

Forecasting Volatility of UK natural gas futures

Robert A. Yaffee, New York University, NYC,NY Merrill A. Heddy, Heddy Consultants LLC East Rutherford, NJ Sjur Westgaard, Trondheim Business School and Norwegian University of Science and Technology Trondheim, Norway Kai Hjemgaard student Norwegian University of Science and Technology, Trondheim, Norway Bjorn Helge Bore student Norwegian University of Science and Technology, Trondheim, Norway Joseph I. Onochie, Baruch College CUNY, NYC,NY

> International Symposium on Forecasting Nice, France June 2008

HEDDY CONSULTANTS LLC

E-mail addresses

- Robert A. Yaffee, <u>yaffee@nyu.edu</u>
- Merrill A. Heddy, <u>heddy_consultants@yahoo.com</u>
- Sjur Westgaard <u>sjur.westgaard@hist.no</u>
- Kai Hjemgaard, post@bhbore.no
- Bjorn Helge Bore, post@bhbore.no
- Joseph I. Onochie Joseph_Onochie@baruch.cuny.edu

Acknowledgments

- The authors would like to thank Prof. Sebastien Laurent for his tutelage and gracious assistance in our research.
- We also would like to thank Dr. Jurgen Doornik for his excellent instruction in the Ox programming language.
- We would also like to thank Kate Hancock at ICE Data for assistance in supplying the data and Ana Timberlake for administrative assistance.

Outline

- 1. Motivation
- 2. Background
- 3. Research problems
- 4. Data
- 5. Methods
- 6. Results and Discussion
- 7. Conclusions

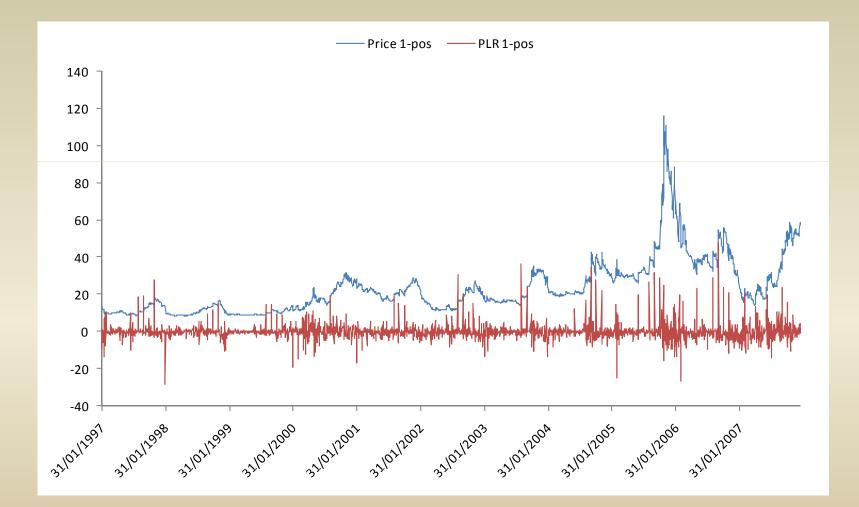
Motivation

- Previous research has focused on US natural gas futures
- There is reason to believe that the UK situation is different from that of the US
- There have been very few attempts to model, much less, forecast UK natural gas futures
- We apply new techniques for this particular geographical area.
- We try to fill the knowledge gap

Motivation continued

- Why this is important?
 - There is insecurity in resource supply during the winter.
 - Volatility estimation and forecasting is necessary for reserve requirement planning.
 - Volatility estimation and forecasting is necessary for defining Value-at-Risk (VaR) quantiles, VaR accuracy, and expected shortfall.
 - VaR is now a standard means of assessing risk.

Background



7

Background

- Deregulation has led to calls for redefinition of risk in the 1990s in this market.
- Linkage to the European Interconnector and North Sea pipelines distinguishes this market from that of the U.S. situation where most of the previous research on volatility was focused.
- Insecurity of supply during winter months has increased volatility.
- Volatility increases reserve requirements and general demand.
- 45% of UK electricity in 2007 came from natural gas supplies, so this is an important factor of production and consideration in the cost of living in the U.K.

