An Introduction to New Developments in OxMetrics Regime Switching Models

Robert Alan Yaffee Silver School of Social Work New York University New York, New York, U.S.A.

21 May 2015

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

21 May 2015 1 / 58

Outline I

- Markov-Switching Mean Models
 - Markov-Switching mean models: Dynamic Regression models
 - Markov-Switching: AR models
 Caveats of MS-AR Models
 - Markov-Switching models with heteroscedasticity
 - Markov-Switching models with component structure
 variance type: mean-variance component
- 2 Estimation of Markov-Switching Models
 - nonlinear programming
 - Maximum likelihood
- 3 Generalized Impulse Response Analysis
 - Forecasting
 - from static models
 - from MS-AR models
- Markov-Switching Volatility Models
 Markov-Switching GARCH

Outline II

Markov-Switching Multi-Fractal Volatility

э

・ロト ・日下 ・日下・

How do Regime Switching mean models differ from conventional Dynamic Regressions?

The Constant becomes a random variable

$$y_{t} = \nu + \beta_{1}y_{t-1} + X'_{t} + \epsilon_{t}, \quad \epsilon_{t} \sim IIN(0, \sigma_{t}^{2})$$
(1)

$$y_{t} = S(t) + \beta_{1}y_{t-1} + X'_{t} + \epsilon_{t}, \quad \epsilon_{t} \sim N(0, \sigma_{t}^{2})$$
(2)

$$s.t.$$

$$S(t) = c_{0} \text{ if regime} == 0,$$

$$S(t) = c_{1} \text{ if regime} == 1$$

21 May 2015 4 / 58

How do Markov Regime Switching models differ from conventional Dynamic Regressions?

• The probability of being in a state follows a (Markov) process, depending only on the previous state.

How do Markov Regime Switching models differ from conventional Dynamic Regressions?

- The probability of being in a state follows a (Markov) process, depending only on the previous state.
- It does not depend on the history of previous states.

S(t) can be interpreted as an unobserved state or regime

$$p(i|j) = S_{t+1} = i|S_t = j \text{ for } i, j = 0, ..., S_{t-1}$$
 (3)

How do Markov Regime Switching models differ from conventional Dynamic Regressions?

- The probability of being in a state follows a (Markov) process, depending only on the previous state.
- It does not depend on the history of previous states.

S(t) can be interpreted as an unobserved state or regime

$$p(i|j) = S_{t+1} = i|S_t = j \text{ for } i, j = 0, ..., S_{t-1}$$
 (3)

Because the system has to be in one of S states,

Sum of States $\sum_{i=1}^{S-1} p(i|j) = 1$

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

(4)

Select Category: models for time series data for now

e C Cive - Models for time-series data				
All Modules	C@RCH PCCIVE STAMP X12Arima			
Module Category Model class	PcGive Models for time-series data Regime Switching Models using PcGive			
0	Formulate > Estimate > Test <			
	Options Close			

Figure 1: Select Model class: Regime switching models

- Select Category: models for time series data for now
- We will iterate through estimate, test, and progress later

C O PcGive - Models for time-series data			
All Modules	C@RCH PCGIVE STAMP X12Arima		
Module Category Model class	PcGive Models for time-series data Regime Switching Models using PcGive		
0	Formulate > Estimate > Test <		
	Options Close		

Figure 1: Select Model class: Regime switching models

• Select Category: models for time series data

Figure 2: Select Model class: Regime switching models

00	PcGive - Models for time-series data				
All Modules	G@RCH PCCIVE STAMP X12Arima				
Module Category Model class	PcGive Models for time-series data Regime Switching Models using PcGive				
	Formulate > Estimate > Test <				
Options Close					

< 17 ▶

- E - N

- Select Category: models for time series data
- Double click on formulate

Figure 2: Select Model class: Regime switching models

00	PcGive - Models for time-series data				
All Modules	C@RCH PCGIVE STAMP X12Arima				
Module Category Model class	PcGive Models for time-series data Regime Switching Models using PcGive				
	Formulate > Estimate > Test <				
	Options Close				

Designating the series and the basis of the regime

Select Category: models for time series data

Figure 3: formulation selection of Nile and constant, and then OK

Designating the series and the basis of the regime

Select Category: models for time series data

Figure 4: formulation selection of Nile and constant, and then OK

Designating the series and the basis of the regime

- Select Category: models for time series data
- Select the Nile time series along with the restricted constant and click on OK

Figure 4: formulation selection of Nile and constant, and then OK

• • • • • • • • • • • • • •

Type and Number of regimes

• We use the type: Markov-Swiching Dynamic Regression

0	0.0	Model Settings - Regime Switching Models
	Regime Switching Model	
	Model type	Markov-switching Dynamic Regression
	Number of regimes	2
	± ARMA	
	Variance	
	Variance type	Fixed
	Multifractal Volatility	
_		
		OK Cancel

Type and Number of regimes

- We use the type: Markov-Swiching Dynamic Regression
- We leave the number of regimes at 2

