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Outline

 Day2: Early AM
— Motivation
— Definition of the classical state space form
— Brief History

— The Kalman Filter and how it works
* Initial values
* Prediction
e Updating correction
* Reiteration
* Optimization: ML, QML, GLS
* Smoothing and signal extraction
* Forecasting
— Classical assumptions
— Local level model

— Local linear trend model



Outline

 Use of dfactor in Stata

. Sargent and Sims, Geweke’s dissertation

— Andrew Harvey 1989 envisions this as part of State
space models

— Forni, Lippi, Hallin, and Richlin
— Stock and Watson develop a coincident indicator
— Kim and Nelson, 1999

— Ben Bernanke (2003) looks for the driving forces of
the economy from output of a structural VAR with
factor augmented VAR.



Outline

* Day 2: Late PM
— Seasonality and the Basic structural model
— Cyclicity
— Interventions
— Exogenous series
— autocorrelation
— The general state space model



Outline

Day 2: Early PM
— SsfPack system file generation

— The Kalman filter
* Missing observations

— The augmented Kalman filter
* Nonstationary processes

— The extended Kalman filter
* Nonlinear processes

Day 2: Late PM

— Filtering and Forecasting

— Smoothing

— Diagnostics

— Introduction to multivariate models

— Common features

— Cointegration

— Adjusting the variance matrix structure
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SsfAbout()

SsfPack Extended version 3.00 (September 2008)(c) 1997-2008 Siem
Jan Koopman --- www.ssfpack.com Please quote: Koopman, S.J., N.
Shephard and J.A. Doornik (1999) Statistical algorithms for models in
state space using SsfPack 2.2 Econometrics Journal, 1999, Volume 2,
p.113-166. Further details: Koopman, S.J., N. Shephard and J.A.
Doornik (2008) SsfPack 3.0: Statistical algorithms for models in state
space London: Timberlake Consultants Ltd, 2008.



Why are state space models so
important?

State space models comprise a new paradigm in time series analysis and
control.

They can be used to any type of ARIMA analysis.
ARIMA analysis is a subset of the state space paradigm.

State space models can model nonstationary series, which ARIMA models
cannot.

State space models can handle missing values, which ARIMA models
cannot.

State space models with proper feedback systems can be self-correcting.

Advanced state space models can handle nonlinear systems, which ARIMA
models cannot.

Advanced state space models can accommodate nonGaussian processes,
which ARIMA models cannot.

In short, state space models comprise a new paradigm in time series
analysis and control.



Why is the Kalman Filter so Important?

 The Kalman filter is one of the major
contributions to modern operations research.

* |tis a crucial supplement to modern
econometric methods.

 The Kalman filter is a vector system of
difference equations explaining state
dynamics (Athens, M. 1974, 2).



What is the state space model based
on the Kalman filter?

* This system is comprised of two basic equations: the
measurement equation and the state (transition) equation.

 The starting values for the system are important.

* Filtering entails the use of updating equations as well.
These equations sequentially update the mean and
variance by a weighted average, corrected by a factor
analysis. As it updates the mean and the variance, the
Kalman filter proceeds according to a Markov evolutionary
process (a first-order autoregressive process) plus a
regression on the innovation. This Kalman filter is the
predictive basis of the forecasts generated by the system.
In this step, the objective is to estimate the moments of
the predictive step (Hyndman et al.,2008, 197). This is the
predictive step.



What is a state space model based on
the Kalman filter?

The predictive step is followed by a corrective measurement step.
A factor analysis of the unobserved components corrects for
inaccurate measurement error conjoined with the transition error.
The objective of this step is to find the moments of the response
variable.

This completes the cycle and reiteration takes place until all of the
data are filtered.

When all of the data are filtered, the Kalman smoother can be used
for signal extraction to smooth and extract the signal as well. Once
the model has been specified, fit, and optimized, and diagnosed as
well behaved, we can then proceed to forecast with it and evaluate
those forecasts.

Estimation can be accomplished by maximum likelihood (BFGS),
the EM algorithm, or MCMC . We shall explain all of these things
in more satisfying detail soon.



Local level model

provides an introductory example

In other words,

Initial values of the mean and variance of the state vector are
found.

The model filter provides for an AR(1) evolution of a random walk
plus noise. Filtering means recovering the state variable from the
noise, given the previous information. It does this by an efficient
one-step ahead forecast plus a regression on the error.

The measurement model provides for the correction after the
prediction step.

Maximum likelihood estimation provides the means of minimizing
the predictive error variance during the estimation of the
parameters.

The process reiterates until a steady-state solution is attained.



The Measurement (Observation) Equation

vy, =Z +E¢, g ~ NID(0,0?)

where

Z, = selection matrix of factor loadings

o, = state vector (contains all elements needed to describe
the current and past dynamic nature of itself ).

g, = observation error (irregular component) matrix

g, ~NID(0,H,)

H, = observation error variance matrix
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Aspects of the measurement model

* Z, can be construed as a matrix of factor loadings
from observed variables on an underlying factor.

* 0, can include lower order (r < k) levels, trends,

seasonality,
represents t
define the e
represents t

cycles, interventions, where r
ne number of these components to
ements of the latent factor and k

ne number of observations. It

contains the past and current states.

* g, can be thought of as measurement error.



The Transition equation

 The transition equation formulates the evolution of the state
vector. The state vector a is unobserved; it is a latent variable
or underlying factor.

* The transition equation formulates an AR(1) process plus a
regression on the innovation.

* That is why this Markov process is sometimes called a Hidden

Markov process. T is a transition matrix. &, is an evolutionary
innovation.

o, =Ta,+& & NID(0,07)



A note on notation

* Many authors use S, to refer to the state
vector instead of a,. Mark Watson used this
at his NBER lectures . Ruey Tsay uses it. Mike
West and Jeff Harrison use 6.

* We will use the Koopman syntax formulae to
avoid confusion and to be consist.



There are other forms of state space
models

* This configuration of the state space model is a
multiple source of error model. Each equation
has its own error term.

* There is also a single source of error model
developed by Keith Ord, Rob Hyndman, Anne
Koehler, and Ralph Snyder. They call their
models innovations models, but are merely single
source of error state space models.

* | show both models (in the form of a local level
model) on the next page.