Research problems

- 1. Can we model UK natural gas futures with GARCH models?
- 2. What are the best models for all positions?
- 3. How valid are these models?
- 4. How stable are these models?
- 5. How does volatility affect percentage log returns?
- 6. Which models forecast best for each of 9 positions over 1, 5, 10 and 20 trading days?

Data

- Time frame: 1997 thru 2007
- Unit for analysis of price: GBPence/therm
- Daily percentage log returns: $100*(\ln(P)_t/P_{t-1}))$
- 9 months positions (postponed 1 through 9 months)
- Data from Inter-Continental Exchange (ICE)

Methods 1

- Preliminary Analysis
 - ACF, PACF of PLR suggest occasionally AR(1) or AR(1/2)
 - ADF tests suggest mean (not necessarily variance) stationarity of PLR.
 - Geweke Porter Hudak tests suggest no long memory
 - Sign-bias tests generally indicate no asymmetry
- GARCH mining
 - Based on lowest Schwartz Criterion

Methods 2

- Residual diagnostics
 - Portmanteau tests of standardized residuals
 - Portmanteau tests of squared residuals
 - Tse's Residual Based Diagnostics test

 $E(z_t^2 - 1) = \alpha_1 z_{t-1}^2 + \alpha_2 z_{t-2}^2 + \dots + \alpha_{t-p}^p$

- Nyblom stability tests
 - Individual and joint tests were run.

RiskMetrics Model

mean model :

$$plr_{t} = c + \sum_{i=1}^{p} \phi_{i} plr_{t-i} - \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \delta_{1} \sigma_{t}^{2} + \delta_{2} R_{t} + \varepsilon_{2} R_$$

RiskMetrics variance model :

$$\sigma_t^2 = \omega + (1 - \lambda)\varepsilon_{t-1}^2 + \lambda\sigma_{t-1}^2 + bR_t$$

where

c = constant

$$\varepsilon_t = z_t \sigma_t$$
$$z_t \sim i.i.d.t(0,1,v)$$

 $R_t = contract \ rollover \ dummy (last working \ day / month)$ $\lambda = 0.94$

RiskMetrics Forecasting Model

mean forecasting model:

$$plr_{t+h|t} = c + \sum_{i=1}^{p} \phi_i plr_{t+h-i|t} - \sum_{j=1}^{q} \theta_j \varepsilon_{t+h-j|t} + \delta_1 \sigma_{t+h|t}^2 + \delta_2 R_{t+h|t} + \varepsilon_t$$

RiskMetrics variance forecasting model: $\sigma_{t+h|t}^{2} = \omega + (1-\lambda)\varepsilon_{t+h-1|t}^{2} + \lambda\sigma_{t+h-1|t}^{2} + bR_{t+h|t}$ where h = forecast horizon of 1,5,10, and 20 leads

APGARCH variance Model

APGARCH variance model :

$$\sigma_t^{\delta} = \omega + \sum_{i=1}^q \alpha_i (|\varepsilon_{t-i}| - \gamma_i \varepsilon_{t-i})^{\delta} + \sum_{j=1}^p \beta_j \sigma_{t-j}^{\delta} + bR_t$$

 γ measures the leverage (asymmetry) in the response of conditional variance to positive and negative shocks.

R_t is the rollover dummy,

 δ is the power to which the conditional standard deviation is taken, as in a Box-Cox transformation. δ is the power parameter in the variance model

 δ_1 is the arch-in-mean conditional variance included in the mean model, which is the same mean model for the RiskMetrics model.

The distribution is Student- t, with the degrees of freedom estimated by the model.