0	0.0	Model Settings - Regime Switching Models
	Regime Switching Model	
	Model type	Markov-switching Dynamic Regression
	Number of regimes	2
	± ARMA	
	Variance	
	Variance type	Fixed 🗘
	+ Multifractal Volatility	
		OK Cancel

Type and Number of regimes

- We use the type: Markov-Swiching Dynamic Regression
- We leave the number of regimes at 2
- We allow the variance of the regimes at fixed and click OK

0	0.0	Model Settings - Regime Switching Models
	Regime Switching Model	
	Model type	Markov-switching Dynamic Regression
	Number of regimes	2
	+ ARMA	
	Variance	
	Variance type	Fixed 🗘
	Multifractal Volatility	
_		
		OK Cancel

Sample selection

• We use the defaults here and click OK

000	Estimate - Regime Switching Models			
Choose the estimation	on sample:			
Selection sample	1871 - 1970			
Estimation starts at	1871			
Estimation ends at	1970			
Less forecasts 0				
Choose the estimation	on method:			
Estimation method:	Maximum Likelihood			
Recursive estimation				
Initialization	0			
OK Cancel				

Figure 6: Using the defaults, and then click OK

Model selection

• Selecting model in the upper left graphics options yields colored representation different smoothed means.

Figure 7: Graphics model selection reveals building of Aswan Dam in 1899 as change point of regime

Model selection

• Selecting model in the upper left graphics options yields colored representation different smoothed means.

Figure 8: Graphics model selection reveals building of Aswan Dam in 1899 as change point of regime

After the level shifting constant, you obtain the transition probability matrix

Effects originate at the top of the matrix and then proceed downward and to the left:

$$P = \begin{pmatrix} S_{t=1} = 0 | & \frac{S_t = 0}{p(0|0)} & \frac{S_t = 1}{p(0|1)} \\ \frac{S_{t+1} = 1}{\sum} | & \frac{p(1|0)}{1} & \frac{p(1|1)}{1} \end{pmatrix}$$

 $\downarrow \\ \leftarrow$

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

< 47 ▶

(5)

$$P = egin{pmatrix} S_{t} = 0 & S_{t} = 1 \ p(0|0) & \overline{1 - p(1|1)} \ S_{t+1} = 1| & 1 - p(0|0) \ \overline{\Sigma} & 1 & p(1|1) \ 1 & \end{pmatrix}$$

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

< □ > < □ > < □ > < □ > < □ > < □ >

990

(6)

reveals the decline in average flow volume from 1097 to 846 m^3/sec .

If we go to the output section in the navigation window on the left and select Results, we
obtain

reveals the decline in average flow volume from 1097 to 846 m^3/sec .

- If we go to the output section in the navigation window on the left and select Results, we
 obtain
- the displayed output with the

reveals the decline in average flow volume from 1097 to 846 m^3/sec .

- If we go to the output section in the navigation window on the left and select Results, we
 obtain
- the displayed output with the
- The level shifts of the constant, their parameter estimates, and the transition probability matrices and settings.

Regime classification selection

Accessing the test menu, we select the regime classification option and click OK

Test Menu		
Graphic Analysis		
Recursive Graphics		
Dynamic Analysis		
Forecast		
Regime Classification		
Test		
Test Summary		
Exclusion Restrictions		
Linear Restrictions		
General Restrictions		
Store in Database		
OK	Cancel	

16/58

Requesting the regime classification shows the change point of 1899 representing the completion of the Aswan dam.

```
Regime classification based on smoothed probabilities

Regime 0 years avg.prob.

1871 - 1898 28 0.993

Total: 28 years (31.11%) with average duration of 28.00 years.

Regime 1 years avg.prob.

1899 - 1960 62 0.999

Total: 62 years (68.89%) with average duration of 62.00 years.
```

Modeling with regime switching models

• We can use a Likelihood ratio test to compare different models with the df=difference in the number of parameters.

Figure 9: Bai Perron data on ex post real interest rates

Modeling with regime switching models

- We can use a Likelihood ratio test to compare different models with the df=difference in the number of parameters.
- We use the ex post real interest rates, USIR.in7, file.

Figure 9: Bai Perron data on ex post real interest rates

Modeling with regime switching models

- We can use a Likelihood ratio test to compare different models with the df=difference in the number of parameters.
- We use the ex post real interest rates, USIR.in7, file.
- We load and graph it.

Figure 9: Bai Perron data on ex post real interest rates

Bai Perron dialog box settings

• We select the BPir variable

Figure 10: Bai Perron data on ex post real interest rates

nac

Bai Perron dialog box settings

- We select the BPir variable
- We use the ex post real interest rates, USIR.in7, file.

Figure 10: Bai Perron data on ex post real interest rates

Bai Perron dialog box settings

- We select the BPir variable
- We use the ex post real interest rates, USIR.in7, file.
- We load and graph it.

Figure 10: Bai Perron data on ex post real interest rates

BP graphical output

Figure 11: BP graph output

э 21 May 2015 20 / 58

590

イロト イロト イヨト イヨト

Comparing regime switching models

• Select the model dialog box and click on formulate, click OK.

