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Outline |

@ Markov-Switching Mean Models

@ Markov-Switching mean models: Dynamic Regression models

@ Markov-Switching: AR models
@ Caveats of MS-AR Models

@ Markov-Switching models with heteroscedasticity
@ Markov-Switching models with component structure
@ variance type: mean-variance component
9 Estimation of Markov-Switching Models
@ nonlinear programming
@ Maximum likelihood

e Generalized Impulse Response Analysis

e Forecasting
@ from static models
@ from MS-AR models

© Markov-Switching Volatility Models
@ Markov-Switching GARCH
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Outline Il

@ Markov-Switching Multi-Fractal Volatility
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How do Regime Switching mean models differ from

conventional Dynamic Regressions?

The Constant becomes a random variable

Vi=v+ BVt + X +et, e~ 1IN, 0?) (1)
Ve =S(t) + B1yi_1 + X + e, et ~ N(O,0?) (2)
s.t.

S(t) = ¢ if regime == 0,
S(t) = ¢ if regime ==
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How do Markov Regime Switching models differ from

conventional Dynamic Regressions?

@ The probability of being in a state follows a (Markov) process,
depending only on the previous state.
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How do Markov Regime Switching models differ from

conventional Dynamic Regressions?

@ The probability of being in a state follows a (Markov) process,
depending only on the previous state.
@ It does not depend on the history of previous states.

S(t) can be interpreted as an unobserved state or regime

p(ilj) = Str1 = i|St=jfori,j=0, ..., St (3)
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Open dialog Box

@ Select Category: models for time series data for now

PcGive - Models for time-series data

All Modules G@RCH STAMP X12Arima

Module PcGive
Category Models for time-series data ﬂ
Model class | Regime Switching Models using PcGive ﬂ
( Formulate... )  --> ( Estimate... ) --> ( Test.. )
<— € Progress... Y <—
( Options... ) ( Close )
\Pons..- J 93¢ J

Figure 1: Select Model class: Regime switching models
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Open dialog Box

@ Select Category: models for time series data for now
@ We will iterate through estimate, test, and progress later

(&)

PcGive - Models for time-series data

HN=g=

All Modules G@RCH STAMP X12Arima

Module PcGive

Category Models for time-series data

2 (&

Model class | Regime Switching Models using PcGive

( Formulate... )  --> ( Estimate... ) --> ( Test.. )
<— € Progress... Y <—
( Options... ) ( Close )
\(_Dptions... ) \_lose )

Figure 1: Select Model class: Regime switching models
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Open dialog Box

@ Select Category: models for time series data

Figure 2: Select Model class: Regime switching models

PcGive - Models for time-series data

All Modules G@RCH [ZZ8ITJ STAMP X12Arima

P

Module PcGive

Category Models for time-series data
B

Regime Switching Models using PcGive

Model class

( Formulate... )  --> ( Estimate.. ) -->

£ Do )\
<-- Progress...

’Op(ions.“ ) (" Close )
S~— S~———
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Open dialog Box

@ Select Category: models for time series data
@ Double click on formulate

Figure 2: Select Model class: Regime switching models

PcGive - Models for time-series data

All Modules G@RCH [ZZ8ITJ STAMP X12Arima

P YeYe

Module PcGive

Category Models for time-series data
B

Regime Switching Models using PcGive

Model class

( Formulate... ) --> (Estimate... ) --> ( Test.. )

£ Do )\
<-- Progress... <--

’Op(ions.“ ) (" Close )
S~— S~———
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Designating the series and the basis of the regime

@ Select Category: models for time series data

\\\\\

Figure 3: formulation selection of Nile and constant, and then OK
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Designating the series and the basis of the regime

@ Select Category: models for time series data

T Y TATRY I
FAY
VLN

Figure 4: formulation selection of Nile and constant, and then OK
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Designating the series and the basis of the regime

@ Select Category: models for time series data

@ Select the Nile time series along with the restricted constant and
click on OK

Figure 4: formulation selection of Nile and constant, and then OK
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Type and Number of regimes

@ We use the type: Markov-Swiching Dynamic Regression

e Model Settings — Regime Switching Models

Regime Switching Model
Model type Markov-switching Dynamic Regression |
Number of regimes 2 |
[¥] ARMA

Variance
Fixed s

Variance type
[#) Multifractal Volatility

[+] Regime Switching variations

P~

oK ( Cancel )
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Type and Number of regimes