APGARCH complete model

APGARCH mean model:

$$plr_{t} = c + \sum_{i=1}^{p} \phi_{i} plr_{t} - \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \delta_{1} \sigma_{t}^{2} + \delta_{2} R_{t} + \varepsilon_{t}$$

APGARCH variance model :

$$\sigma_t^{\delta} = \omega + \sum_{i=1}^q \alpha_i (|\varepsilon_{t-i}| - \gamma_i \varepsilon_{t-i})^{\delta} + \sum_{j=1}^p \beta_j \sigma_{t-j}^{\delta} + bR_t$$

APGARCH Forecasting model

APGARCH mean forecasting model :

$$plr_{t+h|t} = c + \sum_{i=1}^{p} \phi_{i} plr_{t+h-i|t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t+h-j|t} + \delta_{1} \sigma_{t+h|t}^{2} + \delta_{2} R_{t+h|t} + \varepsilon_{t+h|t}$$

APGARCH variance forecasting model:

$$\sigma_{t+h|t}^{\delta} = \omega + \sum_{i=1}^{q} \alpha_i (|\varepsilon_{t+h-i|t}| - \gamma_i \varepsilon_{t+h-i|t})^{\delta} + \sum_{j=1}^{p} \beta_j \sigma_{t+h-j|t}^{\delta} + bR_{t+h|t})^{\delta}$$

Algorithms

- Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
 - Quasi-Newton maximum likelihood
 - Quite fast
 - Only worked with RiskMetrics
- Simulated Annealing (Sa or MaxSa)
 - Worked with both RM and APGARCH
 - Resampling routine escapes local optima
 - Quite slow
 - Generally better fit
- When tied for performance, BFGS wins owing to speed.

Methods 3

- 1. Forecasting
 - Mean and variance over four horizons: 1, 5, 10, 20 trading days
- 2. Forecast evaluation
 - 1. mean square error
 - 2. mean absolute error
 - 3. mean absolute percentage error
 - 4. logarithmic loss function

Mean Square Forecast Error $MSFE(h) = \frac{1}{h} \sum_{j=1}^{h} (\hat{\sigma}_{T+j} - \sigma_{T+j})^2$

where

h = forecast horizon lengthT = largest number of in - sample obs

Mean Absolute Error

$$MAE = \frac{1}{h} \sum_{j=1}^{h} |\hat{\sigma}_{T+j} - \sigma_{T+j}|$$

Mean Absolute Percentage Error

$$MAPE = \frac{100}{h} \sum_{j}^{h} \frac{|\hat{\sigma}_{T+j} - \sigma_{T+j}|}{\sigma_{T+j}}$$

Logarithmic Loss Function

$$LL = \frac{1}{h} \sum_{j=1}^{h} \left[\ln(\varepsilon_{T+j}^{2}) - \ln(\hat{\sigma}_{T+j}^{2}) \right]^{2}$$

Results

- We tried GARCH, EGARCH, GJRGARCH, IGARCH, RiskMetrics GARCH and APGARCH.
- We find that only RiskMetrics GARCH and APGARCH can model all nine positions and converge.

PARAMETER SIGNIFICANCE RiskMetrics

$$plr_{t} = c + \sum_{i=1}^{p} \phi_{i} plr_{t-i} - \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \delta_{1} \sigma_{t}^{2} + \delta_{2} R_{t} + \varepsilon_{t}$$
$$\sigma_{t}^{2} = \omega + (1 - \lambda) \varepsilon_{t-1}^{2} + \lambda \sigma_{t-1}^{2} + bR_{t}$$

	RiskMetrics Parameter significance									
	-	1M	2M	3M	4M	5M	6M	7M	8M	9M
с		-	-	-	-	-	-	-	-	-
ARMA pa	rameters	* to ***	***	- to ***	-	- to ***	- to ***	-	** to ***	** to ***
δ1		***	***	-	-	-	-	-	**	*
δ2		-	-	**	*	-	-	-	***	***
ω		NI	NI	NI	NI	NI	NI	NI	NI	NI
λ		Fix	Fix	Fix	Fix	Fix	Fix	Fix	Fix	Fix
b		***	***	***	***	***	***	***	***	***
***	Significant	at 1% leve	1							
**	Significant	at 5% leve	1							
*	Significant	at 10% lev	vel							
-	Included,	but not sign	ificant							
FIX	Fixed para	ameter valu	e (=0.94)							
NI	Not includ	led in the a	nalysis							