SSOE v. MSOE state space models

Multiple source of error :
transition eq.: o, =Ta,+¢& & NID(0,07)

measurement eq.:  y,=Za, +& & : NID(0,07)

OV (€ s 2 2
COV(R):£S' R} Q=0;, R=o0,

Single source of error :
transition eq.: a. =Ta +ge € : NID(@,0))
g = scalar factor

measurement eq.: yv,=Za, + &, E, N]D(0,0'gz )



Other state space models use different
estimation algorithms

 The extended Kalman filter: This uses nonlinear
functions in lieu of the system matrices.

 The unscented Kalman filter: This checks for higher
order moments as well.

e Efficient Bayesian estimation: Uses an simple
exponential smoother as a transition equation and a
factor analysis as a measurement equation.

 Wavelet based estimation ( which | won’t cover here)

* The MCMC estimation: Bayesian simulation with Gibbs
sampling, Metropolis-Hastings sampling.

* The particle filter: Uses importance sampling
resampling for MCMC.



Historical development of DKF:

Other types of state space models use different algorithms to obtain initial values
(c=covariance matrix of the state vector, d=that of the innovation)

Schweppe (1965) developed the Kalman filter
approach to evaluating the likelihood(Delong, 1988,2).

Rosenberg’s (1973) showed that if C=0, the m|
estimator of mu can be explicitly displayed and
concentrated out of the likelihood(lbid.)

Schweppe (1973) recommends using the precision
rather than the variance as the criterion.

Harvey and Phillips(1979) propose initiating the
Kalman filter with a very large covariance matrix.

Ansley and Kohn (1985) show that the information
filter is fragile and numerically inefficient.



Historical development of DKF

Delong’s advocates the basis for the diffuse prior (1988) for nonstationary
series with a method easy to evaluate with the Kalman filter by using the
innovations and the covariance matrix of the innovations obtained from
the fixed point smoothing algorithm (lbid,166). Yet one has to assume
that C=nonsingular.

DelJong(1991) advocates use of the diffuse Kalman filter mentions using
the Generalized inverse when inversion of C becomes difficult. He shows
that the DKF can be collapsed to the regular KF after a few iterations using
an augmented state vector. Shows the DKF can be used for Dsmoothing
too.

Koopmans's methods: employ splines and random walks.

Other approaches: Extended Kalman filter: nonlinear processes by using
nonlinear functions.

MCMC approaches: Gibbs sampler and MH method.
Importance sampling. Importance resampling.
Particle filter: nonlinear and nonGaussian



Other forms of state space models may use different types of
variable processing

Centering: if we center we gain a df but lose our
sense of location. We reduce probability of
multicollinearity.

Standardizing: loses scale as well as location but
renders variables with different metrics
comparable.

Normalizing seasonal components: Should we or
should we not? Why not just use s-1 dummy
variables? Hyndman et al. recommend
normalization with multiplicative models (

Partial normalization



We focus on the Harvey MSOE and the later
MCMC models

MSOE model is the model used in Stamp, in
SAS

SSOE modelis used in R
MCMC is used in R.

In order to delve into this matter in sufficient
depth, given the time provided, we have to
focus on one primary method.




Initial values

— The starting values may be taken as parameters of a
prior distribution. A prior mean and variance are
necessary to define a Gaussian distribution.

— The Kalman filter needs a prior mean and variance to
begin the analysis..

— These values must be tractable for the system to
function adequately. They must not be unrealistic. If
they are unrealistic, the system may fail to converge
upon a solution.

— When the initial situation is essentially unknown, we
say that our knowledge of it is diffuse or vague.
While Harvey and Koopman tend to use this
approach, others may attempt to use a random seed.



Bayesian sequential updating

* A weighted average of the previous or prior
values and the current data are used to
obtain a posterior predictive estimation— that
is, to obtain a one-step ahead forecast.

 This will be elaborated soon.



Locally weighted averaging

The weights used are precisions. Precisions are inverses of variances. The less a
person knows, the larger the variance by which his estimates of the prior state are
divided (and thereby weighted). The less he knows, the lower the weight accorded
his estimate. Hence, the larger the variance divided into his estimate to weight it.

The more knowledge a person has, the less the variance in his estimates. When
his variance is inverted to obtain the precision weight of his estimates, we
observe that the greater the precision of his estimates, the smaller his variance .
The smaller the variance and the greater the precision, the more weight is
accorded to his estimates.

The weights reflect the amount of ignorance or assurance about a condition
when the averaging is performed in order to compute the new position.

Weights in the Kalman filter are like weights in a locally weighted average within a
lowess estimation. Such weighting is used in the computation of a local level or a
local linear trend, etc.



Bayesian sequential updating

* According to Bayes’ theorem, when the
conditional likelihood, represented by the
sample, is multiplied by the prior probability
distribution (which is sometimes assumed to
be known by the scientist familiar with the

literature) yields a joint posterior probability
distribution.

* From the posterior distribution, the moments
cah be computed.



The weighted average of the mean of the DGP is
the formula for a simple exponential smoother

 We call the parameter of interest, theta, ©
E@|Y)=du
where controls the evoluntionary process ARIMA(0,1,1)

+(I-0)Y a simple exponential smoother

prior

E (é | Y') = estimate of the posterior mean, given the data

Y =sample data

Il’lprior
0<|5|<1

0_2

S =

—— an intraclass correlation coefficient
o +7T
where
2 . . . . .
T° =variance of prior distribution

2 . . . .
o~ =variance of sample distribution



This provides the basis upon which Hyndman,
Ord, Koehler, and Snyder develop their
approach.

* They attempt to base Kalman smoothing on
exponential smoothing. They treat the
Kalman filter as though it is a more

sophisticated form of the exponential
smoother.



Bayesian shrinkage

0_2

Because 0 = ———
o +7

where

t° =variance of prior distribution

o’ =variance of sample distribution

0 o< relative precision of the sample and the prior
precisionis the reciprocal of the variance, whereas
o’ = measure of scale, the baseline against which the

precision is compared.



Bayesian Shrinkage-ctd.

As © T wrt o, the weight given the prior distributional
assumption declines and the sample is given more

weight.

Conversely, as o1 wrtt, the weight given the prior
distributional assumption increases and the sample
is given less weight.
In general, there is some shrinkage of the posterior sample
mean toward the prior.
0 = Bayesian shrinkage factor, measuring the proportion
by which the sample mean is shrunk back toward
the prior mean.

bias and variance s.t. the MSE is minimized.