@ We use the type: Markov-Swiching Dynamic Regression
@ We leave the number of regimes at 2

e Model Settings — Regime Switching Models

Regime Switching Model

Model type Markov-switching Dynamic Regression |
Number of regimes 2 |
5 ARMA |
Variance

Variance type Fixed O]

[# Multifractal Volatility

[+] Regime Switching variations

(oK ) ( Cancel )

21 May 2015 10/58
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Type and Number of regimes

@ We use the type: Markov-Swiching Dynamic Regression
@ We leave the number of regimes at 2
@ We allow the variance of the regimes at fixed and click OK

e Model Settings — Regime Switching Models

Regime Switching Model

Model type Markov-switching Dynamic Regression |
Number of regimes 2 |
5 ARMA |
Variance

Variance type Fixed O]

[# Multifractal Volatility

[+] Regime Switching variations

(oK ) ( Cancel )

21 May 2015
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Sample selection

@ We use the defaults here and click OK

(&) Estimate - Regime Switching Models

Choose the estimation sample:
Selection sample 1871 - 1970
Estimation starts at 1871
Estimation ends at 1970

Less forecasts 0
Choose the estimation method:

Estimation method:  Maximum Likelihood

Recursive estimation [

—— | p—
OK Cancel

Figure 6: Using the defaults, and then click OK
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Model selection

@ Selecting model in the upper left graphics options yields colored
representation different smoothed means.

1880

1880 1900 1920 1940 1960
_ P[Regime thed

|
1900 1920 1940
0] smoothed _ P[Regime 1] smoo
N 100, T
o7sf | 075t ‘

050 | 050" |

02sf | o02sf

o | . | L L
aaaaa 1880 1900 1920 1940 1960 1880 1900 1920 1940 1960

Figure 7: Graphics model selection reveals building of Aswan Dam in
1899 as change point of regime
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Model selection

@ Selecting model in the upper left graphics options yields colored
representation different smoothed means.
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Figure 8: Graphics model selection reveals building of Aswan Dam in
1899 as change point of regime
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After the level shifting constant, you obtain the

transition probability matrix

Effects originate at the top of the matrix and then proceed downward and to the left:

H
S5i=0 S=1
_[si=0 P00 5O
P—(st+1=1 p(110) p(ﬂ)) ©
> 1 1
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Output from Model selection

reveals the decline in average flow volume from 1097 to 846 m®/sec.

@ If we go to the output section in the navigation window on the left and select Results, we
obtain
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reveals the decline in average flow volume from 1097 to 846 m®/sec.

@ If we go to the output section in the navigation window on the left and select Results, we
obtain

@ the displayed output with the
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Output from Model selection

reveals the decline in average flow volume from 1097 to 846 m®/sec.

@ If we go to the output section in the navigation window on the left and select Results, we
obtain

@ the displayed output with the

@ The level shifts of the constant, their parameter estimates, and the transition probability
matrices and settings.
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Regime classification selection

Accessing the test menu, we select the regime classification option and click OK

.00, Test Menu

Test Menu

Graphic Analysis...

Dynamic Analysis ...
Forecast...

Regime Classification ™
Test...

Test Summary
Exclusion Restrictions...
Linear Restrictions...
General Restrictions...

Store in Database...

- 0K ) ( Cancel )
P —— P —
Robert Alan Yaffee Silver School of Social WAn Introduction to New Developments in OxM: 21 May 2015 16/58



Regime classification selection output

Requesting the regime classification shows the change point of 1899 representing the
completion of the Aswan dam.

Regime classification based on smoothed probabilities

Regime @ years avg.prob.
1871 - 1898 28 0.993
Total: 28 years (31.11%) with average duration of 28.00 years.
Regime 1 years avg.prob.
1899 - 1960 62 0.999

Total: 62 years (68.89%) with average duration of 62.00 years.
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Modeling with regime switching models

@ We can use a Likelihood ratio test to compare different models
with the df=difference in the number of parameters.
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Figure 9: Bai Perron data on ex post real .interest rates
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Modeling with regime switching models

@ We can use a Likelihood ratio test to compare different models
with the df=difference in the number of parameters.
@ We use the ex post real interest rates, USIR.in7, file.
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Modeling with regime switching models

@ We can use a Likelihood ratio test to compare different models
with the df=difference in the number of parameters.

