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DisclaimerDisclaimer
• It is not the policy of the CDC to promote any p y p y

particular commercial software.  However, we 
did use STAMP (Structural Time series 
Analyzer Modeler and Predictor ) version 7 0Analyzer, Modeler, and Predictor ) version 7.0 
by Siem Jan Koopman, Andrew Harvey, Jürgen 
Doornik and Neil Shephard because it models p
and forecasts nonstationary series with state 
space models and an earlier version had been 
used for modeling and hypothesis testingused for modeling and hypothesis testing.  

• The conclusions and implications are the 
positions of the authors themselves.
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• Introduction/Background
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– The morbidity and mortalityThe morbidity and mortality
– The need to forecast

• Research Questions
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• Results
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The OutbreakThe Outbreak
• In 1993 in the Four Corners region of theIn 1993 in the Four Corners region of the 

Southwestern United States, there was an
outbreak of a frequently fatal respiratory q y p y
disease. 

• The United States Centers for Disease 
Control and Prevention (Special Pathogens ( p g
Branch) was called in to determine the 
cause of the outbreak.  
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Morbidity and MortalityMorbidity and Mortality
• Early symptoms included fever,Early symptoms included fever, 

headaches, muscle aches, stomach 
problems, dizziness and chills.p

• Later symptoms were coughing, shortness 
of breath pectoral tightness andof breath, pectoral tightness, and 
pulmonary edema.

D th d i b t 50% f l• Death occurred in about 50% of early 
cases.
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Hantavirus Pulmonary Syndrome 
(HPS)(HPS)

• The disease Hantavirus pulmonary• The disease Hantavirus pulmonary 
syndrome (HPS) was caused by a new 
hantavirus called Sin Nombre virus (SNV)hantavirus called Sin Nombre virus (SNV).

• The SNV virus was carried by the deer• The SNV virus was carried by the deer 
mouse (Peromyscus maniculatus).
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The Host PopulationThe Host Population 

1. Over the past 14 years researchers have1. Over the past 14 years researchers have 
found that higher host (deer mouse) 
abundance is associated with an increase in 
the abundance of infected rodents in an area 
and subsequently with an increased risk of 
SNV i f ti i hSNV infection in humans.

2. Forecasting deer mouse populations provides 
early warning about the ambientearly warning about the ambient 
epidemiological risk to humans beings. 
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Forecasting historyForecasting history
• Model Building

P G t d t l t i bl f t i di t ib t d l– PcGets was used to select variable for an autoregressive distributed lag 
model based on an ARIMA model with interventions, presented at CDC 
research conference in Sevietta, NM.(2002)

– Using variables selected by PcGets, ad hoc curve fitting models 
provided good forecasts as demonstrated at a CDC researchprovided good forecasts, as demonstrated  at a CDC research 
conference presentation in Atlanta, Ga. (2003)

– Variable selection with PcGets version 1. Stamp version 6.3 was used 
to forecast the nonstationary series CDC Conference in Durango, 
Col (2005)Col.(2005) 

– Using predictors selected by PcGets version 1.
• Multiple endogenous lags were used to test density dependence, 

seasonal component, precipitation, and temperature variables
R2 th b t t d t• R2 the best to date

• Forecasts lacked accuracy
– Stamp 7.0 was used to forecast the nonstationary MNAtotal series from 

Montana. For forecasting, we do not model density dependence.  The 
f t hibit h t Th t thi l i
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Forecasting History-cont’dForecasting History cont d
• A Basic structural model was tested: Cyclicity 

and seasonality and trending slope were foundand seasonality and trending slope were found 
to be not statistically significant.

• Autoregressive lags were tested in the model• Autoregressive lags were tested in the model 
with Stamp 7.0 (2005-2007).

• A multiple source of error (MSOE) State SpaceA multiple source of error (MSOE) State Space 
Model was tested (2008)

• Altogether we tested 19 different forecastAltogether we tested 19 different forecast 
methods/software.

10



Forecasting History- 3Forecasting History 3
• We chose state space methods because theWe chose state space methods because the 

series was nonstationary and an augmented 
Kalman filter could handle this problem.  Yet the 
state space method was more complicated than 
many.