If we assume Gaussianity

(Carlin and Lewis, 2009, 3™ edition, 17ff):

We know that f(x|0)= N(y|8,07),
so we can take our hyperparameters (the mean (L )

and (variance T°) of our prior and plug them

into the formula for the weighted average and obtain :

The updating would be performed with a simple weighted average of
our sample with our prior distributional mean and variance assumptions:

;
o U+7’y o T’ \

n n

p@|y)=N| 0 : S —
A P i s
AL /! j




which simply reduces to:

p@|y)=N

oc'u+t’y o't

o’+1t ot+1?

\

)



Shrinkage in accordance with relative ample size
(Carlin and Lewis, 2009, 17-18)

7 R Graphics: Device 2 (ACTIVE)

Bayesian Shrinkage
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Classical state space
assumptions

Gaussianity

Independence of observations in the residual distributions
Homoskedasticity

Stationarity

Serially uncorrelated disturbances of components
System matrices were time-invariant

Large sample for asymptotic consistent estimation
With minimum mean square estimator
Information available from past observations
Reasonable initial values

Performs best linear prediction



What are the implications of these assumptions on the
working of the Kalman filter?

 Why is Gaussianity presumed? Normal distributions of the
innovations may be necessary for the proper operation of
the maximum likelihood estimation. The formula for such
estimation comes from the knowledge of the normal
distribution parameters. They permit the construction of
conventional prediction intervals.

* |Independence of observations in the distributions
precludes the estimation of one equation from improperly
influencing that of the other equation.

 Homoskedasticity may be necessary to define the variance
of the processes and confidence intervals around the
estimate of the mean. However, GLS can be applied to
handle possible deviations from homoskedasticity.



Implications of the assumptions for
model estimation and fitting

e Stationarity: Before the development of the
diffuse prior or the information filter, this used to
be necessary in order to keep the eigenvalues
from residing on the unit circle where variances
become infinite and distributions become
undefined, as some matrices fail to invert. If
variances approach infinity, confidence interval
construction becomes impossible. Models could
then become unstable and forecasting can
become impossible.



Assumption implications

e Serially uncorrelated errors of the
components prevent bias in the significance
testing creeping in from correlated
components.

 Matrices were time-invariant: this permitted
arrival at a steady-state where moment
estimates could be generated.



State Space extensions

Use of the information filter instead of the Kalman
filter.

Enhancement of basic concepts: from 2 moments to
higher moments.

Incorporation of the regression effects
Incorporation of time-varying parameters
Augmentation of the filter to overcome nonstationarity

Use of QML and MCMC to overcome the requirement
of Gaussianity

Development of extended Kalman filter to handle
nonlinearity



Smoothing
Harvey, A.C. and Priotti, T. (2005,10)

* Disturbance smoothing provides estimation of
errors, particularly those in the measurement

model.

 The main purpose of this smoothing is signal
extraction.

e Standardized smoothed estimates of those
errors are called auxiliary residuals



Smoothing algorithms

* Fixed interval smoothing
* Fixed point smoothing

* Smoothing splines and nonparametric
regression

— Koopman quotes Green and Silver who say that
smoothing splines are equivalent to signal
extraction(Harvey and Priotti, 2005, 11).



Some Historical Background

The development of a new paradigm in time series has taken
place since the early 1970s.

This approach can handle nonstationary series and missing
values, unlike the classical Box Jenkins model developed in
the 1970s. The new paradigm is called a state space model.

Rosenberg (1973) and DeJong(1988,1991) had developed a
procedure for diffuse initialization by augmenting the
observed vector.

State Space Models were developed by Rudolf Kalman in
1960 as well as by Rudolf Kalman and Bucy in 1961.



Historical background continued

Andrew C. Harvey (1983) introduced them to econometrics.

They have since evolved into different forms. There is the multiple
source of error model that was developed.

The method by which estimation could be done at first seemed to
depend on stationary series.

Since then Delong and others have developed the Augmented
Kalman filter that can handle nonstationary series.

Recently a single source of error model was formulated by Keith
Ord, Ralph Snyder, Rob Hyndman and Ann Koehler out of the
exponential smoothing literature.

More recent developments (Kitagawa, 1996) have included
estimation with importance sampling and MCMC simulation. We
will explore this type of model tomorrow.



The state space models are based on a
nonstationary random walk

* Because this integrated system comprises the
basis of the dynamic framework, this system
is theoretically capable of handling an
integrated or nonstationary system.

* This represents an important shift in the time
series paradigm from an ARIMA model that
can only analyze stationary series to a state
space model that can incorporate
nonstationary in its dynamics.



Dynamic Factor Analysis

* |f the state vector is considered a dynamic factor,
then this approach can incorporate dynamic
factors that have been interpreted by Stock and

Watson (1991) has coincident economic
indictors.

* Whereas early attempts to deal with dynamic
factor models required stationary processes, the
use of the state space form to model them
permits “empirical model building” and

nonstationary evolution (Reinsel quoting Aoki, p.
227).



Dynamic factor analysis

e A case of a single common factor configured
as part of a state space analysis

JFt+1 :];ft + nt

yt-l—l — th; T gt
where

/=



Local level model

* This model is basically a random walk plus
noise model

measurement model : y, = i, +e, e, ~ NID(0, Uf )

transition model: ., =u +1, n,~ NID(0,0 ,f)

Epsilon and eta are two white noise series that are not
correlated with one another.

Tsay maintains that the initial values of eta and epsilon are
known or given. They are not correlated with either of the
two error terms.

Although vy, is observed, mu is not. Itis a latent or hidden
construct, sometimes referred to as a factor. Epsilon is
observable but uncorrelated noise.



A dynamic local level model

* uis alatent variable or factor that is not directly
observable. Its condition at time t is called the state.
n is the unobserved error of this random latent
variable. We assume it to be normally and
independently distributed. For this reason, this process
is sometimes called the state or transition equation.
This u is called a trend even though it has no slope.

* The measurement equation related the observed
indicator, y,, to it. The noise gives rise to random
variation in the indicator and is presumed to be

normally distributed.



The local level model
and the Kalman filter

Ruey Tsay (2005) Analysis of Financial Time Series 2" ed., chapter 11.

 We need to know the conditional mean and
the conditional variance of a process that is
normally distributed over time.

 What we mean is that if our process is
Gaussian or normally distributed, the mean
and the variance are sufficient to define the
normal distribution: hence, they are called
sufficient statistics.



Conditional probability
and its implications

The conditional mean is the ,; , conditional on the
values of y, in information set tIJj from times , ; to .