0	O O Model Sett	ings – Regime Switching Models	
	Regime Switching Model		
	Model type	Markov-switching Dynamic Regression	
	Number of regimes	3	
	± ARMA		
	Variance		
	Variance type	Fixed	
	+ Multifractal Volatility		
Multifractal Volatility Regime Switching variations			
	OK Cancel		

Figure 12: Select 3 regimes and leave variance type fixed

Comparing regime switching models

- Select the model dialog box and click on formulate, click OK.
- Enter 3 regimes and allow the variance type to remain fixed, and click OK.

0	0.0	Model Settings	- Regime Switching Models	
	Regime Switching Mod	el		
	Model type		Markov-switching Dynamic Regression	
	Number of regimes		3	
	± ARMA			
	Variance			
	Variance type		Fixed	
	+ Multifractal Volatility			
	Regime Switching variations			

Figure 12: Select 3 regimes and leave variance type fixed
Comparing regime switching models

- Select the model dialog box and click on formulate, click OK.
- Enter 3 regimes and allow the variance type to remain fixed, and click OK.

	Model Settings – Regime Switching Models			
Regime Switching Mo	iel .			
Model type	Markov-switching Dynamic Regression			
Number of regimes	3			
± ARMA				
Variance				
Variance type	Fixed			
+ Multifractal Volatilit	·			
	OK Cancel			

Figure 12: Select 3 regimes and leave variance type fixed

Formulate the model with three regimes

Select the model dialog box

```
Switching( 5) Modelling BPr by MS(3)
              The dataset is: /Users/boby/Documents/presentations/OxMetrics2014May16/data/USRIR.in7
              The estimation sample is: 1961(1) - 1986(3)
                Coefficient
                              Std.Error t-value t-prob
                    1,41924
Constant(0)
                                 0.2904
                                            4.89
                                                   0.000
Constant(1)
                   -2.08089
                                 0.4161
                                            -5.00
                                                   0.000
Constant(2)
                    5.87409
                                 0.4594
                                             12.8
                                                   0.000
                Coefficient
                              Std.Error
sigma
                    2 03004
                                 0 1470
p_{010}
                   0.959305
                                0.02831
p {1|0}
                  0.0218147
                                0.02173
p_{011}
                  0.0413714
                                0.04188
log-likelihood
                  -231.555696
no, of observations
                        103
                               no, of parameters
AIC
                   4.63214943 SC
                                                  4 81120868
                      1.37514
                               se(BPr)
mean(BPr)
                                                     3.45123
Linearity LR-test Chi^2(5) = 83.364 [0.0000]** approximate upperbound: [0.0000]**
Transition probabilities p_{i|j} = P(Regime i at t+1 | Regime j at t)
                Regime Ø,t
                             Regime 1,t
                                          Regime 2,t
Regime 0,t+1
                   0.95930
                               0.041371
                                              0.0000
Regime 1.t+1
                  0.021815
                                0.95863
                                              0.0000
                                              1.0000
Regime 2,t+1
                  0.018881
                                 0.0000
Transition probability settings (-1: free parameter, -2: 1-sum(p_{i|.})
                Regime 0.t
                             Regime 1.t
                                          Regime 2.t
Regime 0,t+1
                   -1.0000
                                -1.0000
                                             -2.0000
Regime 1.t+1
                   -1.0000
                                -2.0000
                                              0.0000
                   -2.0000
                                 0.0000
                                              1.0000
Regime 2.t+1
Used uniform probabilities to start recursion
Std.Error based on numerical Hessian matrix
SOPF using analytical derivatives (eps1=1e-05; eps2=1e-07):
Strong convergence
Used starting values:
       1.4193
                   -2.0361
                                 5.8576
                                               2.0408
                                                           0.95907
                                                                       0.020956
                                                                                    0.036736
                                                                                                  0.94363
     0 019608
                   0 96078
```

Figure 13: Output of three regime interest rates

21 May 2015 22 / 58

Formulate the model with three regimes

- Select the model dialog box
- Double click the progress option

```
Switching( 5) Modelling BPr by MS(3)
              The dataset is: /Users/boby/Documents/presentations/OxMetrics2014May16/data/USRIR.in7
              The estimation sample is: 1961(1) - 1986(3)
                Coefficient
                              Std.Error t-value t-prob
Constant(0)
                    1,41924
                                 0.2904
                                            4.89
                                                   0.000
Constant(1)
                   -2.08089
                                 0.4161
                                            -5.00
                                                   0.000
Constant(2)
                    5.87409
                                 0.4594
                                            12.8
                                                   0.000
                Coefficient
                             Std.Error
sigma
                    2 03004
                                 0 1470
p_{010}
                   0.959305
                                0.02831
p {1|0}
                  0.0218147
                                0.02173
p_{0|1}
                  0.0413714
                                0.04188
log-likelihood
                  -231.555696
no, of observations
                        103 no. of parameters
AIC
                   4.63214943 SC
                                                  4 81120868
                      1.37514
                               se(BPr)
mean(BPr)
                                                     3.45123
Linearity LR-test Chi^2(5) = 83.364 [0.0000]** approximate upperbound: [0.0000]**
Transition probabilities p_{i|j} = P(Regime i at t+1 | Regime j at t)
                Regime Ø,t
                             Regime 1,t
                                          Regime 2,t
Regime 0,t+1
                   0.95930
                               0.041371
                                              0.0000
Regime 1.t+1
                  0.021815
                                0.95863
                                              0.0000
                                              1.0000
Regime 2,t+1
                  0.018881
                                 0.0000
Transition probability settings (-1: free parameter, -2: 1-sum(p_{i|.})
                Regime 0.t
                             Regime 1.t
                                          Regime 2.t
Regime 0,t+1
                   -1.0000
                                -1.0000
                                             -2.0000
Regime 1.t+1
                   -1.0000
                                -2.0000
                                              0.0000
                   -2.0000
                                 0.0000
                                              1.0000
Regime 2.t+1
Used uniform probabilities to start recursion
Std.Error based on numerical Hessian matrix
SOPF using analytical derivatives (eps1=1e-05; eps2=1e-07):
Strong convergence
Used starting values:
       1.4193
                   -2.0361
                                 5.8576
                                               2.0408
                                                           0.95907
                                                                       0.020956
                                                                                    0.036736
                                                                                                  0.94363
     0 019608
                   0 96078
```