@ We use the ex post real interest rates, USIR.in7, file.

@ We load and graph it.
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Figure 9: Bai Perron data on ex post real .interest rates
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Bai Perron dialog box settings

@ We select the BPir variable

7.5F
5.0
2.5

0.0

-2.51

-5.0

L L L L L L L L L L L L \
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 10: Bai Perron data on ex post real interest rates
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Bai Perron dialog box settings

@ We select the BPir variable
@ We use the ex post real interest rates, USIR.in7, file.
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Bai Perron dialog box settings

@ We select the BPir variable
@ We use the ex post real interest rates, USIR.in7, file.
@ We load and graph it.
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Figure 10: Bai Perron data on ex post real interest rates
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BP graphical output
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Figure 11: BP graph output
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Comparing regime switching models

@ Select the model dialog box and click on formulate, click OK.

Model Settings — Regime Switching Models

Regime Switching Model
Model type Markov-switching Dynamic Regression
Number of regimes 3

[*] ARMA
Variance

Variance type Fixed
[# Multifractal Volatility

[+] Regime Switching variations

ok ) ( Cancel )

Figure 12: Select 3 regimes and leave variance type fixed
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Comparing regime switching models

@ Select the model dialog box and click on formulate, click OK.
@ Enter 3 regimes and allow the variance type to remain fixed, and

click OK.

Model Settings — Regime Switching Models

Regime Switching Model
Model type Markov-switching Dynamic Regression
Number of regimes 3

[*] ARMA
Variance

Variance type Fixed
[# Multifractal Volatility

[+] Regime Switching variations

ok ) ( Cancel )

Figure 12: Select 3 regimes and leave variance type fixed
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Comparing regime switching models

@ Select the model dialog box and click on formulate, click OK.

@ Enter 3 regimes and allow the variance type to remain fixed, and
click OK.

°

Model Settings — Regime Switching Models

Regime Switching Model
Model type Markov-switching Dynamic Regression
Number of regimes 3

[*] ARMA
Variance

Variance type Fixed
[# Multifractal Volatility

[+] Regime Switching variations

ok ) ( Cancel )

Figure 12: Select 3 regimes and leave variance type fixed
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Formulate the model with three regimes

@ Select the model dialog box

1SwitchingC 5> Modelling BPr by MS(3)
The dataset is: /Users/boby/Documents/presentations/OxMetrics2014May16/data/USRIR.in7
The estimation sample is: 1961(1> - 1986(3>

Coefficient Std.Error t-value +t-prob

Constant(®> 1.41024 ©.2904 4.89  ©0.000

Constant(1> -2.08089 0. 4161 -5.00 ©0.000

Constant(2> 5.87400 ©.4504 12.8  o.
Coefficient  Std.Error

sigma .03 ©.1470

p_{o10} ©.959305 0.02831

p_{110} 0.0218147 °.02173

p_{011} ©.0413714 ©.04188

log-likelihood [231.5556%6

no. of observations no. of parameters 7

AIC 4.63214543 5S¢ 4.81120868

meanC8Prd 1.37514 se(8Pr> 3.45123

Linearity LR-test ChiA2(5> = 83.364 [0.0000]** approximate upperbound: [©.0000]%*

Transition probabilities p_{ilj} = P(Regime i at t+1 | Regime j at £
Regime @,t Regime 1,t Regime 2,t

Regime ©,t+1 0.95930 ©.041371 0000

Regime 1,t+1 ©.021815 ©.95863 ©.0000

Regime 2,t+1 ©.018881 ©.0000 1.0000

Transition probability settings (-1: free parameter, -2: 1-sum(p_{il.}>

i Re: 1,4t gime 2,+

Regime ©,t+1 -1.0000 -1.0000 -2.