The conditional variance is %, ; =Var(p, |W; ).
Y ¢j; = the conditional mean of y,, given W..
Suppose the v, =y, -y, and V=Var(v, | W ,).

These are respectively, the one-step-ahead forecast
error and the forecast error variance, given the
information set.

The forecast error is independent each time it occurs
and the conditional variance is also the unconditional
variance so Var(v,)= Var(v,|W))



How is the observed variable related
to the latent state?

* Tsay (2005, 494) explains the link between the latent
and the observed variable in the local level
model:

Vi = EW W) =E(W +e W) =E(W |V, )= 4,



Kalman filtering

e recursions for the principle steps of the
Kalman filter (Lutkepohl, H. 2005, 627):

— Initialization

— Prediction

— Correction or revision

— Reiteration to a steady state

— Forecasting



Initialization step

* |n this case starting values have to be provided for
both the mean of the state vector and its variance.

 |f little is known about the prior distribution or its
mean, the mean is customarily set to zero and a diffuse
prior is assumed. In order to designate a parameter as
diffuse, most programs (particularly, dlm in R, SsfPack
in Ox, SsfPack in S-Plus use a -1 ) in the computer code
to designate the parameter as having a diffuse prior
distribution.

* There a multiple algorithms for the diffuse prior.



Kalman Filtering

We begin our introduction with a local level model as an
example.

When the local level is forecast then the difference between
the forecast and the actual can be observed and the

forecast error computed:

Vi= W _yt|t-] —V _lut|t—]
from the forecasterror, v,, the forecast error

variance, V., can be computed.

t?2

Vt — Var(yt - Mg | Wz—l) — Var(,ut Te, _/ut|t—1 | Wt—l)
=Var(y, — My () +Var(e |y, ;)= Zt|t—1 + O-ez



The Prediction step

* Predicting (one-step-ahead) the mean and the variance of the
state vector. These are standard formula for obtaining
moments.

=FE(e,,,|Y) = Ta, conditional mean of state vector «,_,
PM =cov(,,, | Y)) = conditional variance of state vector
= risk or peril associated with it.
a,,, =Ta, +R7, 17,~(0,0,)
P.,=TPR,T'+ROR,
where

I’ = transition matrix
R =theselection matrix of 1,

Q, = a diagonal matvix-ef -variances of the component(s)



Revision or Correction step

* Using the measurement equation

From y, =Zo, + €, g ~NID(0,H,)

v=y —E[Za, |Y +&]=y —Z o, with v, =innovation
we can obtain its variance, F :

F =var(v,)

If M =cov(e,v,), then K =M,/ F,

o, =Ta +Ky,

P.=P-MF'M

t+1



corollary

* Durbin and Koopman (2001,67) show:

Because M, =Cov(c,yv,)
=E(o,(Zo, +€,)")

=FZ,
and because F, =var(v))=E[(Z.a,+&)Z o, +&)']
— ZtPtZt '+ Hl

K=TMF"'=TPZF".
From the page before last, we obtained :
P, =P~M,F'M, =F~FPZF"ZP

t+1



The correction (revision)
step contd.

* |tis assumed that the prediction errors are not
only not serially correlated, they are not
correlated with the state either.

* The error multiplied by the Kalman gain corrects
the mean and variance of the state vector from
the prediction variance to obtain the proper
estimate of the state variance (Durbin and
Koopman (2001, 66-67); Hyndman et al.
(2009,189); Lutekepohl, 2005, 627).



The forecasting step

* Forecasting is merely an extension of the
filtering. It is done after the optimum model
has been attained and diagnosed as

acceptable.

 We will delve into different methods of
forecasting later.



What are the system matrices?
Koopman, Shephard, and Doornik (2008, 9)

(04 d 7 H
t+1 — 14 —l— 14 at + 14 8t
yt Ct Zt mx1 Gt rx1
m~+N x m~+N x 1 m—+N xm m—+N xr

m = dimension of the transition equation

N = dimension of the measurement model

at+1 \ dt
= Stlate vector O = = constant vector
yt ) Ct
(m+N)x1
(T, . .
D, = = lransition matrix
<

(m+N)x m

H, HH' HG'
u, = £ ~ NID(0,Q2) Q =

G, GH' HH'

(m+N)xr (m+N)x(m+N)
where n = number of observations

r =dimension of the disturbance vector



We can define, constrain, or limit
parameters in these matrices

Most matrices start with an m before their name. This is a
notational convention of SsfPack.

We can decide whether these matrices will be time-varying or
constant. We index these Phi, Omega, and sigma matrices by
J. All elements within are = -1 except those that vary with

time.

We can define whether these elements are known or unknown, to
be initialized as diffuse or not.

We can insert -1 to indicate that the element will receive diffuse
initialization or not.



Input to Stsm matrix

Ibid, 24

Col 2 Col 3 Col 4

Cmp
Level
Slope
Trend

Seas
_dummy

CycleO

Cycle9
BWCYC

Irregular

Col 1

0

QL& =8 QL9 9

Q

0 0
0 0
m 0
0y 0
A p
M M
A p
4 p
0 0
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The local level model

and its components
U=t +1,  1,~NID(0,0,)
y, = Il +E g ~ NID(0,07)
where
U, =unobserved local level
Y, = observed response
1, = error of evolution or transition
g, =the irregular component

(error of measurement)



Formulating the
state space local level model with SsfPack

The most elementary models only require specification of the mPhi and
mOmega .

#include <oxstd.h>
#include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>

oCa ayve Modes
LOCal 1evel odel

main()

decl mPhi, mSigma, mOmega;

GetSsfStsm
(<CMP_IRREG, 1.0, 0O, O, O;
CMP_LEVEL, .5, 0, 0, 0 >,

&mPhi, &mOmega, &mSigma):
format ("%%6.2g"):

println("Local Lewvel Model ");

println(" ol ¥
print ("Phi = " ,mPhi, " Cmega = ",mOmega, " Sigma = ",mSigma):’

R. Yaffee state space lecture 2009-Nov-26
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Local Level configuration of system
matrices in Ox

)X Professional wversion 6€.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
-ocal Level Model

~ -~ A AA
0.25 0.00

——————————————— Ox at 21:25:01 on 09-Nov-2009 ——————————————n



Is the level fixed or random?

If the level is fixed, it has no error term. If a
mathematical formula determines the level
without measurement error, this might be

possible.
If the level is fixed, there will be no variation in
the error term. In that case, the variation of

the error (csn2 located in the Q matrix) term for
the level can be set to zero.