PARAMETER SIGNIFICANCE APGARCH

$$lpr_{t} = c + \sum_{i=1}^{p} \phi_{i} p lr_{t-i} - \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \delta_{1} \sigma_{t}^{2} + \delta_{2} R_{t} + \varepsilon_{t}$$
$$\sigma_{t}^{\delta} = \omega + \sum_{i=1}^{q} \alpha_{i} (|\varepsilon_{t-i}| - \gamma_{i} \varepsilon_{t-i})^{\delta} + \sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{\delta} + bR_{t}$$

				APGARCH Par	ameter signif	icance				
		1M	2M	ЗM	4M	5M	6M	7M	8M	9M
c		•••	•••	•••	•••	•••	***	***	•••	•••
ARMA param	neters	•••	***	***	NI	***	•••	***	***	NI
δ1		•••	•	•••	***	•••	-	-	•••	•••
δ₂		•••	***	•••	***	•••	***	***	•••	•••
Э		•••	•••	•••	***	•••	***	***	•••	•••
α's		•••	***	***	***	***	•••	***	***	***
γ's		•••	***	***	***	***	***	***	***	***
δ's		**	***	•••	***	•••	***	***	***	***
β's		•••	•••	•••	•••	***	•••	***	•••	•••
b		•••	***	***	***	***	•••	•••	***	•••
***	Significant at	1% level								
**	Significant at	5% level								
*	Significant at	10% level								
-	Included, but not significant									
NI	Not included i	in the analysis	8							

Model Evaluation Results

Table 3		Model Eva	aluation				
	Best	Schwartz					Joint
position	Model	Criterion	Temp.	Q-test res	Q-test res ²	RBD-test	Nyblom test
1	APGARCH	4.595	7.2760E-11	OK	OK	Ok	25.408***
2	APGARCH	4.951	1.4552E-10	not ok	not ok	Ok	15.455***
3	APGARCH	3.877	5.8208E-10	not ok	not ok	not ok	10.212***
4	APGARCH	3.755	7.2760E-11	not ok	not ok	not ok	25.059***
5	APGARCH	3.612	1.4552E-10	not ok	not ok	not ok	19.533***
6	APGARCH	3.536	7.2760E-11	not ok	not ok	not ok	57.229***
7	APGARCH	3.532	1.8190E-11	not ok	not ok	not ok	26.093***
8	APGARCH	3.431	1.8190E-11	not ok	not ok	not ok	31.649***
9	APGARCH	3.509	3.6380E-11	OK	OK	Ok	18.570***

Temp= temperature. Not ok= significant at .05. Ok = not significant at .05

Volatility affects mean model

Table 4		Model Evaluation									
	Best	Schwartz									
				Parameter							
position	Model	Criterion	Coefficient	estimate	Std error	t-value	t-prob				
1	APGARCH	4.595	Arch-in-mean(var)	-0.007	.0002	-32.220	0.000				
2	APGARCH	4.951	Arch-in-mean(var)	-0.002	.001	-1.823	0.068				
3	APGARCH	3.877	Arch-in-mean(var)	-0.015	0.0002	-69.31	0.000				
4	APGARCH	3.755	Arch-in-mean(var)	-0.004	.0008	-4.201	0.000				
5	APGARCH	3.612	Arch-in-mean(var)	-0.002	0.004	-0.688	0.491				
6	APGARCH	3.536	Arch-in-mean(var)	0.0001	0.002	0.062	0.951				
7	APGARCH	3.532	Arch-in-mean(var)	-0.0005	0.003	-0.212	0.832				
8	APGARCH	3.431	Arch-in-mean(var)	0.0004	0.002	.1948	0.846				
9	APGARCH	3.509	Arch-in-mean(var)	0.004	0.002	1.89	0.059				