Regime 1,t+1 1.0000 20000 ©.0000

Regime 2,t+1 -2.0000 ©.0000 1.0000

Used uniform probabilities to start recursion
Std.Error based on numerical Hasslur\ matr
SQPF using analytical derivatives Ce
Strong converge:
Used starting Colues:
~2.0361 5.8576 2.0408 ©.95%07 ©.020956 °.036736 ©.94363
o.0i5608 ©.96078

Figure 13: Output of three regime interest rates

o

eps2=1e-07>:
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Formulate the model with three regimes

@ Select the model dialog box
@ Double click the progress option

1SwitchingC 5> Modelling BPr by MS(3)
The dataset is: /Users/boby/Documents/presentations/OxMetrics2014May16/data/USRIR.in7
The estimation sample is: 1961(1> - 1986(3>

Cosfficient sStd.Error t-valus t-prob
©.2904 3-89 o.000

Constant(®> 41924
Constant(1> 3los080 0. 4161 -s. ©.000
Constant(2> 5.87400 ©.4504 2% 0000
Coefficient  Std.Error
sigma 2.03004 ©.1470
p_{o10} ©.959305 0.02831
p_{110} 0.0218147 °.02173
p_{011} ©.0413714 ©.04188
log-likelihood [231.5556%6
no. of observations no. of parameters 7
AIC 4.63214543 5S¢ 4.81120868
meanC8Prd 1.37514 se(8Pr> 3.45123
Linearity LR-test ChiA2(5> = 83.364 [0.0000]** approximate upperbound: [©.0000]%*
Transition probabilities p_{ilj} = P(Regime i at t+1 | Regime j at £
Regime @,t Regime 1,t Regime 2,t
Regime ©,t+1 0.95930 ©.041371 0000
Regime 1,t+1 ©.021815 ©.95863 ©.0000
Regime 2,t+1 ©.018881 ©.0000 1.0000

Transition probability settings (-1: free parameter, -2: l-sumCp_{il.}>
Regime 1,t Regime 2,t

Regime ©,t+1 -1.0000 -1.0000 -2.0000
Regime 1,t+1 1.0000 20000 ©.0000
Regime 2,t+1 -2.0000 ©.0000 1.0000

Used uniform probabilities to start recursion
Std.Error based on numerical Hessian matri:
SQPF Lising analytical derivatives Copeloie.@5; epsz-le-07>:
Strong convergence
Used starting values:
~2.0361 5.8576 2.0408 ©.95%07 ©.020956 °.036736 ©.94363
o.0i5608 ©.96078

Figure 13: Output of three regime interest rates
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Invoking the Test summary

@ The test summary has to be invoked.

S.N.C Test Menu

Test Menu

Graphic Analysis...

Dynamic Analysis ...

Forecast...
Regime Classification
Test...

Test Summary

O®m0OOI

Exclusion Restrictions...
Linear Restrictions...

Ceneral Restrictions...

(NN

Store in Database...
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Invoking the Test summary

@ The test summary has to be invoked.
@ It reveals the extent to which the model is properly specified.

S.N.C Test Menu

Test Menu

Graphic Analysis...

Dynamic Analysis ...

Forecast...
Regime Classification
Test...

Test Summary

O®m0OOI

Exclusion Restrictions...
Linear Restrictions...

Ceneral Restrictions...

(NN

Store in Database...
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Reviewing the diagnostic tests

@ The test summary has to be invoked.

Descriptive statistics for scaled residuals:

Normality test: ChiA2(2) 2.3007 [0.3165]
ARCH 1-1 test: F(1,94) 1.5096 [0.2223]
Portmanteau(12): ChiA2(12) = 12.777 [0.3854]

Figure 15: Test summary evaluates model specification
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Comparison among nested models

@ Select the model dialog box

8.0.0 Progress - Regime Switching Models

o  Switching( 4) 2 x 103 -273.238 ML

@™ Switching( 3) 7 x 103 -231.556 ML :
™  Switching( 2) 10 x 103 -228.756 ML |

[ Switching( 1) 7 x 103 -231.556 ML

Figure 16: Selecting the nested models to compare
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Comparison among nested models

@ Select the model dialog box
@ Double click the progress option

8.0.0 Progress - Regime Switching Models

T  Switching( 4) 2 x 103 -273.238 ML

™ Switching( 3) 7 x 103 -231.556 ML :
™  Switching( 2) 10 x 103 -228.756 ML !
d Switching( 1) 7 x 103 -231.556 ML :

Figure 16: Selecting the nested models to compare

Robert Alan Yaffee Silver School of Social WAn Introduction to New Developments in OxM: 21 May 2015 25/58



Comparison among nested models

@ The Model comparison table appears

Progress to date

Model T »p log-1ikelihood ¢ H AIC
§ 103 10 M -28.75575  4.8918  4.73%  4.6360
§ 0 7 M 3155570 48112« 47047« 4.6320<
§ 03 2 M -B3.23753 5396 53651 5.3444