• We wanted software and methods that were 
accurate, simple, and easy to use.
W h h Th h d h h• We chose the Theta method that won the 
international M-3 competition and those that 
were relatively automaticwere relatively automatic.
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Forecasting History - 4Forecasting History 4
• At a CDC Hantavirus research meeting in Durango, Colorado in 

2005, Bob Yaffee presented the state space forecasting results.
• Kent Wagoner suggested that we recruit other forecasters, get their 

forecasts on the same series, and compare the results.
• At that point, Yaffee asked Kostas Nikolopoulos, David Reilly, and 

Sven F. Crone to participate.
• Kostas presented three versions of the Theta model univariate p

forecasts.
• Reilly generated two from a causal and a univariate model from 

Autobox.
• Crone generated univariate feed-forward exhaustive grid search 

neural network forecasts.
• We compared these according to MAE MAPE and MedAPE andWe compared these according to MAE, MAPE, and MedAPE and 

ultimately obtained the following results..
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Mean Absolute ErrorMean Absolute Error
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Mean Absolute Percentage Error
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Median Absolute Percentage Errored a bso u e e ce age o
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• Because the local level 
(MSOE) state space model 

f d ll diperformed so well according 
to these criteria weto these criteria, we 
wondered why it y
outperformed the causal 

d lmodel. 
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• What’s novel about this inquiry?

– This study compares causal and univariate models.
– It entails a rolling origin forecast evaluation.
– This study includes the use of state space methods in 

such a comparisonsuch a comparison.
– It even includes a single source of error (SSOE) state 

space method.
– Recognizing that these methods may be software 

dependent, we rely on the default parameters in the 
software to provide the resultssoftware to provide the results.

– We compare a multiple source of error state space 
model to a single source of error state space model.
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Research QuestionsResearch Questions
1. Can we forecast the abundance of the deer mouse population with readily 

available weather data?

2. Can state space methods forecast the MNAtotal series with readily 
il bl th di t d i t ti ?available weather predictors and interventions?

3. Can state space methods forecast the MNAtotal series with a local level 
model and interventions?model and interventions?

4. Can we generate a good a univariate forecast of MNAtotal without the 
weather variables ?

5. Can Stamp forecast the MNAtotal from a univariate local level model 
(random walk plus noise)?

18
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MethodsMethods
• State space models consist of a measurement equation, 

t iti ti d diti f i iti li tia transition equation, and conditions of initialization. 
• We test components for significance and find that 

cyclicality and seasonality are not significant 
t d l t d th f l dmeasurement model components and therefore exclude 

them from our models. 
• We find three measurement models to be of promise 

with an augmented Kalman filterwith an augmented Kalman filter.
– Local Level Model with dynamic parameters and interventions 

(level shifts and additive outliers).
– Local Level Model with interventionsLocal Level Model with interventions
– Local Level Model without interventions

• Forecast Protocol
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Data CollectionData Collection

• Minimum Number Alive (MNA)Minimum Number Alive (MNA)
– MNA is a measure of population abundance (Chitty 

and Phipps, 1966)
– MNA is based on capture-recapture method
– 100 Traps are set along a grid within 1 hectare

C t d i t d d l d– Captured mice are tagged and released
– MNA(X)=number captured in month X+ those not 

captured in month X but captured in at least 1captured in month X but captured in at least 1 
previous month and at least 1 subsequent month. 
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Trapping Grids in Central Montana

Site 10

.



Site 11Site
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Site 12
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The MNAtotal SeriesThe MNAtotal Series
Abundance of Peromyscus maniculatus (deer mouse) in the Montana Cascade

30
0

0
25

0

M
N

A
to

ta
l

15
0

20
0

M

10
0

50

24
Date

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005



The MNAtotal series 
when we began forecasting
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Characteristics of the MNAtotal

S iSeries
• MNAtotal is nonstationary. The series moments  y

change.   They are best estimated by changing 
parameters or local trends.

• Depending on the model this series contains atDepending on the model this series contains at 
least 3 outliers and 17 level shifts

• The polynomial lags have unstable roots.   
• The number of significant endogenous lags 

varies with the length of the series.
• Numerous end-effects or sudden changes at the• Numerous end-effects or sudden changes at the 

end of the series from which the forecast is 
generated. These effects bias the forecast and 
impair forecast accuracy
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Chronology of Structural Breaksgy

27



MNAtotal Structural Breaks: 
Their Significance, Direction, andTheir Significance, Direction, and 

Magnitude
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Forecast Protocol:
Rolling origin ex ante 3 month forecast

• The purpose was to average out unusual end effects biasing of forecasts.

