
Peto Prentice(1978) test is: 

 
Sts test studytime, peto 
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The hazard rate 

•  The hazard rate is the conditional 
probability of the death, failure, or 
event under study, provided the 
patient has survived up to an 
including that time period. 

•  Sometimes the hazard rate is 
called the intensity function, the 
failure rate, the inverse Mills ratio 
(Cleves et al., 2002). 

   
•  When it is applied to continuous 

data, it is sometimes referred to as 
the instantaneous failure rate 
(Cleves et al., 2002). 



44 

Formulation of the 
hazard rate 

Pr( |( ) lim

( )
( )

t

t t T t T th t
t

f t
S t

Δ →

+Δ > > >⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

=

0

The hazard rate is known as the conditional 
rate of failure.  This is the rate of an event, 
given that a person has survived up to that 
time.  It is given by the above formula. 

It can vary from 0 to infinity. It can increase 
or decrease or remain constant over time.  It 
can become the focal point of much survival 
analysis.   

Rising hazard rates augur increasing peril. 
Falling hazard rates portend greater security. 
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Examples of hazard rates 

•  Cleaves, Gould and Guttierrez 
suggest that human mortality 
declines after birth and infancy, 
remains low for awhile, and 
increases with elder years. This is 
known as the bathtub hazard 
function. 

•  They also note that post-operative 
hazard rate declines with the time 
after operation (CGG, p.8). 
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The Cumulative 
Distribution of the density 

function 

( ) ( )
( ) ( )
Because S t F t
F t S t

= −

= −

1
1

( ) Pr( ) ( )
T

t

F t t T f u dt
=

= ≤ = ∫
0

( )( ) '( )dF tf t F t
dt

= =
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The probability density 
function 

•  The probability density function 
is obtained by differentiating 
the cumulative failure 
distribution. 

( ) ( ( ))( ) '( )dF t d S tf t S t
dt dt

−
= = = −

1
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Programming the 
Survival Function 

•  The next few pages provide 
the preprocessing commands 

•  The Graphing Commands 
•  The testing commands for the 

survival function differences 
•  The menu options to use if you 

do not wish to use the 
commands 
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Graphing the hazard 
rate 

.0
2

.0
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.0
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.0
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0 10 20 30 40
analysis time

Smoothed hazard estimate

sts graph, hazard 
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Graphing the respective 
hazard rates 

•  sts graph, by(drug) hazard 

0
.0

5
.1

.1
5

0 10 20 30 40
analysis time

drug = 1 drug = 2
drug = 3

Smoothed hazard estimates, by drug

We will use the hazard rate as a dependent 
variable in the Cox models later. 
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Cumulative Probability 
of Failure 

One can always graph F(t) with 
the following command: 

sts graph, by (drug) failure lost 

1

1

3

1

2

2
1

2

1

2 1

0.
00

0.
25

0.
50

0.
75

1.
00

0 10 20 30 40
analysis time

drug = 1 drug = 2
drug = 3

Kaplan-Meier failure estimates, by drug



52 

Nelson-Aalen Estimator 

||
( )

j

j

j t t j

The Cumulative Hazard Function
defined by Aalen in discrete time as

d
H t

n≤

= ∑

dj= the number of failures at time 
j 

nj = the number in the risk set at 
time  j 
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Continuous Time 
version 

0

( ) ( )
t

H t h u du= ∫

{ }

( )
( )

1 ( )
( )

ln ( )

t

o
t

o

f u du
S u

dS u du
S u du
S t

=

⎧ ⎫= ⎨ ⎬
⎩ ⎭

= −

∫

∫
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( )

ˆ( ) ln( ( ))
ˆln( ( )) ( )

ˆ( ) H t

H t S t

S t H t

S t e−

= −

∴ = −

∴ =

the Survival time as a function of the 
cumulative hazard function 
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Let r be a function of the parameter 
vector. 

( , )

( , , ) ( , , )

( , ) ( )

( , ) ,
:

t

x

H t x h u x du

r x H t
if r x e
then

β

β β

β

β −

=

=

∫
0

0

( , ) ( )( , , ) r x H tS t x e ββ −= 0
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Listing data according to 
the Nelson-Aalen 

definitions 
sts list, na 
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We may graph the 
cumulative hazard by the 
Nelson-Aalen definition 

•  sts graph, by (drug) na 
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Cox proportional hazards 
regression 

models 
•  Cox's proportional hazards method.  

–  1. Introduction  
•  1.1 The Cox model theory 
•  1.2 Interpreting  coefficients  
•  1.3 The effect of units on coefficients  
•  1.4 The baseline hazard and related functions  
•  1.5 The effect of units on the baseline functions  
•  1.6 Summary of stcox command  

•  2.1 Indicator variables  
•  4.2 Categorical variables  
•  4.3 Continuous variables  
•  4.4 Interactions  
•  4.5 Time-varying variables  
•  4.6 Testing the proportional-hazards assumption  
•  4.7 Residuals  

–  3. Stratified analysis  
•  3.1 Obtaining coefficient estimates  
•  3.2 Obtaining the baseline functions  
•  3.3 The calculation of results  
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Aliases 

Proportional Hazards model 
Proportional hazards regression 

model 
Cox Proportional Hazards model 
 
“The hazard functions are 

multiplicatively related and that 
their ratio is constant over the 
survival time (Hosmer and 
Lemeshow, 1999).” 
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Cox Regression 

•  The Cox model presumes that the 
ratio of the hazard rate to a 
baseline hazard rate is an 
exponential function of the 
parameter vector. 