Tests of model reduction (please ensure models are nested for test validity)
S-S5 (hir(3)= 5.5999 [0.1328]
S-S5 :(hir(8) = 88.964 [0.0000] **

S->§ i (hir(5)=  83.364 [0.0000] **

Figure 17: The most parsimonious model is that with 7 parameters
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Optimal model

@ The Model comparison table appears

Figure 18: The most parsimonious model is that with 7 parameters

Robert Alan Yaffee Silver School of Social WAn Introduction to New Developments in OxM: 21 May 2015 27 /58



The formulation of the MS -AR model

@ The MS-DR model adjusts immediately to the new regime.
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The formulation of the MS -AR model

@ The MS-DR model adjusts immediately to the new regime.
@ The MS-AR model adjusts gradually to the new regime.
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The formulation of the MS -AR model

@ The MS-DR model adjusts immediately to the new regime.
@ The MS-AR model adjusts gradually to the new regime.
@ Adjustment is a function of the p and the number of significant lags.

The MS-AR model

P
Ye—uS(t) = pi(yi — m(St—i)) + et et ~ IIN(O, 07) (7)
i=1
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The formulation of the MS -AR model

@ The MS-DR model adjusts immediately to the new regime.
@ The MS-AR model adjusts gradually to the new regime.
@ Adjustment is a function of the p and the number of significant lags.

The MS-AR model

P
Ye—uS(t) = pi(yi — m(St—i)) + et et ~ IIN(O, 07) (7)

i=1

@ If the model contains exogenous variables, it is formulated as

The MS-AR model

p
Ve —nS(t) = xiv =D pilyi — i(St—i) — X{7) + €1, et ~ IN(0, 0%) (®)
i=1
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Caveats for MS-AR models

@ In an MS-DR model, the number of states S(t) and regimes, N, are the same.
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Caveats for MS-AR models

@ In an MS-DR model, the number of states S(t) and regimes, N, are the same.

@ In the MS-AR model that is not so: The Dimension of the state vector is S'*7 if estimation
is to be performed with ML.
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Caveats for MS-AR models

@ In an MS-DR model, the number of states S(t) and regimes, N, are the same.

@ In the MS-AR model that is not so: The Dimension of the state vector is S'*7 if estimation
is to be performed with ML.

@ As Doornik notes on page 24, the slows down MS-AR and renders it infeasible as S and p
become large (e.g., where S = 3 and p = 12, N = more than 1 million) [1, 24].
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The formulation of the MS -AR model with

heteroscedasticity

@ Assuming first order autoregression and only two regimes for
pedagogical purposes, we obtain

The MS-AR(1) model with heteroscedasticity

¥t = p(0) + p(y1) + o (0)er (9)
yr=p(1)+p(y1) +o(1)er (10)
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Hamilton’s MS-AR model

2 regimes and 4 states

The MS-AR model

Si=0S.1=0N;=0 (11)
Si=0S 1=1N;=1 (12)
Si=1S_1=0N;=2 (13)
Si=1S.1=1N;=3 (14)

@ However, this constrains movement.
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Hamilton’s MS-AR model

2 regimes and 4 states

The MS-AR model

Si=0S.1=0N;=0 (11)
Si=0S 1=1N;=1 (12)
Si=1S_1=0N;=2 (13)
Si=1S.1=1N;=3 (14)

@ However, this constrains movement.
@ We can go from state 0 to state 0 or state 2 but not to the others.
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configuring Hamilton’s model

@ Using OLDDLGDP from USmacro09_g.in7.

[ Model Settings — Regime Switching Models

Regime Switching Model

Model type Markov-switching ARMA model
Number of regimes 2
= ARMA

AR order a
MA order )
Switching ARMA coefficients =
Variance
Variance type Fixed
[ Multifractal Volatility
= vai
Initial transition probabilities Uniform probabilities
Maximization method Default (SQPF)

Automatically fix boundary probabilities &
(=] Preferred covariance estimator

Second derivatives

Outer—product of gradients
Use robust standard errors. =
(=) Search for global maximum after initial estimation
No searching
Random starting values
Random probabilities only

Number of random search steps

Standard deviation for search 1

Maximum number of iterations 40

Cancel )
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Hamilitonian output

@ Hamilton’s output.