This condition is called that of a smooth trend.

In any case, this is a very flexible model.



Component Loading into State Vector

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and ther
a insert it again

Koopman et al. (2006, p.144) show how components load into the
State vector for a model with a local level, trend, and quarterly
seasonal component (3 dummy variables):

y. =(10100)a, + (10 0)e,

where
u, 1 0 00 O 1 00
o) 01 00 O 010

=7, [F10 0-1-1-1 |, +]|0 0 1 g
Y, 00 1 0O 0 00
Vs O 0 01 O 0 00
1,

£=|¢
,
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Case 3: Local Level Model
Measurement Equation

Y, =M, TE
where y, = In(MNAtotal)
U =level fort=1,..,n
g, = error or disturbance
if U, =, where o, = random walk
where all random variables are normally distributed

and &, has constant variance.



Case 2: Local Level Model + Interventions
Measurement Equation

k 4
Vi ::ut+ ZZAitIt—T-i_gt

i=1 7=0

where y, = In(MNAtotal)
U =trend fort=1,..,n
[__ = Intervention (outlier, level shift,slope shift)
T =timelag
g, = error or disturbance
if U, =c, where o, = random walk
where all random variables are normally distributed

and &, has constant variance.



Case 1: Local Level Model + time varying
parameters + interventions

= 11, + ZZA” X, iﬂ,j]j+€t
j=1

i=l 7=0

where y, = In(MNAtotal)
W=  +p_+n = trend fort=1,...n
B =pB_ +¢ =slope

>

MQ

A, X, ,_, = time varying parameter estimates

—_

=\
Il

S

Mx

A1, = Interventions(level shifts, slope shifts,outliers)

_.

J=
g, = error or disturbance



Stacked Matrix Formulation

e Local level model (random walk plus noise) (and
Koopman (2004, 287); Zivot and Wang(2005, 521).

If a,=To,+Rn, n =iid N(0,0‘,i) transition equation

v, =20 +¢, g =iid N(O,G;) measurement equation,
then
al+l ]-l" Rtnt
= ' |(e)+
Y, Z, £
where

v, =u+¢, €= iid NO,0;)

o ~ N, P)

NB: In a local level Model : T, =1, so
(04

t+1

=o,+R7,



The Kalman filter

The Kalman filter is the process by which the forecasting or filtering is
performed.

It takes the starting values and applies its AR(1) filter to predict the
next state of the latent factor ( the condition of that factor at the next
time period).

It corrects its prediction a measurement of that state as soon as the
data become available.

The combining of the estimation with the data is performed by a
Bayesian or sequential updating that is based on a weighted averaging.

It employs sequential updating of its estimates of the future state with
a factor analysis upon the latent variable it encounters.

This updating process prevents the process from going too far awry.



The Kalman filtering process

Initial state: for the mean of the state &, and itsvariance F,

Updating process :
for the mean: o, = th J+tBX,, +C0v(0(t€t)(Var(£t)_1

t+1|t

(04 :at“t 1+BXt|t ;1 TKE,

t+1|t

where kK, = Kalman gain

X,,_, = exogenous control series

t
for the variance estimator of &, ,, ]A’t =T.F,_ T +ROR,

+1||t

Estimation is performed by a mean - square error minimization
process (Reinsel, 2008, 229)



Kalman filtering process

B+h|t _E[( Oy — t+h|t)( i+h ”hV)Cl

The predictive error variance is minimized

in the processof filtering.



Andrew Harvey (oss,i0

presents the Prediction Equations

Given P and ¢,
o, is optimally estimated as

4

-1 =G T Lo,

where

T’ =matrix of Markovian transition coefficients

c, = some constant



The Error Covariance Matrix P,
Ibid.

P,_,=TP_,T +ROR for t=1,..,T

[t
which is an asymptotic variance estimator
is amenable to an

eigenvalue decomposition

These prediction equations have updating equations



it centering renders c,=0

The innovation
e —~ N, H))
o, = 7;051 + &, 77, — N(oa Qz)



Kalman Prediction and Updating Equations

/N

at+1 — Tat + K‘tgt

R rediction eqs.
:04+K;(Y—Zat—dt)} o =
where

K = Kalman gain &

d, = constant in measurement model

Because kK, =F),,_ Z, [Zt i Z, +Ht]_1
and
F =P, ,—F,_ZF 'ZF,,
where
F,=ZP, ,Z, + H, P+o? and Kk =P /F,

st.x, =P /(P +0?) (an ICC)
=1,F,_ Z Var(v,)™" where € =,

=(T,RZ)F' fort=1,.,T



The Kalman filter can be expressed in
terms of recursive equations

In the Correction step :

&g = (7., _KzZz)az\t—l +K,y,+(c,—K/Jd,)
where K, = Kalman gain matrix
recall that in the measurement equation
y=d,+Zo,+¢& with d, = mean vector
and that we are subtracting the error K &,
in updating of the state vector. Hence,q,

can be tracked back to «,



By substituting
P=P ,—-P ZF'zZP

t - =1 tHe—1""t" t t* te—1
for the middleterm in the first group
on the right — hand side of

P,_,=TP_T +ROR for t=1,..,T
we obtain

the Ricatti equation .

!

t tle-17

were

'
E — ZtPt|t—IZt + Hr
R. Yaffee state space lecture 2009-Nov-26

P+]|t — Ly (Pt|t-1 -B, 2 E-]ZtBV-I)];,H +Rt+1Qz+1Rz,+1
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Stability of the system depends on the existence of a
steady-state solution
to the Ricatti equation

Andrew C. Harvey writes :

“The steady-state filter is said to be stable if the roots of T are less
than one in absolute value. The Kalman filter has a steady-state
solution if there exists a time-invariant error covariance matrix which

satisfies the Ricatti equation . ... If such a solution exists, we can get
B =8, =P

Harvey, A.C. (1989), 118.

R. Yaffee state space lecture 2009-Nov-26
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An algebraic Ricatti equation
formulates the steady-state solution

If such asolution exists, F_,, =P, so

the transition and gain matrices become
T=T-KZ

and

K =TPZ'(ZPZ + H)™" and the Ricatti equation
reduces to an algebraic form :
P—-TPT'+TPZ'(ZPZ'+ H)"'ZPT'-ROR'=0

In this case P = positive semi — definite.