• Time Series Length.  June 1994 – November 2005, inclusive [138 observations].  

• First Point of Forecast Origin: We begin forecasting three months ahead in November 
2002 [ observation 102]2002 [ observation 102].  

• Rolling Origin Forecast: The origin of the forecast is rolled ahead one (three month) 
season for each forecast [102, 105, …, 135]. The next forecast extends over the next 
season.  Seasons are defined as:

– Winter: Dec through Feb
– Spring: March through May
– Summer: June through Aug
– Fall: Sep through Nov.

• The process is reiterated.

• In sum, 12 three month ex ante forecasts were generated from datasets up to the point 
of forecast origin.

29
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• We estimated the average error over the three month period. 



The Conditional Model: 
Significant Weather Predictors

• Significant 
– Sum of cooling degree days (lag 2) mostly
– Sum of monthly precipitation (lag 5) a few times

• Not significant
– Sum of monthly snow (inches)
– maximum monthly temperature (degrees F)
– Minimum monthly temperature (degrees F)y p ( g )
– Average monthly temperature (degrees F)
– Sum of monthly heating degree days
– Mean Monthly Temperature (degrees F) y p ( g )
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Sum of Cooling Degree Days
i h h lwith a two month lag

Days when mean daily average Temp > 65 deg F
Sum monthly Cooling Degree Days
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Sum of Monthly Precipitation
i h Fi M h Lwith a Five Month Lag

Mean Monthly Precipitation with a Five Month Lag
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Impact of these predictors?Impact of these predictors?
• We found that warmer temperatures could lead to greater mouse 

pop lation B t that the effect as not a dominant one Rather itpopulation.  But that the effect was not a dominant one. Rather, it 
was a minimal one.
– Sum of cooling degree days at lag 2 is a stable predictor.  It 

is significant but not large. It only accounts for a 2.718^.004 
l h d h h=1.004 increase in MNAtotal with a 1 degree Fahrenheit rise 

in temperature. This suggests that warmer weather is 
associated with an increase in the abundance of the mouse 
population. The lag 2 may arise from the relatively cold 

hweather in Montana.
– Mean minimum monthly temperature suggests that as this 

goes up so does the prevalence of the deer mice. Both of these 
indicators suggest that warmer temperatures may be gg p y
important.  This has implications for global warming and the 
diffusion of this disease.

– The impact of the five month lag of monthly precipitation was 
even smallereven smaller.
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Distribution of Level Shifts in Stamp 
C l M d lCausal Models

numlevshift

Cumulative

3 8.3 8.3 8.3
6 16.7 16.7 25.0
3 8 3 8 3 33 3

0
1
2

Valid
Frequency Percent Valid Percent Percent

3 8.3 8.3 33.3
12 33.3 33.3 66.7
12 33.3 33.3 100.0
36 100 0 100 0

2
3
4
Total 36 100.0 100.0Total

The number of level shifts also varies with the data 
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Distribution of Additive Outliers in 
S C l M d lStamp Causal Models

numaddout

6 16 7 16 7 16 70Valid
Frequency Percent Valid Percent

Cumulative
Percent

6 16.7 16.7 16.7
6 16.7 16.7 33.3
3 8.3 8.3 41.7
6 16.7 16.7 58.3

0
1
2
3

Valid

3 8.3 8.3 66.7
3 8.3 8.3 75.0
3 8.3 8.3 83.3
3 8 3 8 3 91 7

4
5
6
7 3 8.3 8.3 91.7

3 8.3 8.3 100.0
36 100.0 100.0

7
8
Total
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Why State Space Models should 
b bl F hi ibe able to Forecast this series

• The MNAtotal series is nonstationary.total y

• State Space models with augmented Kalman filters can 
forecast nonstationary series They use an extendedforecast nonstationary series.  They use an extended 
random normal vectors [and matrices] that define the 
means, variances, and covariances and other 
information needed to define the state of a system at ainformation needed to define the state of a system at a 
given point in time (Snyder and Forbes, 2002, p.3).