ISwitching(15) Modelling OLADLGNP1O® by MS_ARMA(Z, 4, ©)
The dataset is: /Users/boby/Documents/data/OxMetrics2013/data/USmacro@9_q.1i
The estimation sample is: 1951(4) - 1984(4)

Coefficient Std.Error t-value t-prob

AR-1 0.0623263 0.1479 0.421 0.674
AR-2 -0.0146590 0.1441 -0.102 0.919
AR-3 -0.202860 0.1194 -1.70  0.092 |
AR-4 -0.162419 0.1172 -1.39 0.168
Constant(@) 1.17225 0.1015 11.5 0.000
Constant(1) -0.260586 0.2796 -0.932 0.353
Coefficient  Std.Error
sigma 0.795379 0.07405
p_{010} 0.894837 0.04413
p_{111} 0.765925 0.1073
log-likelihood -179.93277
no. of observations 129 no. of parameters 9
AIC 2.92919024 SC 3.12871204
mean(01dDLGNP10@) 0.71974 se(01dDLGNP10@) 1.05886
Linearity LR-test ChiA2(3) = 3.0887 [0.3781] approximate upperbound: [0.8727]

Transition probabilities p_{ilj} = P(Regime i at t+1 | Regime j at t)
Regime @,t Regime 1,t

Regime 0,t+1 0.89484 0.23407

Regime 1,t+1 0.10516 0.76593
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Hamilitonian Regime classification and test summary

Regime classification based on smoothed probabilities

Regime @ quarters avg.prob.
1952(4) - 1953(2) 3 0.848
1954(3) - 1956(3) 9 0.857
1958(2) - 1960(1) 8 0.925
1961(C1) - 1969(1) 33 ©.959
1971(C1) - 1973(2) 10 0.937
1975(C2) - 1979(1) 16 0.929
1980(4) - 1981(1) 2 0.749
1983(1) - 1984(4) 8 0.958

Total: 89 quarters (68.99%) with average duration of 11.12 quarters.

Regime 1 quarters avg.prob.
1953(3) - 1954(2) 4 0.920
1956(4) - 1958(1) 6 0.846
1960(2) - 1960(4) 3 0.830
1969(2) - 1970(4) 7 0.806
1973(3) - 1975(1) 7 0.873
1979(2) - 1980(3D 6 0.735
1981(2) - 1982(4) 7 0.927

Total: 4@ quarters (31.01%) with average duration of 5.71 quarters.

Descriptive statistics for scaled residuals:

Normality test: ChiA2(2) = 2.5440 [0.2803]
ARCH 1-5 test: F(5,110) = ©0.30175 [0.9109]
Portmanteau(12): ChiA2(12) = 13.438 [0.3380]

Figure 21: Hamilton regime classification and test summary
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Graphing Hamilton’s model

@ Hamilton’s predictions vs NBER recessions

Hamiton' s Regime Switching Model

to Predict Recessions

- QIdDLGNP100 “— Fitied
ptsd\cnon NBER

. . |
1960 1970 1980
_ P[Regime 1] smoothed
| ﬂ q
L [l ‘
‘ |
|
L / |
| | L
\‘ | ‘ ‘ ‘ | | ‘
/ |
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Figure 22: Hamilton’s recession forecasts v. NBER recessions
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@ Types of estimation available: Maximum likelihood estimation
includes nonlinear programming, EM estimation, BFGS.
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Dynamic analysis of the response of the dependent

variable over time to a unit impulse at time t

If we modeled the oldDLGNP100 as an MS-AR with 2 regimes and 2
autoregressive lags, we could also examine the impulse response

function of the endogenous variable.

The formula for the Impulse response function

E(.;/T-‘rh) = E(yf-‘rh’ Y'[T'-ip’X'[Ti_‘]hgt) 91 €ty €t+1 " " ff—h) (1 5)
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Select the test menu

Then select the Dynamic Analysis box

@ Then click on ok

(&) Test Menu

Test Menu

Graphic Analysis...

&

Dynamic Analysis ...

Forecast...

Regime Classification
Test...

Test Summary
Exclusion Restrictions...
Linear Restrictions...

General Restrictions...

O0000QOI

Store in Database...