Table 3: The Forecast Error Measures of the SC-selected model

[Table 2	Forecast horizon											
						1		5		10		20	
- }	Schwartz	Model	Position	Moment: MSE	0.01686	Variance 193.1	Mean 7.54	Variance 101.9	Mean 5.129	Variance 245.6	Mean 4.64	Variance 438.9	Monotonic
				MAE	0.01686	13.3	2.157	8.499	1.71	245.0 14.33	1.633	430.3	Detterment
	4.595	APGARCH	1 pos	MAPE		0.9987	2.01	0.433	-	0.7567	- 1.033	0.8016	Patterns:
					-	43.8		11.22		10.82		+.Inf	
Ì				MSE	1.472	26.55	4.601	192.9	8.439	580.1	7.699	1218	
				MAE	1.213	5.153	2.044	12.09	2.292	21.28	2.274	26.33	
	4.95119	APGARCH	2 pos	MAPE	-	0.7818		0.4742	-	0.6848		0.7207	← h=f(horizon)
				LL	-	2.317	.	0.9834	.	6.975	.	5.392	
Ì				MSE	0.2989	6.356	5.149	311.7	6.713	348.1	4.949	491.4	
	3.87651	APGARCH	3 pos	MAE	0.5467	2.637	1.747	16.59	1.939	12.75	1.73	20.93	\ltimes /
	3.01051	AFGARUN	5 pos	MAPE	-	0.8766	-	0.7631	-	0.7118	-	0.823	
				LL	-	4.379	-	13.14	-	12.51	-	+.Inf	
[MSE	0.4895	0.8437	3.647	8.667	4.734	221	3.606	1048	
	3.75533	APGARCH	4 pos	MAE	0.6996	0.9185	1.454	2.552	1.724	13.94	1.487	10.63	
	0.10000			MAPE	-	0.6064	-	0.5908	·	0.7718	-	0.7619	
ļ				LL	-	0.8692	-	19.47	-	17.91	-	+.Inf	
		APGARCH	5 pos	MSE	1.128	0.015	3.411	294	6.78	94.89	4.174	85.69	
	3.61171			MAE	1.062	0.1225	1.385	17.04	1.944	8.096	1.469	8.4	
				MAPE	-	0.1209	-	0.8505	-	0.7136	-	0.7706	
ļ				LL	-	0.01302	· ·	26.61	· ·	13.87	· ·	+.Inf	
			6 pos	MSE	1.85	0.06828	1.725	167.2	2.952	154.7	1.829	433.3	
	3.53552	APGARCH		MAE	1.36	0.2613	1.095	12.83	1.409	11.29	1.029	19,19	
				MAPE	-	0.1576	-	0.882	-	0.8202	-	0.9285	
ļ					-	0.02143	· ·	14.02	· ·	12.3	· ·	+.Inf	
				MSE	1.074	4.404	2.445	118	3.01	116.9	1.882	76.26	
	3.53224	APGARCH	7 pos	MAE	1.037	2.099	1.256	10.74	1.412	9.816	1.048	7.331	
				MAPE	-	0.6555	-	0.8327	·	0.7995	·	0.8265	
- }				LL	•	1.136	-	13.39	-	9.69	-	+.Inf	
				MSE	1.661	2.74	2.735	48.56	2.246	131.9	1.727	75.36	
	3.43094	APGARCH	8 pos	MAE	1.289	1.655	1.511	6.662	1.268	7.97	1.068	6.546	
				MAPE	-	0.4783	·	0.7163	-	0.7215	·	0.7693	
- }				LL	•	0.4234	•	3.42	-	4.566	•	+.Inf	
				MSE	0.05498	258.4	3.248	426.7	19.6	1089	10.29	770.5	
	3.50941	APGARCH	9 pos	MAE	0.2345	16.07	1.516	20.44	2.551	16.66	1.723	15.7	27
				MAPE	-	0.9967	·	0.8797	-	0.8809	-	0.9793	27
			L	<u> </u>	-	32.49	<u> </u>	11.48	<u> </u>	5.403	<u> </u>	+.Inf	