• There are many level shifts in the MNAtotal series, which 
may be able to be modeled and forecast by a method 
that can model and forecast a  local level model (Muth, 

36
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The State Space MethodThe State Space Method
• Initial condition

– Takes an initial estimate of the mean and the variance 
• Transition equation sequentially updates the estimate 

– Kalman filter computes the mean and variance of the state 
vector, given the prior information and sequentially updates in 
with a first-order autoregression plus a regression on the 
innovation.

M t ti• Measurement equation
– A linear combination of components in the model from which a 

measurement of error is obtained. The state is estimated and 
the error is minimizedthe error is minimized.

• Correction is performed by minimizing the predictive error variance.
– The process reiterates until convergence is obtained.

• Forecasting is performed with the transition equation

37
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The General Measurement Equation 
(Koopman, Harvey, Doornik, and Shepard,  2006, p.143)

p qk h
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1 1

1 1 0 1
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t t t t
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The Measurement (Observation) 
E iEquation

y Z α ε+t t t ty Z
where

α ε= +

tZ selection matrix of factor loadings
state vectorα

=
=t

t

state vector
observation error matrix

α
ε

=

=

~ (0, )t t

t

NID H
H observation error variance  matrix
ε

=
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Component Loading into State VectorComponent Loading into State Vector

• Components load into the State vector for a model with a local 
level, and a monthly seasonal component (11 dummy variables):

(1 10000 0 0 0 0 0 0) (1 1)t t ty α ε= +

1,

2,

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

t

t

t
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Transition EquationTransition Equation

1t t t t tT Rα α η+ = +1t t t t t

t

T R
where

the unobserved state vector

α α η

α

+ +

=

t

t

T state projection matrix
R innovation selection matrix
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=

=
=

1
~ (0, )
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Initial conditionsInitial conditions

0 0 0( , )N P
h

α α=

0

where
initial mean of state vectorα =0

0

f
P initial state estimation error variance=
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EstimationEstimation
One solves for the component parameter estimates
by minimizing via maximum likelihood

t

y g
the predictive error variance,  F :
where

1 1

( )
[( ( | )( ( | ) '
( )( ) '

t t

t t t t t t

F var v
E y E y Y y E y Y
E α α α α

− −

=

= − −
= − −( )( )

( ) ( ) '
'

t t

t t t t t t

t t t t

E
E y Z y Z
Z PZ H

α α α α
α α

= − −

= − −

= +

2
1

2

( ( | ))t t t t

and
P E Var Y F εα σ−= = −
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measurement observation error variance
Durbin and Koopman, (2000), 12,26 - 27,66).
εσ =



Maximum LikelihoodMaximum Likelihood
• The likelihood maximized is a function of theThe likelihood maximized is a function of the 

prediction error variance by a Broyden, 
Fletcher, Goldfarb and Shanno algorithm:

1 2

1 1

1log 2 log | |
2 2 t

t t

t t
t t

nLL F F vπ −

= =

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠
∑ ∑

where
LL log likelihood

i ti
=

t

t t

v innovation
F var(v )
(Durbin and Koopman, 2000, 138)

=
=
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Updating (correcting) and 
F ti E tiForecasting Equations

1

2
1 (1 )

t t t t t

t t

T K v for mean

P P K for the variance
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α α
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= +

= − +

t
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T an m x m state projection matrix
state vector
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t t t
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P Var state variance
F = predictiveerror variance
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F predictiveerror variance
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t
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predictive error variance

Q innovation variance matrixσ

⎛ ⎞
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⎝ ⎠
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tQ innovation variance matrixησ = =



Kalman FilteringKalman Filtering
• Sequential updating: The Kalman filter updates q p g p

the new variance estimate from the current and 
previous variances. The updating is performed 
by a weighted average.  The weights are y g g g
formulated from the precisions (inverse of the 
variances) of the likelihood and the prior 
probability distribution It also uses this toprobability distribution.   It also uses this to 
update the mean

• Diffuse prior: When nothing is known about the 
previous variance an noninformative prior isprevious variance, an noninformative prior is 
assumed.  The inverse of a very large (diffuse) 
variance accords it small precision and little 

i ht
46
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Bayesian sequential updating
Guido Imbens(2007) “What’s New in Econometrics Lecture 7 on Bayesian Inference National Bureau 

of Economic Research Summer Institute, 2007, p. 6.
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Augmented Kalman FilterAugmented Kalman Filter

F ll i li k f A l d K h (1985) D J (1991)• Following earlier works of Ansley and Kohn (1985), DeJong(1991) 
and Rosenberg (1993), Harvey(1993, 138) and Durbin and Koopman 
(2000,113-117) formulate an augmented Kalman filter to permit the 
analysis of nonstationary series:

• They augment the state vector in a partition of stationary and 
nonstationary components.