Figqure 23: In the test menu select Dynamic analysis

Robert Alan Yaffee Silver School of Social WAn Introduction to New Developments in OxM: 21 May 2015 38/58



Configuring the GIRF

for MS-AR models

8.0.0 Dynamic Analysis - Regime Switching Models

Impulse response analysis
Number of impulses: 20
Type of impulse

Unit impulse ®
Standard error impulse

(=) Options
Number of replications to compute standard errors: 10000
Write results instead of graphing

(=] Graph options

Use error bars

Use error bands

Use error fans ®
No standard errors

Critical value to use for error bars 1

——
OK Cancel

Figure 24: Select a unit impulse and 20 impulses and error fans
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The Plot of the Generalized IRF

for MS-AR models

unit shock

|

0.8F
0.6F
04k

0.2

0.0
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Figure 25: The Impulse response function plot
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Forecasting
for static models

@ Static models with fixed regressors use one-step ahead
forecasting.

The first forecast of a one-step ahead forecast is

Jeet| Yt = Elyra|Yr']

= 70 ElyrallSres o)
=, Y7 |P(St1 = jn, Y7')
= Xt.nBjn
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Forecasting
for static models

@ Static models with fixed regressors use one-step ahead
forecasting.

@ Each regime is forecast separately. For the first step, we have

The first forecast of a one-step ahead forecast is

Jeet| Yt = Elyra|Yr']

= 70 ElyrallSres o)
=, Y7 |P(St1 = jn, Y7')
= Xt.nBjn
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@ The forecast is the weighted sum of each of the regimes.
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@ The forecast is the weighted sum of each of the regimes.
@ The weights are the probabilities of being in that regime.
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Forecasting

for static models

The second step of a one-step ahead forecast is

Vol T = 2}9:31 Elyri2]|St42 (17)
=k, Y7'|P(Sti2 =k, Y1)
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Forecasting

for static models

For h steps ahead

PernlT =828 EVrpllSren (18)
=k, Y7 |P(Stih =k, Y1)

and we can substitute the exogenous parameters so that

VeanlT =00 XrenBkP(Stin =k, Y1) (19)
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Forecasting

for MS-AR models

@ Static model with fixed regressors use one-step ahead forecasting.
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@ Each regime is forecast separately.
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Forecasting

for MS-AR models

@ Static model with fixed regressors use one-step ahead forecasting.
@ Each regime is forecast separately.
@ The forecast is the weighted sum of each of the regimes.
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Forecasting
for MS-AR models

@ Static model with fixed regressors use one-step ahead forecasting.
@ Each regime is forecast separately.

@ The forecast is the weighted sum of each of the regimes.

@ The weights are the probabilities of being in that regime.
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Forecasting

for MS-AR models with a regime switching mean

Consider the MS-AR Model

Ve = pYi—1 + 1(St) — pmu(Si_1) + et et ~ lIN(0,02) (20
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Forecasting
for MS-AR models

The first step of a one-step ahead forecast is

E(J1+1|S141 = j1.- St = o Yi') = pye + u(ir) — puo) (21)
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Forecasting
for MS-AR models

The second step of a one-step ahead forecast is

E(D142/ST12 = Jor s St =t Vi) = pPYis1 + ulix) — pu(is) (22)
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Forecasting

for MS-AR models

For h steps ahead the forecast can be formulated as

E(JtnlStcn = jnr -y St =Jo, Y11) = pyern + 1(jn) — pulji) (23)
But PcGive approximates the MS-AR by an MS-DR, for an AR(1) model [1, 48-52]

¥ =p(Sr)ye—1 + [1 = A(S(OIA(S)- (24)
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MS-Volatility Models

@ Not only can the level shift be the criterion of regime change, the
second moment can be the criterion as well.
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MS-Volatility Models

@ Not only can the level shift be the criterion of regime change, the
second moment can be the criterion as well.

@ This can be controlled by changing the variance type
parameter in the model settings dialog box from fixed to that of
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MS-Volatility Models

@ Not only can the level shift be the criterion of regime change, the
second moment can be the criterion as well.

@ This can be controlled by changing the variance type
parameter in the model settings dialog box from fixed to that of

e switching variance
e switching variance with shared GARCH
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MS-Volatility Models

@ Not only can the level shift be the criterion of regime change, the
second moment can be the criterion as well.