If there is a steady state solution

the matrix of
innovations F =X=/P/'+H

4
lim—oo



0.0

With steady-state convergence recursive filtering
generates v(t), FA(-1)

and kappa
II“IIII \II
- ll'l Illl
.'"II‘ Il' p - _'\-\
/ | A , VRN P
II'. - \\' % N /\\ p

1 1 1 ¥ 1 1 1 1 1 1 1
1 3 4 6 7 8 9 10 11
1 1 1 1 1
3 4 6
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The General State Space Model

., =T, +Rn, 1/ ~ NID(0,Q,
v,= Zo +& €& ~NID(0,H,)
where

K,
B,

T, ROR 0 o. 0
at = % , (Dt = ! ’Qt = tQt t = E
l//t Zt 0 Ht 0 O-j

a

t

14

t

2= [;{I )where U, =local level, B =local slope,
1

¥, = seasonality £, = vector of measurement errors

w, = cyclicity R, = selection matrix

v, = regression effects Q, = diagonal matrix of evolution variances

@, = intervention effects (outliers, level shifts)

P, =initial state variance H, = diagonal matrix of measurement errors

o, =initial state mean o, = state vector

Z, = matrix of factor loadings B, = slope component of trend

T, = transition matrix



The General State Space Model

e Measurement model

V=1 +B+y+y +o+v +E

where

U, =locallevel + 1, (level error)

B, =local slope +7,(local slope error)

y, = seasonal component + A, @, (seasonal error)

W, = cyclical component

@, = intervention component

v, = regression effects component + ( (reg effect error)

£, = measurement error



For a multivariate state space model

We know that for a steady — state solution in

a state — space model
P=TPT'+ ROR'

In a multivariate model
P—-TPT'=ROR'
PUI-T®T"Y=ROR'
vec(P)=(I-T®T" " ROR'



Initial conditions and convergence

For time invariant models

1. Starting values for the mean and variance-covariance
matrix of the unconditional distribution of the state
vector must be provided.

2. The transition equation provides the mean
o =c +Ta,_,+Rn, var(n) =Q
c=o,—-To,_,=1-T),

o =(1-T)"c, is the mean

and P =the variance from P=TPT'+ ROR'



Condition of nonstationarity

. . —1
T must remain nonsingular for F," =0

The state vector remains stationary in the stochastic process
if A(T)< 1 and c,remains constant.

P=TPT’ +RQR’.

If the variance (K)=0,> then P=o0,? /(1-p?)



Condition of nonstationarity

If the transition equation is nonstationary, the unconditional
distribution is undefined (Harvey, op. cit, 120).

P, prior variance - OQ while the precision drops to

zero. Something cannot be divided by a precision of zero
and remain mathematically defined.

I)O — K] where k=a nonnegative scalar, with a

diffuse prior obtained K > 1S0®

This means that the initial distribution of the state vector
alpha sub zero has a non-informative or diffuse prior. With
kappa = infinity, we have reached the limit. We don’t need
it to be that large. 1077 or 1076 can approximate infinity
and remain algorithmically tractable.



Information filter

When the variance of P, is infinite, the information filter may provide a
more stable algorithm than the Kalman filter to apply (Harvey, 120).
Hence, the Precision P, ! =zero. The inversion of F is not required by
the information filter. When the dimensions of the state vector are
larger than the dimension, m, of the state, the avoidance of inverting a
large matrix like F could render the estimation much more efficient.

This method involves triangular structure of the stochastic equations in
the covariance matrix, which have a limiting form for infinite variances.
This permits the use of this filter for stationary as well as nonstationary
series without modification (Hyndman et al., 2009, 189).

The information filter is deployed in Stamp during recursive filtering.



Partitioning the state vector into
nonstationary and stationary portions

When the series is nonstationary, the
transition matrix can be partitioned to
divide the nonstationary from the stationary
components. The nonstationary portion can
be confined to T, to which the diffuse prior
can be applied.

T, MT,
T'=|LLLL
0 MT,

where the dimensions of the submatrices are
T T, , and T,

1°
dxd dx(m—d) (m—d)x(m—d)

with A(T,) < 1
(Harvey,1989,123).



Matrix partitions for nonstationary

and stationary components

(Harvey, 1989, 123)
The covariance matrix P can be conformably

partitioned so that

» :{k[ 0}
10 0 P
and the
Z' matrix can be partitioned as
2 =]
SO
y=Z72'o, +& the measurement model still
holds

so long as the first d nonstationary elements

are observable and T, 1s nonsingular



Even with a nonstationary process, it is possible
to show that this system is stable and can
converge to a steady state solution

Convergence is exponentially fast even with a nonstationary process.

Harvey suggests partitioning the transition matrix into
segments. In one segment, the stationary elements can
reside, while in another segment the nonstationary elements
can reside.

This permits proper prior assignment to partitions of the
initial value for the state vector.

The nonstationary partition can have a diffuse prior while the
stationary segment can have a proper prior.



Stability of the process

A necessary and sufficient condition for stability of the state space evolution
Is that the characteristic roots of the transition matrix, T, should have
eigenvalues with a modulus less than unity (Hamilton,378; Harvey, 114). In
other words, this is a condition necessary and sufficient for covariance
stationarity.

A (T)<1, for j=1,.,m

This means that there are no unit roots in the evolutionary process.



Partitioning the state vector and
transition matrix

Harvey suggests conformably partitioning the transition

matrix and the state vector :

- 7, M T,
, Stationary elements dxd — dx(m—d)
o =|L T=|LLLL
a, Nonstationary elements 0O M T4
- (m—d)x(m—d) |




Estimation

ML

Assumes that observations are Normal and iid. Hence, the
likelihood is the product of the individual likelihoods. When
logged, the likelihood is the sum of the individual likelihoods.

With time series, that is not the case. Observations are
conditional on the previous information set.

L(y;y) = Hp(yz 1Y _,)

t=1

We write the joint density as a function of the conditional
density times a prior distribution.



Likelihood of the state space
model

Ibid, 120.

The model is estimated by maximizing the likelihood by
minimizing the prediction error variance and maximizing
the fit with the recursive equations, when the DGP process
is NID.
LLz—zlogZE—zlogo:f —lilog|Fl |—£iv; |F [,

2 2 25 25

where

Vi =), _JA’m—I

The first term on the rhs is a constant. The last term
on the far rhs requires inversion of a matrix. If the
rank of that matrix is of low dimension, the algorithm
proceeds quickly. If it is of high order, this process

can become time - consuming.