• The partitioning allows the assignment of a diffuse prior to the 
nonstationary componentsnonstationary components.

• Because weighting in the sequential updating process is done in 
accordance with the precision or inverted variance, when little is 
known about the nonstationary elements, a diffuse prior (with an 
arbitrarily very large variance) P is used for weighting When aarbitrarily very large variance)—P∞—is used for weighting.  When a 
singular matrix is inverted, generalized inverses are used.

• After a few extra iterations, the process converges to a proper 
solution.
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We estimate 3 Cases with this 
d K l filaugmented Kalman filter

– Case 1: Local level model, time varyingCase 1:  Local level model, time varying 
parameters, and interventions.

– Case 2:  Local level model plus interventions. 
Taylor’s approach.y pp

– Case 3:  Local level model: The baseline.Case 3 oca e e ode e base e
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Case 1: Local Level Model + time 
i i ivarying parameters + interventions

,
1 0 1
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Case 2:  Local Level Model + Interventions
M E iMeasurement Equation
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Case 3:  Local Level Model
M E iMeasurement Equation
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State Space stacked matrix 
Formulation

• Local level model (random walk plus noise)Local level model  (random walk plus noise)  
(Zivot, Wang and Koopman (2004), 287).
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The state vector is furthermore partitioned into stationary and 
nonstationary components and the diffuse prior is applied to the 
latter.



Local level Model with Intervention 
A l iAnalysis

• Significant Interventions may also vary in aSignificant Interventions may also vary in a 
local level model.

Outliers– Outliers
– Level shifts
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Comparative Forecast AccuracyComparative Forecast Accuracy

• The univariate models are more accurateThe univariate models are more accurate 
than the causal models.  This difference 
does not appear to be significant given thedoes not appear to be significant given the 
standard errors of the analysis.

• Causal models may induce rigidity in the• Causal models may induce rigidity in the 
estimation.   So does the density 
dependence of the series We nowdependence of the series.  We now 
compare 3 state space models with the 
augmented Kalman Filter
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augmented Kalman Filter.



Comparative Forecast Accuracy
over three forecast horizons
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Local Level model TrackingLocal Level model Tracking
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Higher Resolution of Local Level 
d l T kimodel Tracking
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MNAtotal and Local Level ModelMNAtotal and Local Level Model

64
We generate MNAtotal and its forecasts from 
an anti-log analysis.



DiscussionDiscussion
1. State Space models with readily available weather p y

variables and interventions do not seem to forecast as 
well as simpler models without those weather variables. 
1. They do not have to forecast the predictors.y p
2. Forecasting predictors builds more error into the series.
3. The final forecast in such a conditional model is based on a 

flimsier foundation.
2. State space local level models with interventions can 

predict with more accuracy than the state space causal 
models.models.

3. State space local level models appear to be able to 
forecast MNAtotal very well as the series appears to be  
characterized by a random walk with noise
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characterized by a random walk with noise.  



DiscussionDiscussion
• Of these three state space models, it appears that the p pp

local level model exhibits the best forecast performance.
• Interventions are compensated for in the next time period 

by the Kalman filter correction step.by the Kalman filter correction step.
• The Kalman filter corrects for deviations generated by 

them in the correction step (from page 29).

1 ˆ( )t t t t t tT K y yα α+ = + −
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Discussion-cont’dDiscussion cont d
• Modeling more endogenous lags, although they are significant, 

i idifi h i f l l l l d l Wi hrigidifies the autoregressive structure of a local level model.  With so 
many level shifts,  the local level needs to maintain flexibility to 
adjust to the locality of the level (Aoki, M., p. 23).

• Attempts at fixing too much structure on a random walk series can• Attempts at fixing too much structure on a random walk series can 
degrade the forecasting accuracy.  The single source of error 
(SSOE) state space model repeatedly specified an MAN 
(multiplicative errors, additive trend, and no seasonality ) model. The 
series had already been logged. However, there only  a partial   
local trend.