Model Selection by Forecast Error Measure

Table 4					Preferred Variance Models					
	Forecast	1		<u> </u>	5	10		20		
Desitien	Error	model	value	model	value	model	value	model	value	
Position	Measure 1 MSE	Rmsa RMB	193.1	APG	101.9	Rmsa RMB	245.6	APG	438.9	
	MAE	Rmsa RME	13.9	APG	8.499	Rmsa RMB	14.33	APG	18.72	APG=APGARCH
	MAPE	Rmsa RMB	0.9987	APG	0.6121	Rmsa RMB	0.7567	APG	0.8016	
										RMB= RiskMetrics
	2MSE	APG	26.55	APG	192.9	Rmsa RMB	580.1	Rmsa	1218	
	MAE	APG	5.153	APG	12.09	Rmsa RMB		APG	26.33	BFGS
	MAPE	APG	0.7818	RMB	0.4742	Rmsa RMB	0.6848	APG	0.7207	
	3MSE	APG	6.956	Rmsa	311.7	APG	348.1	RMB	491.4	Rmsa= RiskMetric
	MAE	APG	2.637	RMsa	16.59	APG	12.75	APG	20.93	
	MAPE	APG	0.8766	RMsa	0.7631	APG	0.7118	APG	0.823	simulated
										1.
	4MSE	APG	0.8437	APG	8.667	APG	221	APG	1048	annealing
	MAE	APG	0.9185	APG	2.552	APG	13.94	APG	10.63	
	MAPE	APG	0.6064	APG	0.5908	APG	0.7718	APG	0.7619	
	5MSE	APG	0.015	APG	294	APG	94.89	APG	85.69	
	MAE	APG	0.1225	APG	17.04	APG	8.096	APG	8.4	
	MAPE	APG	0.1209	APG	0.8505	APG	0.7136	APG	0.7706	Possible RM
	6MSE	APG	0.06828	APG	167.2	APG	154.7	APG	433.3	preference
	MAE	APG	0.2613	APG	12.83	APG	11.29	APG	19.19	preference
	MAPE	APG	0.1576	APG	0.882	APG	0.8202	APG	0.9285	on positions
	7MSE	APG	4,404	APG	118	APG	116.9	APG	76.26	on positions
	MAE	APG	2.099	APG	10.74	APG	9.816	APG	7.331	1,2, or 3.
	MAPE	APG	0.6555	APG	0.8327	APG	0.7995	APG	0.8265	1,2,01 5.
	8MSE	APG	2.74	APG	48.56	APG	131.9	APG	75.36	
	MAE	APG	1.655	APG	6.662	APG	7.97	APG APG	6.546	
	MAPE	APG	0.4783	APG	0.7163	APG	0.7215	APG	0.7693	
	9MSE	APG	258.4	APG	426.7	APG	1089	APG	770.5	
	MAE	APG	16.07	APG	20.44	APG	16.66	APG	15.7	
	MAPE	APG	0.9967	APG	0.8797	APG	0.8809	APG	0.9793	28

- Two models can model all nine positions of UK natural gas futures: RiskMetrics GARCH and APGARCH.
- Two algorithms can work with RiskMetrics GARCH and one algorithm can work with APGARCH to perform this task.
 - RM: BFGS and simulated annealing
 - APGARCH: simulated annealing

• The best models for all positions are the APGARCH with the simulated annealing algorithm, according to the Schwartz criterion, and passage of residual diagnostic assumptions.

- Only the first and nine position models pass all of the residual diagnostics tests and the RBD test.
- However, none of the models passes the joint Nyblom Stability test.

- Only the first 4 positions have volatility models significantly negatively impacting the percentage log returns mean models.
- Yet these impacts are small—generally less than 1 percent. Contracts for large volumes would be necessary to obtain substantial returns on these transactions.

- None of the models are stable.
- This finding suggests that caution be exercised in forecasting.
 - Forecasting near horizons rather than far horizons might be preferred.
- Only on positions 2, 3, and 4 does the volatility increase monotonically as a function of the forecast horizon.

- APGARCH generally outperform the other models in forecasting
- Evaluation is done by MSE, MAE, and MAPE
- APGARCH is generally the optimal model—a useful bit of knowledge for planners, risk managers, and traders in the UK gas futures market.
 - Only in the 1 day ahead and 10 day ahead does the RiskMetrics outperform the APGARCH for position 1
 - For Position 2, RM outperforms 10 trading days out.
 - For Position 3, only 5 days out, does the RM simulated annealing outperform the APGARCH.