( ) exp( ' )
( )o

h t x b
h t

=
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We would like to ascertain what 
variables potentiate or diminish 

the hazard rate 

If we make some assumptions 
we can set up a model that can 
answer these questions.   

We have to assume that the 
proportional hazard remains 
constant. 

1 1 2 2 ...

0

( ) exp( ' )
( )

p pb x b x b xh t X B e
h t

+ + += =

We have to assume that the baseline is 
not important to our primary 
considerations in this model. 
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A relative risk model 

( )

( , , )( , , )
( , , )
x x

h t xhazard ratio t x x
h t x

eβ

β
β

−

=

= 1 0

1
1 0

0
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Hazard rate as an 
exponential function of the 

covariate vector 

x'
0h(t, x) h (t) e β=
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We take the natural log of 
the equation 

1 1 2 2ln( ( )) ln( ( )) ...o p ph t h t b x b x b x= + + + +

The natural log of the baseline hazard rate can be 
considered a constant in the model.  “This component 
expresses the hazard rate changes as a function of 
survival time, whereas the covariate vector expresses the 
natural log of the hazard rate as a function of the 
covariates (Hosmer and Lemewhow, 1999).”. 

 

When the hazard is logged, the coefficients are called the 
risk score. 

We can convert this model to a linear model by taking the 
natural log of the equation. 
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Semi-Parametric model 

•  The baseline is not explicitly 
described 
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Derivation 

{ }

{ }

( , , )( , , )
( , , )
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i
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When the individual is censored, the c=1 and when the 
individual is not censored c=0.  This may change with 
the package, in LIMDEP, it is the opposite. 
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Partial Likelihood 

The partial likelihood concentrates 
not on the baseline, but on the 
parameter vector of interest.   

Let R(ti)=risk set at time ti with 
subjects whose survival or 
censored time are ge current 
time(H and L, p.98) 

For the time being, it ignores 
censoring when c=0. 
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We take the ln of the 
expression 
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Solving for beta  

{ }

( )

( )

( )

( )

( )

( )

( )

.

( )

x j

i
x j

i

i

j

i
x j

i

e
jn

j R t
i i

i

j R t

n

i i ij j
i j R t

n

i i wi
i

x

j R t
ij

j R t

e

x
L c x

c x w x

c x x

e
where w

e

β

β

β

β

β
β

β

β

∈

=

∈

= ∈

=

∈

∈

⎧ ⎫
⎪ ⎪∂ ⎪ ⎪

= −⎨ ⎬
∂ ⎪ ⎪

⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪
= −⎨ ⎬

⎪ ⎪⎩ ⎭

= −

=

∑
∑

∑

∑ ∑

∑

∑

∑

1

1

1



70 

and 

( )
( )wi i j j

j R ti
x w xβ

∈

= ∑
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Deriving the Standard 
Errors 

•  We take the 2nd derivative of 
the log likelihood to obtain the 
information matrix. 

( )

( ) ( )

( )

m

ij j wi
i j R ti

L w x x

I

β
β

β
= ∈

∂
= − −

∂

= −

∑ ∑
2

2
2

1

The variances of the variables are in the inverse 
of the  information matrix. 

ˆ ˆ( ) ( )Var Iβ β −= 1
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SE(β) 

( ) ( )SE Varβ β=
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Programming the 
Proportional Hazards 

model with stcox 
stcox age drug, schoenfeld(sch*) scaledsch(sca*) nohr 
 
failure _d:  censor 
analysis time _t:  survtime 
 
Iteration 0:   log likelihood = -299.19502 
Iteration 1:   log likelihood = -281.73399 
Iteration 2:   log likelihood = -281.70404 
Iteration 3:   log likelihood = -281.70404 
Refining estimates: 
Iteration 0:   log likelihood = -281.70404 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =          100                     Number of obs   =  100 
No. of failures =           80 
Time at risk    =         1136 
LR chi2(2)      =  34.98 
Log likelihood  =   -281.70404                 Prob > chi2     =  0.0000 
 

  
    _t   |      Coef.         Std. Err.       z     P>|z|     [95% Conf. Interval] 

  
Age   |    .0915319   .0184879     4.95   0.000     .0552963 .1277675 
Drug  |   .9413856   .2555104     3.68    0.000     .4405943 1.442177 

  
 
.  stphtest, plot(age) yline(0) 
 
.  stphtest, plot(drug) yline(0) 
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Interpretation 

•  If the nohr option is invoked, 
the coefficients are the log 
hazard ratios, not the hazard 
ratios.   

•  If the option nohr is not used 
the hazard ratio is the 
dependent variable. 
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Modeling the Baseline 
Rate 

•  There is no bo and hence, there is 
no intercept in this model. 