@ This can be controlled by changing the variance type
parameter in the model settings dialog box from fixed to that of

e switching variance
e switching variance with shared GARCH
e switching GARCH
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Model settings menu

changing parameter from fixed to a form of variance

L) : Model Settings - Regime Switching Models

Regime Switching Model

Model type Markov-switching Dynamic Regression

Number of regimes 2

[/ ARMA

Variance

Variance type v Fixed E}

Switching variance

Switching variance with shared GARCH
[+] Regime Switching variations RCH

Mean-variance component
Multifractal volatility

[+) Multifractal Volatility

ok ) ( cancel )

Figure 26: Variance type options in the model settings menu
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Both MS-Volatility and MS-Multi-fractal Volatility
models

MS-Volatility and MSFMV can be expressed as

Vi = O'(St)ét €t ~ //N(O, 1) (25)

state dependent variance is dependent upon baseline value

scaled by S volatility components

o(Si)? = ofNZ,V, (26)
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Volatility components

@ Volatility components are considered to be positive: V; > 0
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Volatility components

@ Volatility components are considered to be positive: V; > 0

@ Volatility components are deemed to be independent at any point
in time.
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Volatility components

@ Volatility components are considered to be positive: V; > 0

@ Volatility components are deemed to be independent at any point
in time.

@ Volatlity components are assumed to have mean=1: E(V;) =1
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Volatility components

@ Volatility components are considered to be positive: V; > 0

@ Volatility components are deemed to be independent at any point
in time.

@ Volatlity components are assumed to have mean=1: E(V;) =1

@ Therefore, E[0?(S;)] = o3
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Markov-Switching Multi-Fractal Volatility (MSMFV)

@ This method of estimation incorporates stochastic volatility
components of heterogeneous durations.
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@ This method of estimation incorporates stochastic volatility
components of heterogeneous durations.

e captures outliers
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@ This method of estimation incorporates stochastic volatility
components of heterogeneous durations.

e captures outliers
e captures long-memory like volatility persistence
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Markov-Switching Multi-Fractal Volatility (MSMFV)

@ This method of estimation incorporates stochastic volatility
components of heterogeneous durations.
e captures outliers
e captures long-memory like volatility persistence
e captures power variation
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Markov-Switching Multi-Fractal Volatility (MSMFV)

@ This method of estimation incorporates stochastic volatility
components of heterogeneous durations.

e captures outliers
e captures long-memory like volatility persistence
e captures power variation

@ It is applied to compute value at risk, price derivatives, and
forecast volatility.
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Markov-Switching Multi-Fractal Volatility

Frame of reference

@ Let P; = price of an asset.
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Markov-Switching Multi-Fractal Volatility

Frame of reference

@ Let P; = price of an asset.

@ If r; = return of the asset = In(P;/P;_1) over two consecutive
periods.

Given the volatility state, M;, the next period multiplier, Vi 11, is
sampled from a fixed distribution, V with probability 4, otherwise,
it remains the same [2].
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e where i, and o are constants and ¢; are independent standard
Gaussians innovations.
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Markov-Switching Multi-Fractal Volatility

Frame of reference

@ Let P; = price of an asset.
@ If r; = return of the asset = In(P;/P;_1) over two consecutive
periods.
e According to MSMFV, the return r; = pu + &(Viy, Var, ..., Viy)/?e
e where i, and o are constants and ¢; are independent standard
Gaussians innovations.
e In MSMFV, volatility is a function of V; = (Vi;, Ve, ..., Vi;), which is
a latent Markov state vector.
Given the volatility state, M;, the next period multiplier, Vi 11, is
sampled from a fixed distribution, V with probability 4, otherwise,
it remains the same [2].
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Sampling rule

permits estimation by simulated methods of moments

Table 1: Sampling rule: Vi is drawn from distribution f;

Draw Probability
Vi.+ drawn from distribution £, | with probability ~x
Vit = Vi t—1 with probability 1 — ~
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Transition probability

The transition probability

ye=1—(1—y)"" (27)

@ At low frequency, the sequence is approximately geometric s. t.,
k—1
Tk = V1

Robert Alan Yaffee Silver School of Social WAn Introduction to New Developments in OxM: 21 May 2015 57 /58



Transition probability

The transition probability

ye=1—(1—y)"" (27)

@ At low frequency, the sequence is approximately geometric s. t.,
Tk = 74(_1

@ The Marginal distribution, M, has a mean=1 and positive support
and is independent of k.

In continuous time Price can be expressed as a diffusion

process

=L jdt+ o(My)dW, (28)
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