Figure 13: Output of three regime interest rates

Invoking the Test summary

• The test summary has to be invoked.

00	Test Menu
Test Menu	
Graphic Analysis	
Recursive Graphics	
Dynamic Analysis	
Forecast	
Regime Classification	
Test	
Test Summary	\checkmark
Exclusion Restrictions	
Linear Restrictions	
General Restrictions	
Store in Database	

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

Invoking the Test summary

- The test summary has to be invoked.
- It reveals the extent to which the model is properly specified.

) О О О О О О О	est Menu
Test Menu	
Graphic Analysis	
Recursive Graphics	
Dynamic Analysis	
Forecast	
Regime Classification	
Test	
Test Summary	\checkmark
Exclusion Restrictions	
Linear Restrictions	
General Restrictions	
Store in Database	

• The test summary has to be invoked.

Descriptive statistics for scaled residuals: Normality test: Chi^2(2) = 2.3007 [0.3165] ARCH 1-1 test: F(1,94) = 1.5096 [0.2223] Portmanteau(12): Chi^2(12) = 12.777 [0.3854]

Figure 15: Test summary evaluates model specification

- The test summary has to be invoked.
- It reveals the extent to which the model is properly specified.

Descriptive statistics for scaled residuals: Normality test: Chi^2(2) = 2.3007 [0.3165] ARCH 1-1 test: F(1,94) = 1.5096 [0.2223] Portmanteau(12): Chi^2(12) = 12.777 [0.3854]

Figure 15: Test summary evaluates model specification

.

• Select the model dialog box

0 🔘	0	Progress – Reg	ime Switching Models	
☑	Switching(4)	2 x 103	-273.238 ML	0
\checkmark	Switching(3)	7 x 103	-231.556 ML	
\checkmark	Switching(2)	10 x 103	-228.756 ML	
	Switching(1)	7 x 103	-231.556 ML	
_	CV/C (02 02			

Figure 16: Selecting the nested models to compare

nac

- Select the model dialog box
- Double click the progress option

0	0	Progress – Reg	ime Switching Models	
☑	Switching(4)	2 x 103	-273.238 ML	
\checkmark	Switching(3)	7 x 103	-231.556 ML	
\checkmark	Switching(2)	10 x 103	-228.756 ML	
	Switching(1)	7 x 103	-231.556 ML	
_	CV/C (D) DO		AFF AL 6	

Figure 16: Selecting the nested models to compare

Comparison among nested models

• The Model comparison table appears

Progress	to da	te							
Model		Т	р		log-likelih	ood	SC	HQ	AIC
S		103	10	М	-228.75	575	4.8918	4.7396	4.6360
S		103	7	М	-231.55	570	4.8112<	4.7047<	4.6321<
S		103	2	М	-273.23	753	5.3956	5.3651	5.3444
Tests of S	model -> S	redu :	uctio Chi^	n (pi 2(3)	lease ensure mo) = 5.5999	dels are [0.1328]	nested fo	or test validi	ty)
S	-> S		Chi^	2(8) = 88.964	T0.0000	**		
5				-(0,	,	[010000]			
S	-> S	:	Chi^	2(5)) = 83.364	[0.0000]	**		

Figure 17: The most parsimonious model is that with 7 parameters

• The Model comparison table appears

Figure 18: The most parsimonious model is that with 7 parameters

21 May 2015

27 / 58

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

• The MS-DR model adjusts immediately to the new regime.

.

- The MS-DR model adjusts immediately to the new regime.
- The MS-AR model adjusts gradually to the new regime.

- E - N

- The MS-DR model adjusts immediately to the new regime.
- The MS-AR model adjusts gradually to the new regime.
- Adjustment is a function of the ρ and the number of significant lags.

The MS-AR model

$$y_t - \mu S(t) = \sum_{i=1}^{p} \rho_i (y_i - \mu(S_{t-i})) + \epsilon_t, \quad \epsilon_t \sim IIN(0, \sigma_t^2)$$
(7)

4 A N

- The MS-DR model adjusts immediately to the new regime.
- The MS-AR model adjusts gradually to the new regime.
- Adjustment is a function of the ρ and the number of significant lags.