Asymptotic characteristics

The estimator is asymptotically multivariate normal if
T is invertible.

The parameters within the parameter space are
identifiable.

Derivatives up to order 3 exist within the parameter
space of the information set and are continuous.

The term on the far rhs of the prediction error
decomposition of the variance reveals that this
algorithm proceeds according to a minimization of
the mean square error of prediction as well as fit (as F
is included in the likelihood function).



Exact Maximum Likelihood

When the model is stationary and the prior is proper, the exact likelihood
can be estimated with the formula just given.



Quasi-Maximum Likelihood

Generalized least squares with a White or a Newey-West estimator
can be used for multivariate models to handle situations where Kim
and Nelson (1999) provide an excellent account of how this works as
does Harvey. Deviations from Gaussianity can be handled so long as
the distribution is symmetric. Log-normal distributions can still yield
approximate likelihood.



GLS can be used to estimate state space models when unknown
exogenous variables are added to the measurement model

The state space model can be rewritten in a regression form

(Harvey, 1989, 130) writes that because y, =z'a, +x' [+,
we can rewrite the state space model as related regressions :
y,=x"'B+e,

e =z'0+v,

If we assume E(e,)=0, Var(e )=V

Even if the unknown x'in the model

generates heteroskedasticity, we can

solve for
L=(X"V'X ) (XV'Y) using this GLS.



The Properties of V render it amenable
to a Cholesky decomposition

Harvey, 1989, 131 writes that because V is positive
definite, there is a matrix L, which is lower triangular
and has ones in the principle diagonal, which can be
pre and post-multiplied by F inverse to yield the
inverse of V.

Vi=L'F'L

By multiplying those regression equations by L, we
obtain a heteroskedastic regression equation that
solves for beta with GLS. (See Kim and Nelson,
1999, 20.



The F can be used in GLS for V.

The log likelihood for GLS then becomes

T T
LL=LogL—l Z 10g|F|—£Z 10g|Vt'F_IVt|

2 t=r+1 2t=z'+1
B=(X'"F'X)(X'FY)

So GLS is functionally equivalent to a maximum
likelihood solution for the parameters, though ML
usually proceeds by arriving at the mean and the
variance through the gradient and the information
matrix.



The EM algorithm

The expectation maximization algorithm. It consists of expectation step
followed by a maximization step. The algorithm iterates until the likelihood
given the data can no longer be improved.

Commandeur and Koopman maintain that this algorithm assures
nonnegativity of hyperparameter estimation.

The disadvantage of this algorithm is that it is very slow, especially when
there are many parameters to be estimated.

The BFGS algorithm is much faster, but does not assure monotone
convergence. A combination of these two algorithms is used to find the
proper balance.



Rosenberg’s algorithm (1973)

The state vector is partitioned into a stationary sub-vector and a
nonstationary sub-vector. The state vectora = Ta* + Ta

B. Rosenberg's algorithm
a,, =Ts,+T*s _, +e +e*
partitions the state vector into 2 subvectors,

one s, is stationary and the other s,* is

! : : ot
not. s, *uses a dﬁuse prior whiles;
uses a normal prior.

The priors are used as starting values for

the mean and variance of the state vector.



Delong’s algorithm for diffuse
smoothing.

Requires the inversion of large matrices but Rosenberg’s does not. Rosenberg
just augments the state vector to accommodate the nonstationary components
using a diffuse prior for them only. To invert the singular matrix,

He employs a generalized inverse. Eventually, the nonstationary part collapses
to the classical Kalman filter

As it becomes stationary and then it proceeds until convergence is attained.

Delong in 1989 in JASA provides new algorithm for fixed lag smoothing
which more efficiently performs diffuse smoothing while covering the
degenerate cases and happens to be more computationally efficient. To
model diffuseness of beta, he lets beta = b + B6 where b is a fixed vector, B is
a fixed matrix of full column rank and delta is a random vector unrelated to
the v(t) and u(t) and the nonsingular covariance matrix 62 X



Exact initial Kalman filter

Koopman discovered a means of finding the exact initial Kalman
filter. This is more computationally efficient when dealing with
nonstationary series. (Koopman, S.J. “The Exact Initial Kalman filter
and the smoothing of nonstationary time series,” in Harvey and
Proietti, (eds.) ,2005, 54). The smoothing of this filter leads to the
exact score vector of the initial state vector.



Diffuse Log Likelihood

(Schweppes, 1965), according to Koopman, 2005,
55.

Diffuse LL(y) =log L(y) + %log(l()

where

Log(y)= constant + — Zlog|F*t+F_ |——Zv .V,

t—l t—]



ldentification

Hamilton (1994, 387) maintains that unless proper constraints are introduced,
intothe T, Q, G, H, B, and R matrices, the state space model will be

unidentified.

Recall that the model is

o =Tco, ,+WX, +R7y, 77, — NID(O, Q)
v, =Zc,_,+ X, +G.&, g, ~ NIDO, R)

So the question arises, how many of what kind of constraints must be
applied to identify such a model?



Smoothing

Smoothing is estimation of the signal from the measurement model.
It involves extraction and projection of this signal onto the y vector.
Interpolation is the projection of x(t), or alpha(t), onto the y(t) space
(Delong, P. Smoothing and Interpolation with State Space Models, in

(1989) Harvey and Proietti (eds) (2005), 73).



Smoothing

A set of backward recursions using the output of the
Kalman filter, formulated in Durbin and Koopman (2001)
Time Series Analysis by State Space Methods.

This smoothing is functionally equivalent to the output
of a Weiner-Kolmogorov filter (Hyndman et al.,2009,225):

a’y,
(I—(I-a)L)[1-(1-a)L”"

o — .
= 21— 2 (1_a)|]|yt—j

j:—oo

Smoothing can be used for interpolation, signal
extraction, residual analysis, deleted residuals, and
auxiliary residuals. Residuals can be useful model
diagnostics.

WK filter (I,)=




Diffuse Smoothing

Smoothing algorithms depend on initial values of the mean and variance
of the state vector. If it is assumed that nothing is known about the
first state, a noninformative prior distribution may be used from which
to obtain these values. Noninformative or diffuse prior distributions
are combined by a weighted average with current data to arrive at an
estimate. The noninformative prior has a variance that is approximately
infinite or extremely large. The precision (the inverse of the variance) is
used as the weight given to this part of the weighted average. However,
nothing can be divided by zero and remain finite. Therefore, an
approximation can be because the convergence properties of the
Kalman filter can handle such quantities.