Directions for Future Research

- 1. Replication on more recent data could serve to confirm or disconfirm our findings.
- 2. Boxing day trading anomaly for 2nd position
- 3. Exploring the asymmetry anomaly
 - 1. No sign bias effect in most cases
 - 2. Significant gamma parameter in the APGARCH
 - 3. Leverage size versus leverage sign effects
 - 4. Volatility skew (change over positions)
 - 5. Volatility smile and smirk graphical analysis
 - 6. Power analysis for Sign Bias test.

Directions for Future Research 2

- 4. Do simulations for out-of-sample h step ahead VaR.
- 5. Replicate methods for analysis of other energy markets (electricity, oil, coal, etc.)
- 6. Explore dynamic conditional correlation between the U.K. electricity and natural gas markets.

References

- Alexander, C., 2001. Market Models. Wiley, New York.
- Brooks, C., and Persand, G., 2003. Volatility Forecasting for Risk Management, 22, 1-22.
- Bollerslev, Tim, 1986, Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 31, 307-327.
- Ding, Z., Granger, C.W.J., and Engle, R.F. (1993). A Long-Memory Property of Stock Market Returns and a New Model. Journal of Empirical Finance, 1, 83-106.
- Doornik, J. A. (2007). Ox 5: An Object Oriented Matrix Programming Language. Timberlake Consultants: London, U.K., 283.
- Doung?(see page 4).
- Engle, R. F. (1982) Autoregressive Conditional Heteroskedasticity with Estimates of Variance of United Kingdom inflation. In Granger, C. W. J. and Engle, R.F. (eds.) ARCH Selected Readings, Oxford University Press, Chapter 1.
- Engle, R.F. and Bollerslev, T. (1986). Modeling the Persistence of Conditional Variances. *Economic Review*, 5, 1-50.
- Engle, R. F., Lilien, D.M. and Robins, R.P. (1987). Estimating the Time-Varying Risk Premia in the Term Structure: The ARCH-m model. *Econometrica*, 55/2, 391-407.
- Engle, R.F. and Manganelli, S. (1999). CAViAR: Conditional Autoregressive Value at Risk by Regression Quantiles. University of California, San Diego working paper 99-20.
- Energy Information Administration, Office of Oil and Gas, 2007. An analysis of Price Volatility in Natural Gas Markets, 1-21.
- Engle, R.F. and Bollerslev, T. (1986). Modelling the Persistence of Conditional Variances. Economic Review, 5, 1-50.
- Ewing, Bradley T., Malik, F., and Ozfidan, O., 2002. Volatility Transmission in the Oil and Natural Gas Markets, *Energy Economics*, (24), 525-538.
- Eydeland, A. And K. Woliniec, 2003, Energy and Power Risk Management: New Developments in Modeling, Pricing and Hedging, Wiley.
- Garcia R.C., Contreras J., Van Akkeren M., and Garcia J. (2005), A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices, Power Systems, IEEE transactions, IEEE Transactions, 20(2), 867-874.
- Geman H., 2005, Commodites and commodity derivatives Modeling and Pricing for Agriculturals, Metals and Energy, Wiley.
- Giot, P. and Laurent, S. (2003). Value-at-Risk for Long and Short Trading Positions. Journal of Applied Econometrics, 18, 654-655.
- Gill, P.E., Murray, W., and Wright, M.H. (1981). Practical Optimization. San Diego: Academic Press, 137,160-161.
- Giot, P. and Laurent, S. (2003). Value-at-Risk for Long and Short Trading Positions. Journal of Applied Econometrics, 18, 654-655.
- Glosten, Lawrence R., Jagannathan, Ravi and Runkle, David E., 1993, On the Relation between the Expected Value and the Volatility of the Nominal Excess Returns on Stocks, *Journal of Finance*, 48(5), 1779-1801.
- Goffe, W.L., Ferrier, G.D., Rodgers, J. (1994). Global optimization of statistical functions with simulated annealing. *Journal of Econometrics*, Vol 60, Elsevier Science Publishers, North Holland, pp. 65-99.
- Greene, W. H. (2008) Econometric Analysis. Upper Saddle River, NJ: Pearson-Prentice Hall,1071.
- ICE, 2007, ICE Futures U.K. Natural Gas Future Contract, April 20 2007 (found at <u>www.theice.com</u>)
- Ilex, 2004, Gas Prices in the U.K., Ilex Energy Consulting Report, October 2004.
- Kupiec, P. (1995): "Techniques for Verifying the Accuracy of Risk Measurement Models," Journal of Derivatives, 2, 173-84
- Li C., and Zhang M., (2007), Application of GARCH Model in the Forecasting of Day-Ahead Electricity Prices, IEEE Computer Society.
- Malo P., and Kanto A., (2005), Evaluating Multivariate GARCH Models in the Nordic Electricity Markets, Helsinki School of Economics Working paper, W-382.
- ٠