The MS-AR model

$$y_t - \mu S(t) = \sum_{i=1}^{p} \rho_i (y_i - \mu(S_{t-i})) + \epsilon_t, \quad \epsilon_t \sim IIN(0, \sigma_t^2)$$
(7)

If the model contains exogenous variables, it is formulated as

The MS-AR model

$$y_t - \mu S(t) - x'_t \gamma = \sum_{i=1}^p \rho_i (y_i - \mu(S_{t-i}) - x'_t \gamma) + \epsilon_t, \quad \epsilon_t \sim IIN(0, \sigma_t^2)$$
(8)

.

• In an MS-DR model, the number of states S(t) and regimes, N, are the same.

э

< A

- ∃ ►

- In an MS-DR model, the number of states S(t) and regimes, N, are the same.
- In the MS-AR model that is not so: The Dimension of the state vector is S^{1+p} if estimation is to be performed with ML.

- In an MS-DR model, the number of states S(t) and regimes, N, are the same.
- In the MS-AR model that is not so: The Dimension of the state vector is S^{1+p} if estimation is to be performed with ML.
- As Doornik notes on page 24, the slows down MS-AR and renders it infeasible as S and p become large (e.g., where S = 3 and p = 12, N = more than 1 million) [1, 24].

The formulation of the MS -AR model with heteroscedasticity

 Assuming first order autoregression and only two regimes for pedagogical purposes, we obtain

The MS-AR(1) model with heteroscedasticity

$$y_t = \mu(0) + \rho(y_1) + \sigma(0)\epsilon_t$$
 (9)
 $y_t = \mu(1) + \rho(y_1) + \sigma(1)\epsilon_t$ (10)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

2 regimes and 4 states

The MS-AR model

St :	$= 0 S_{t-1}$	$= 0 N_t = 0$	(11)
\sim_l	$\mathbf{v} \mathbf{v}_{l-1}$	0.1.	()

$$S_t = 0 \ S_{t-1} = 1 \ N_t = 1$$
 (12)

$$S_t = 1 \ S_{t-1} = 0 \ N_t = 2$$
 (13)

$$S_t = 1 S_{t-1} = 1 N_t = 3$$
 (14)

• However, this constrains movement.

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

2 regimes and 4 states

The MS-AR model

$S_t = 0 \ S_{t-1} = 0 \ N_t = 0$	(11)
-----------------------------------	------

$$S_t = 0 \ S_{t-1} = 1 \ N_t = 1$$
 (12)

$$S_t = 1 S_{t-1} = 0 N_t = 2$$
 (13)

$$S_t = 1 S_{t-1} = 1 N_t = 3$$
 (14)

- However, this constrains movement.
- We can go from state 0 to state 0 or state 2 but not to the others.

configuring Hamilton's model

• Using OLDDLGDP from USmacro09_q.in7.

0	O O Model Settir	ngs – Regime Switching Models				
	Regime Switching Model					
	Model type	Markov-switching ARMA model				
	Number of regimes	2				
	AR order	4				
	MA order	0				
	Switching ARMA coefficients					
	Variance					
	Variance type	Fixed				
	+ Multifractal Volatility					
	Regime Switching variations					
	Initial transition probabilities	Uniform probabilities				
	Maximization method	Default (SQPF)				
	Automatically fix boundary probabilities					
	Preferred covariance estimator					
	Second derivatives	•				
	Outer-product of gradients	0				
	Use robust standard errors					
	Search for global maximum after initia	al estimation				
	No searching	•				
	Random starting values	0				
	Random probabilities only	0				
	Number of random search steps	20				
	Standard deviation for search	1				
	Maximum number of iterations	40				
		OK Cancel				

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

Hamilitonian output

• Hamilton's output.

```
(Switching(15) Modelling OldDLGNP100 by MS_ARMA(2, 4, 0)
             The dataset is: /Users/boby/Documents/data/0xMetrics2013/data/USmacro09_q.i
              The estimation sample is: 1951(4) - 1984(4)
                Coefficient
                              Std.Error t-value t-prob
AR-1
                  0.0623263
                                 0.1479
                                           0.421
                                                   0.674
AR-2
                                 0.1441
                                         -0.102
                                                  0.919
                 -0.0146590
AR-3
                  -0.202860
                                 0.1194 -1.70 0.092
AR-4
                 -0.162419
                                 0.1172 -1.39 0.168
                                 0.1015 11.5 0.000
Constant(0)
                   1.17225
Constant(1)
                  -0.260586
                                 0.2796
                                          -0.932
                                                  0.353
                Coefficient
                              Std.Error
siama
                  0.795379
                                0.07405
p_{010}
                                0.04413
                  0.894837
                  0.765925
                                 0.1073
p_{1|1}
loa-likelihood
                  -179,93277
no. of observations
                         129
                              no. of parameters
                                                           9
ATC
                   2,92919024
                              SC
                                                  3,12871204
mean(OldDLGNP100)
                       0.71974 se(0ldDLGNP100)
                                                      1.05886
Linearity LR-test (hi^{2}(3) = 3.0887 [0.3781])
                                                 approximate upperbound: [0.8727]
Transition probabilities p_{\{i|j\}} = P(\text{Regime i at } t+1 | \text{Regime } j \text{ at } t)
                            Regime 1,t
                Regime 0,t
Regime 0.t+1
                  0.89484
                                0.23407
Regime 1,t+1
                  0.10516
                                0.76593
```