• Simpler models may forecast better.  These simpler models include 
the purely local level model and the local level with interventionsthe purely local level model and the local level with interventions 
model. Modeling interventions  does not improve the forecasting 
significantly.  The State Space local level model handles the 
changes well without the user worrying much about interventions 

67

g y g
with this series.



Conclusion: Given the standard error size, 
we cannot say which model is significantlywe cannot say which model is significantly 

better.
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ConclusionConclusion
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Median Absolute ErrorMedian Absolute Error
Causal Model LLM+Interventions Model LLM Model
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The Median Absolute Error of these causal model appears lower than 
the others, but the causal model contains more distorting outliers than 
the others



Median Absolute Percentage Error
Causal Model LLM+Interventions Model LLM Model
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The Median Absolute Percentage Error of these models is almost the 
same,  and the causal model contains more distorting outliers than the 
others



Conclusions 1Conclusions 1
1. To answer the first research question, we cannot forecast the 

abundance of the deer mouse population with readily available p p y
weather data well.

– The MSOE state space model does not seem capable of good 
forecasting with readily available weather dataforecasting with readily available weather data.

– Dr. Kenneth Trenbirth from the National Center for Atmospheric 
research informed me that the weather forecasts are accurate 
only up to two weeks.  Therefore, weather forecasts over a three 

th f t h i t b If f t f thmonth forecast horizon are sure to be poor.  If forecasts for the 
predictors over the forecast horizon are sure to be poor, then the 
forecasts for the “causal” model are sure to be poor.

– The causal model requires much work and is difficult to forecast q
because each predictor (and intervention) needs to be forecast 
before the MNAtotal can be forecast.
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Conclusions 2Conclusions 2
2. State space models with readily available p y

weather data do not forecast well.
3. State space local level models with p

interventions can predict with more 
accuracy than the state space causal 

d lmodels.
4. We can generate a univariate forecast 

ith (MSOE) t t d lwith (MSOE) state space model.

73



Conclusions 3Conclusions 3
5. However, (MSOE) state space local level , ( ) p

models appear to be able to forecast MNAtotal 
very well as the series appears to be  
characterized by a random walk with noisecharacterized by a random walk with noise.  

6 The MSOE state space model local level model6. The MSOE state space model local level model 
appears to give the best .
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ImplicationsImplications

• When the local level model was comparedWhen the local level model was compared 
to the 18 other methods tried to forecast 
this series, it generated forecast accuracy g y
in absolute terms that was superior to all.

• If we were to test these series for 
significant difference, we might find that 
most are not significantly different from 

th i f tone another in forecast accuracy. 
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ImplicationsImplications
• Building too much structure into this model impairs the 

f tiforecasting.
• Modeling the interventions compresses the standard 

errors and renders the extrapolation likely to overfit
• The local level model is essentially an exponential 

smoothing process, an extrapolation that combines 
current data with past estimation.

f• The models that forecast best seem to involve some sort 
of local smoothing built into their algorithm

• The local level model should be used for forecasting. 
Thi i th i t f th d l tThis is the easiest of the models to program.
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LimitationsLimitations

• We cannot commit the universalistic fallacy byWe cannot commit the universalistic fallacy by 
saying that what is true for this series is true for 
all.

• We would have to attempt to test these findings 
on many different kinds of series to say that 
these findings can be accepted as general.

• Nevertheless, the findings are heuristic and are 
i f di i f f hsuggestive of directions for future research.
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What we can concludeWhat we can conclude

• In any case, the models, whether simple orIn any case, the models, whether simple or 
complex, depend mostly on trapping and 
recording the minimum number of mice alive.  

• To assess this epidemiological risk,  given our 
state of knowledge, trapping and support for it 
will be necessary.
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Appendix 1Appendix 1

• The following Analysis is broken down byThe following Analysis is broken down by 
cumulative forecast horizon.

• The horizon h is a cumulative forecast horizon.
• The Local level model with dynamic predictors 

and interventions does not forecast as well as 
the others.

• The local level model is shown to be somewhat 
better by all measures, regardless of forecast 
horizon.
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Forecast Accuracy of the models over three forecast 
h i (h b f th )horizons (h= number of months)
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Mean Absolute Error by Model
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