References-cont'd

- Mauro, A., 1999, Price Risk Management in the Energy Industry: The Value at Risk Approach. Paper presented to the XXII Annual International Conference of the International Association of Energy Economics, 9 12 June 1999, Rome.
- Morgan, J.P. (1996). RiskMetrics Technical Document 4th ed., World Wide Web:<u>http://hp.idefi.cnrs.fr/bruno/enseignements/master2/RiskMetrics.pdf</u>.
- Mu, X., 2004, Weather, Storage, and Natural Gas Price Dynamics: Fundamentals and Volatility, Working Paper.
- Laurent, S. (2007). Estimating and Forecasting ARCH models Using G@RCH. Timberlake Consulting, Ltd. London, U.K..
- Laurent, S. (2008a). Personal e-mail communication regarding the distinction between the ESF measures, April 4, 2008.
- Laurent, S. (2008b). Personal e-mail communication about the success rate, May 18, 2008.
- Lopez, J. (1999) Evaluating the Predictive Accuracy of Volatility Models, FRB of San Francisco, p.6.
- Nelson, Daniel B., 1991, Conditional Heteroscedasticity in Asset Returns: A New Approach, *Econometrica*, **59**(2), 347-370.
- Pindyck, Robert S., 2004a. Volatility and Commodity Price Dynamics, Journal of Futures Markets, 24(11), 1029-1047.
- Pindyck, Robert S., 2004b. Volatility in Natural Gas and Oil Markets, Journal of Energy and Development, 30(1), 1-19.
- Poon, S. H. (2005). A Practical Guide to Forecasting Financial Volatility. Wiley: New York, 23-24.
- Press, W.H., Teukolsky, S.A., Vertterling, W.T., and Flannery, B.P.(2007), Numerical Recipes: The Art of Scientific Computing, 3rd ed., New York: Cambridge University Press, 521-522, 549-551.
- Regnier, Eva, 2007. Oil and Energy Price Volatility, *Energy Economics*, 29, 405-427.
- Sadorsky, Perry, 2006. Modelling and Forecasting Petroleum Futures Volatility, *Energy Economics*, 28, 467-488.
- Serletis, A., and Shahmoradi, A., 2006. Returns and Volatility in the NYMEX Henry Hub Natural Gas Futures Market, OPEC Review, 171-186.
- Simmons & Company, 2004, U.K. Natural Gas: Prices & Volatility Increasing, Oil Service Industry Research Report, March 11 2004.
- Susmel, R., and Thompson, A., 1997, Volatility, Storage and Convenience: Evidence from Natural Gas Markets, *Journal of Futures Markets*, 17(1), 17-43.
- Tsay, R.S. (2005). Analysis of Financial Time Series, 2nd ed. Wiley: New York, 97-153.
- Wilson, B., Aggarwal, R., and Inclan C., 1996. Detecting Volatility Changes Across the Oil Sector, *Journal of Futures Markets*, 16(3), 313-330.
- Worthington A.C., and Higgs H., (2003), A multivariate GARCH analysis of the domestic transmission of energy commodity prices and volatility: A comparison of the peak and off-peak periods in the Australian electricity spot market, Discussion papers in economics, finance and international competitiveness.
- Wright, Philip, 2006, Gas Prices in the U.K.: Markets and Insecurity of Supply, Oxford Institute of Energy Studies.

Thank You!

We'll be happy to entertain any questions you might have now.

39