21 May 2015 33 / 58

Hamilitonian Regime classification and test summary

Regime classification based on smoothed probabilities Regime 0 quarters avg.prob. 1952(4) - 1953(2)3 0.848 1954(3) - 1956(3)9 0.857 1958(2) - 1960(1)8 0.925 1961(1) - 1969(1)33 0.959 1971(1) - 1973(2) 10 0.937 1975(2) - 1979(1) 16 0.929 1980(4) - 1981(1)2 0.749 1983(1) - 1984(4)8 0.958 Total: 89 quarters (68.99%) with average duration of 11.12 quarters. Regime 1 auarters ava.prob. 1953(3) - 1954(2)4 0.920 0.846 1956(4) - 1958(1)6 3 1960(2) - 1960(4)0.830 7 1969(2) - 1970(4)0.806 7 1973(3) - 1975(1)0.873 1979(2) - 1980(3)6 0.735 7 1981(2) - 1982(4)0.927 Total: 40 quarters (31.01%) with average duration of 5.71 quarters. Descriptive statistics for scaled residuals: Normality test: $Chi^{2}(2) = 2.5440 [0.2803]$ ARCH 1-5 test: F(5,110) = 0.30175 [0.9109] Portmanteau(12): $Chi^2(12) = 13.438 [0.3380]$

Figure 21: Hamilton regime classification and test summary

21 May 2015 34 / 58

Graphing Hamilton's model

• Hamilton's predictions vs NBER recessions.

Figure 22: Hamilton's recession forecasts v. NBER recessions

• Types of estimation available: Maximum likelihood estimation includes nonlinear programming, EM estimation, BFGS.

Dynamic analysis of the response of the dependent variable over time to a unit impulse at time t

If we modeled the oldDLGNP100 as an MS-AR with 2 regimes and 2 autoregressive lags, we could also examine the impulse response function of the endogenous variable.

The formula for the Impulse response function

$$E(\hat{y}_{T+h}) = E(y_{t+h}|Y_T^{T-p}|X_{T+1}^{T+h}\xi_t,\theta;\epsilon_t,\epsilon_{t+1}\cdots\epsilon_{t-h})$$
(15)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

Then select the Dynamic Analysis box

• Then click on ok

0	00	Test Menu		
	Test Menu			
	Graphic Analysis			
	Recursive Graphics			
	Dynamic Analysis	\checkmark		
	Forecast			
	Regime Classification			
	Test			
	Test Summary			
	Exclusion Restrictions.	🗆		
	Linear Restrictions			
	General Restrictions			
	Store in Database			
	OK	Cancel		
CN		DLCND	CDT	THE

Figure 23: In the test menu select Dynamic analysis 💷 🔮

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

21 May 2015 38 / 58

0	0 0	Dynamic Analysis - Regime S	witching Models		
	Impulse response ana	livsis			
	Number of impulses:	.,	20		
	Type of impulse				
	Unit impulse		•		
	Standard error impu	ilse	0		
E	Options				
	Number of replications	to compute standard errors:	10000		
	Write results instead of	graphing			
Ξ	Graph options				
	Use error bars		0		
	Use error bands		0		
	Use error fans		•		
	No standard errors		0		
	Critical value to use for	r error bars:	1		
_					
	OK Cancel				

Figure 24: Select a unit impulse and 20 impulses and error fans

イロト イポト イヨト イヨ

The Plot of the Generalized IRF

for MS-AR models

Figure 25: The Impulse response function plot

21 May 2015 40 / 58

590

< 17 ▶

э.

• Static models with fixed regressors use one-step ahead forecasting.

The first forecast of a one-step ahead forecast is

$$\hat{y}_{t+1}|Yt^{1} = E[y_{T+1}|Y_{T}^{1}]
= \sum_{j=0}^{S-1} E[y_{T+1}]|S_{T+1}
= j, Y_{T}^{1}|P(S_{T+1} = j_{h}, Y_{T}^{1})
= x'_{t+h}\beta_{jh}$$
(16)

- Static models with fixed regressors use one-step ahead forecasting.
- Each regime is forecast separately. For the first step, we have

The first forecast of a one-step ahead forecast is

$$\hat{y}_{t+1}|Yt^{1} = E[y_{T+1}|Y_{T}^{1}] \\ = \sum_{j=0}^{S-1} E[y_{T+1}]|S_{T+1} \\ = j, Y_{T}^{1}|P(S_{T+1} = j_{h}, Y_{T}^{1}) \\ = x'_{t+h}\beta_{jh}$$
(16)

• The forecast is the weighted sum of each of the regimes.

- The forecast is the weighted sum of each of the regimes.
- The weights are the probabilities of being in that regime.