•  When the xi=0,  then the relative hazard, 
exp(x’b) =1. 
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Correction for Ties 
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Breslow’s partial likelihood (adjustment for ties) 
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Fitting the Cox 
Regression Model 

1.  We can fit these models 
according to the residual 
reduction. 

2.  We can fit these models 
according to the log 
likelihood. 

3.  The higher the – log 
likelihood, the better the 
model. 

4.  The larger the LR chi-square 
the better the model. 
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Partial Likelihood Ratio 
Test 

G is the difference between the 
covariate model and the null 
model (constant only).  

ˆ{ ( ) ( )}.

( ) ln( )

p p

m

p i
i

G L L
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L n

β

=

= −

=∑
1

2 0

0

This is distributed as a chi square with m df. 
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Interpretation of the 
Coefficients 

1.  This depends on whether the 
dependent variable has been logged 
or not. 

2.  If the dependent variable has  been 
logged, then a unit increase in the 
independent variable is associated 
with β increase in the log hazard 
rate. 

3.  If the dependent variable is the hazard 
ratio, so that the nohr has not been 
invoked, then a unit increase in the 
covariate is associated a eβ increase 
in the hazard ratio. 
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For Example 
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Significance tests of 
Coefficients 

ˆ
ˆ( )

Wald statistic z
SE
β

β
=
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Confidence Intervals for 
the hazard ratios  

:
ˆ ˆexp( 1.96 ( )].

.

for dichotomous variables

SE
Categorical variables are dummied

β β±

1

( )
ˆ ˆexp( * ( ))

For continuous variables with c units change
x c x

c z c SEα

β β

β β−

= + −

= ±
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Time Varying 
Covariates 

•  The tvc (x3 x4 x5) option may 
be added to the model to 
specify time varying covariates. 

For example, 
stcox x1 x2, nohr tvc(x2) 

Indicates that of the two 
covariates, the second is time-
varying. 
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Testing the Adequacy of 
the model 

1.  We save the Schoenfeld 
residuals of the model and 
the scaled Schoenfeld 
residuals. 

2.  For persons censored, the 
value of the residual is set to 
missing. 
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Schoenfeld residuals 
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Rescaled Schoenfeld 
Residuals 

•  m = number of uncensored 
survival times 

ˆ( )
i irs sr mVar rβ=
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Creating the Residuals 

 stcox age drug, schoenfeld(sch*) scaledsch(sca*) 
nohr 
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Testing the Assumptions 

•  The hazard rates must be 
chosen so that h(t,x,b)>0. 

•  h0(t) characterizes the baseline 
hazard function, and this holds 
when x=0. 

•  The baseline hazard is a 
function of time and not of the 
covariates. 

ln( ( , , ) ln( ( )) 'h t x h t xβ β= +0
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An Objective Test 

•  stphtest, detail 

After the rescaled Schoenfeld residuals have 
been generated, this test may be conducted. 
 
The detail option shows the individual as well as 
the global test of the proportional hazards 
assumption.  NS results implies the proportional 
hazards assumption. 
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A graphical test of the 
proportion hazards 

assumption 
•  A graph of the log hazard would reveal 

2 lines over time, one for the baseline 
hazard (when x=0) and the other for 
when x=1. 

•  The difference between these two 
curves over time should be constant= β

If we plot the Schoenfeld 
residuals over the line y=0, 
the best fitting line should be 
parallel to y=0. 
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Graphical tests 

•  Criteria of adequacy:  
The residuals, particularly the 

rescaled residuals,  plotted 
against time should show no 
trend(slope) and should be 
more or less constant over 
time. 
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Stphtest  

•  This tests the Schoenfeld 
residuals or the scaled 
Schoenfeld residuals against 
time.  

•  We hope to find that there is a 
level line that is close to 0.  If 
there is, then the proportional 
hazards assumption holds. 

•  The stata command after 
creating the Schoenfeld 
residuals to test age is: 

•   stphtest, plot(age) yline(0) 



93 

Graph created to test 
ph assumption re age 
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The Model is time 
dependent 

•  Because this model is time dependent, 
it can handle time varying covariates 

•  If we have categorical predictors, we 
may wish to recode them as dummy 
variables. 
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stphtest 

•  To test the drug use variable, 
•  The stata command is: 
stphtest, plot(drug) yline(0) 
 
This generates the following 

graph. 
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Test of Ph assumption 
with the Drug abuse 

variable 
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Other issues 

•  Time-Varying Covariates  
•  Interactions may be plotted 
•  Conditional Proportional 

Hazards models: 
•  Stratification of the model may 

be performed.  Then the 
stphtest should be performed 
for each stratum. 



98 

References 

Cleves, M., Gould, W.M., & 
Gutierrez, R.G. (2002). An 
Introduction to Suvival Analysis 
using Stata. College Station, Tex: 
Stata Press, pp.7, 34, . 

Hoesmer, D. & Lemeshow, S. 
(1999). Applied Survival 
Analysis.  New York: Wiley, pp. 
58-65, 90. 

View publication stats

https://www.researchgate.net/publication/273449291