The second step of a one-step ahead forecast is

$$\hat{y}_{t+2}|T = \sum_{j=0}^{S-1} E[y_{T+2}]|S_{T+2} = k, Y_T^{-1}|P(S_{T+2} = k, Y_T^{-1})$$
(17)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

4 A N

nac

For h steps ahead

$$\hat{y}_{t+h}|T = \sum_{k=0}^{S-1} E[y_{T+h}]|S_{T+h} = k, Y_T^{-1}|P(S_{T+h} = k, Y_T^{-1})$$
(18)

and we can substitute the exogenous parameters so that

$$\hat{y}_{t+h}|T = \sum_{k=0}^{S-1} x_{T+h} \beta_k P(S_{T+h} = k, Y_T^{-1})$$
 (19)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM
• Static model with fixed regressors use one-step ahead forecasting.

590

< 17 ▶

- Static model with fixed regressors use one-step ahead forecasting.
- Each regime is forecast separately.

- Static model with fixed regressors use one-step ahead forecasting.
- Each regime is forecast separately.
- The forecast is the weighted sum of each of the regimes.

- Static model with fixed regressors use one-step ahead forecasting.
- Each regime is forecast separately.
- The forecast is the weighted sum of each of the regimes.
- The weights are the probabilities of being in that regime.

Consider the MS-AR Model

$$\hat{y}_t = \rho y_{t-1} + \mu(S_t) - \rho m u(S_{t-1}) + \epsilon_t \quad \epsilon_t \sim IIN(0, \sigma^2)$$
(20)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

21 May 2015 46 / 58

★ ∃ → ★ ∃

The first step of a one-step ahead forecast is

$$E(\hat{y}_{t+1}|S_{T+1} = j_1, ..., S_t = j_0 Y_t^{1}) = \rho y_t + \mu(j_1) - \rho \mu(j_0) \quad (21)$$

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

590

Image: A matrix

The second step of a one-step ahead forecast is

$$E(\hat{y}_{t+2}|S_{T+2} = j_2, ..., S_t = j_1 Y_t^1) = \rho^2 y_{t+1} + \mu(j_2) - \rho \mu(j_1)$$
(22)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

590

Image: A matrix

For h steps ahead the forecast can be formulated as

$$E(\hat{y}_{t+h}|S_{t+h} = j_h, ..., S_t = j_0, Y_1^{-1}) = \rho^h y_{t+h} + \mu(j_h) - \rho\mu(j_1)$$
(23)

But PcGive approximates the MS-AR by an MS-DR, for an AR(1) model [1, 48-52]

$$\hat{y} = \hat{\rho}(S_T) y_{t-1} + [1 - \hat{\rho}(S(t)]\hat{\mu}(S_t).$$
(24)

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

• Not only can the level shift be the criterion of regime change, the second moment can be the criterion as well.

- Not only can the level shift be the criterion of regime change, the second moment can be the criterion as well.
- This can be controlled by changing the variance type parameter in the model settings dialog box from fixed to that of

- Not only can the level shift be the criterion of regime change, the second moment can be the criterion as well.
- This can be controlled by changing the variance type parameter in the model settings dialog box from fixed to that of
 - switching variance

- Not only can the level shift be the criterion of regime change, the second moment can be the criterion as well.
- This can be controlled by changing the variance type parameter in the model settings dialog box from fixed to that of
 - switching variance
 - switching variance with shared GARCH

- Not only can the level shift be the criterion of regime change, the second moment can be the criterion as well.
- This can be controlled by changing the variance type parameter in the model settings dialog box from fixed to that of
 - switching variance
 - switching variance with shared GARCH
 - switching GARCH

Model settings menu

changing parameter from fixed to a form of variance

0.0	Model Settings	- Regime Switching Models		
Regime Switching Mod	el			
Model type		Markov-switching Dynamic Regression		
Number of regimes		2		
+ ARMA				
Variance				
Variance type		✓ Fixed	•	
+ Multifractal Volatility	_	Switching variance		
+ Regime Switching varia	ations	Switching GARCH		
		Mean-variance component		
		Multifractal volatility	_	
OK Cancel				
	Regime Switching Mod Model type Number of regimes	Model Settings Regime Switching Model Model type Number of regimes ARMA Variance Variance Variance type Multifractal Volatility Regime Switching variations	Model Settings - Regime Switching Models Regime Switching Model Model type Markov-switching Dynamic Regression Number of regimes 2 Image: ARMA Variance Variance type Fixed Switching variance Switching variance component Multifractal volatility Regime Switching variations Fixed Switching CARCH Switching CARCH Multifractal volatility Multifractal volatility 	

Figure 26: Variance type options in the model settings menu

Both MS-Volatility and MS-Multi-fractal Volatility models

MS-Volatility and MSFMV can be expressed as

$$\mathbf{y}_t = \sigma(\mathbf{S}_t) \epsilon_t \quad \epsilon_t \sim IIN(0, 1) \tag{25}$$

state dependent variance is dependent upon baseline value scaled by S volatility components

$$\sigma(S_t)^2 = \sigma_0^2 \Pi_{i=1}^S V_{it} \tag{26}$$

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

< A > < > > <

• Volatility components are considered to be positive: *V_i* > 0

590

< (□) < □ >

- Volatility components are considered to be positive: $V_i > 0$
- Volatility components are deemed to be independent at any point in time.

- E - N

- Volatility components are considered to be positive: $V_i > 0$
- Volatility components are deemed to be independent at any point in time.
- Volatlity components are assumed to have mean = 1 : $E(V_i) = 1$

nac

- Volatility components are considered to be positive: $V_i > 0$
- Volatility components are deemed to be independent at any point in time.
- Volatlity components are assumed to have mean = 1 : $E(V_i) = 1$
- Therefore, $E[\sigma^2(S_t)] = \sigma_0^2$

 This method of estimation incorporates stochastic volatility components of heterogeneous durations.

- This method of estimation incorporates stochastic volatility components of heterogeneous durations.
 - captures outliers

- This method of estimation incorporates stochastic volatility components of heterogeneous durations.
 - captures outliers
 - captures long-memory like volatility persistence

- This method of estimation incorporates stochastic volatility components of heterogeneous durations.
 - captures outliers
 - captures long-memory like volatility persistence
 - captures power variation

- This method of estimation incorporates stochastic volatility components of heterogeneous durations.
 - captures outliers
 - captures long-memory like volatility persistence
 - captures power variation
- It is applied to compute value at risk, price derivatives, and forecast volatility.

Frame of reference

• Let P_t = price of an asset.

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

э

< 17 ▶

- A 🖻 🕨

Frame of reference

- Let P_t = price of an asset.
- If r_t = return of the asset = $ln(P_t/P_{t-1})$ over two consecutive periods.

Given the volatility state, M_t , the next period multiplier, $V_{k,t+1}$, is sampled from a fixed distribution, V with probability γ_k , otherwise, it remains the same [2].

21 May 2015

55 / 58

Frame of reference

- Let P_t = price of an asset.
- If r_t = return of the asset = $ln(P_t/P_{t-1})$ over two consecutive periods.
 - According to MSMFV, the return $r_t = \mu + \bar{\sigma} (V_{1t}, V_{2t}, ..., V_{\bar{k}t})^{1/2} \epsilon_t$

Given the volatility state, M_t , the next period multiplier, $V_{k,t+1}$, is sampled from a fixed distribution, V with probability γ_k , otherwise, it remains the same [2].

Frame of reference

- Let P_t = price of an asset.
- If r_t = return of the asset = $ln(P_t/P_{t-1})$ over two consecutive periods.
 - According to MSMFV, the return $r_t = \mu + \bar{\sigma}(V_{1t}, V_{2t}, ..., V_{\bar{k}t})^{1/2} \epsilon_t$
 - where μ and σ are constants and ϵ_t are independent standard Gaussians innovations.

Given the volatility state, M_t , the next period multiplier, $V_{k,t+1}$, is sampled from a fixed distribution, V with probability γ_k , otherwise, it remains the same [2].

Frame of reference

- Let P_t = price of an asset.
- If r_t = return of the asset = $ln(P_t/P_{t-1})$ over two consecutive periods.
 - According to MSMFV, the return $r_t = \mu + \bar{\sigma} (V_{1t}, V_{2t}, ..., V_{\bar{k}t})^{1/2} \epsilon_t$
 - where μ and σ are constants and ϵ_t are independent standard Gaussians innovations.
 - In MSMFV, volatility is a function of $V_t = (V_{1t}, V_{2t}, ..., V_{\bar{k}t})$, which is a latent Markov state vector.

Given the volatility state, M_t , the next period multiplier, $V_{k,t+1}$, is sampled from a fixed distribution, V with probability γ_k , otherwise, it remains the same [2].

< 🗇 > < 🖻 > < 🖻

Table 1: Sampling rule: V_{it} is drawn from distribution f_{it}

Draw	Probability
$V_{k,t}$ drawn from distribution f_v	with probability γ_k
$V_{k,t} = V_{k,t-1}$	with probability $1 - \gamma_k$

Transition probability

The transition probability

$$\gamma_k = 1 - (1 - \gamma_1)^{b^{k-1}}$$
(27)

• At low frequency, the sequence is approximately geometric s. t., $\gamma_k \approx \gamma_1^{k-1}$

Transition probability

The transition probability

$$\gamma_k = 1 - (1 - \gamma_1)^{b^{k-1}}$$
 (27)

21 May 2015

57 / 58

- At low frequency, the sequence is approximately geometric s. t., $\gamma_k \approx \gamma_1^{k-1}$
- The Marginal distribution, M, has a mean=1 and positive support and is independent of k.

In continuous time Price can be expressed as a diffusion process $\frac{dP_t}{P_t} = \mu dt + \sigma(M_t) dW_t \qquad (28)$

Robert Alan Yaffee Silver School of Social W(An Introduction to New Developments in OxM

 Doornik, J. A. (2013) Econometric Analysis with Markov-Switching Models PcGive 14 London, UK: Timberlake Consulting, Ltd., 1-86.

イロト イ団ト イヨト イヨト