After enough iterations to overcome the impact of the nonstationary
elements, the diffuse Kalman filter will collapse to the classical Kalman
filter and the filter, if there is a steady-state solution, will then converge
toward it.



A diffuse Kalman filter can generate
the diffuse smoothing
[ =B+ 0b
B = fixed vector of full column rank
0 = randomvector unrelated to u, orv,

that has a nonsingular covariance

as T—>o0, X' —>0 as the statevariance
becomes diffuse.

The diffuse projections can be performed
by an augmented Kalman filter.



Preliminary State Space
Model Analysis

Download the data and record the source, time, date, and study description
Of the dataset.

Be sure the dates are correct for time series data.
Check for missing values.
Time plot of the data

Look for abnormalities in the data



UK cars downloaded from nhitp://
www.exponential smoothing.net 11/13/2009

Click here to graph

ics - C:\Program Files\OxMetrics6\data\ukcars.csy - [*ukcars.csy - C:\Program Files\OxMetrics6\data\ukcars.csv]

. View Model Run Window Help
= HaAd PP B

¥ Quarter UKcars
1977 (1) 1977Q1
ars.csv 1977(2) 1977Q2
1977(3) 1977Q3
Zlot 1977 (4) 1977Q4
1978(1) 1978Q1
s 1578(2) 1978Q2
1578(3) 1978Q3
1978 (4) 1578Q4
@RCH 1979(1) 1979Q1
Give 1979 (2) 1979Q2
rAMP 1979(3) 1979Q3
1979 (4) 157904
1980(1) 1980Q1
" 1980(2) 1980Q2
N 1980(3) 1980Q3
“teractive 1380(4) 1980Q4
ima 1981 (1) 1981Q1

....... A
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C:\Program Files\OxMetrics6\data\ukcars.csy - [Data Plot]

ydel Run Window Help

ictive

50000(_—
45000(:
40000(_
SSOOOC:
30000(-
2SOOOC:

200004

T

T

T

=
=
=

Time series plot
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What’s potentially
problematic in this graph

There is a regime shift in 1980-1982

the number of cars stops falling and
begins to rise.

This would be a problem for an ARIMA model
but not for a state space model.

Why?
There is another level shift in 2000-2001.

Is this a problem? It would be for an ARIMA
model? s it for a state space model? If so,

why? If not, why not?



Basic Structural Model

* The basic structural model contains a local
level, alocal slope, and a local seasonal.

 We begin by allowing all of these components
to be stochastic.



Click on the model icon

& *OxMetrics - C:\Program Files\OxMetricsé\data\ukcars.csy - [Data Plot]
File Edit Model Run Window Help = | & x

Documents ¥

{ Data
ukcars.csv
] Graphics
Data Plot
] Code
] Text
[Z] Results
(#l Modules
= # Model
# G@RCH
# PcGive
# STAMP

OxPack

OxRun

Ox -interactive
X12arima

g A A G o

50000q

450000

40000(
35000(
30000(

25000(

20000(

ZE LY 9
2 focs])

|

e

1980 1985 1090 1995 2000 2005

oX 1212 oY 9999
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Dialog box comes down
click on formulate

B STAMP - Models for time-series data

All Modules G@RCH PcGive

Module STAMP

Category Models for time-series data

Model cdlass | Unobserved Components using 3

Formulate...

R. Yaffee state space lecture 2009-Nov-26
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Add the Ukcars variable to the selection box by clicking
on the move arrow in the middle, then click OK

Formulate - STAMP unobserved components module - ukcars.csy

l Add to selection

Use default status v

[ OK ] [ Cancel J

R. Yaffee state space lecture 2009-Nov-26 122



Select the level, slope, seasonal as stochastic
(random), and interventions as automatic

Select components - STAMP unobserved components module @

[=] Basic components 25

Level
Stochastic ®
Fixed O

Slope
Stochastic ®
Fixed O
Order of trend (1-4) 1

Seasonal
Stochastic ®
Fixed O
Select frequendies... O

Irregular /hen CIle
[+] cycle(s) O K

=] options

Select interventions

none

O
manually... O
automatically ®

nnnnnnnnnnnnnnn

[ OK J [ Cancel J
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An estimation dialog box appears.
We don’t shorten the estimation horizon at first—leave
this the full sample for the first pass

Estimate - STAMP unobserved components module @

Choose the estimation sample:

Selection sample 1877(1) - 2005(1)
Estimation starts at 1977(1)
Estimation ends at 2005(1)

Choose the estimation method:
Maximum Likelihood (exact score)

Maximum Likelihood (BFGS, exact score)
Maximum Likelihood (BFGS, numerical score)

Expectation Maximization (only variances)

O000®
./ \/ \J ./ 7/

No estimation

Use Exact score ML (the
default) at first pass

OK | [ Cancel ]
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Omnibus Estimation review

Strong convergence and steady state found are good indicators

Estimation
completed

Model descriptio
Predictive error >
variance

Ox Professional wversion 6€.00 (Windows/U) (C) J.A. Doornik,
STaMP 8.20 (C) S.J. Koopman and A.C. Harvey, 1995-2009
—-——— STAMP 8.20 session started at 11:50:04 on 19-1

Estimating...

Very strong convergence relative to le-007
- likelihood cvg 7.8001%e-015

- gradient cvg 2.46577e-009

- parameter cvg 5.60377e-008

- number of bad iterations 0

Very strong convergence relative to le-007
— likelihood cvg 1.91037e-016

- gradient cvg 1.7871%e-010

- parameter cvg 7.46128e-008

- number of bad iterations 0

Estimation process completed.

#JC( 1) Estimation done by Maximum Likelihood (exact score)

The database used is C:\Program Files\OxMetricsé\data\ukcars.csv

The selection sample is: 1977(1) - 2005(1) (T = 113, N
The dependent wvariabkle Y is: UKcars

teady state. found

Log-Likelihood is -1063.73 ( LogL = 2

-2 127.46).
Prediction erxror wvariance is 5.15371e+00

m N

R. Yaffee state space lecture 2009-Nov-26
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The model is: Y = Trend + Seasonal + Irregular + Interventions
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Omnibus statistical review

BUC( 1) Estimation done by Maximum Likelihood (exact score)
The database used is C:\Program Files\OxMetricsé\data\ukcars.csv

The selection
The dependent
The model is:
Steady state.

Log-Likelihood is

sample is: 1977(1) - 2005(1) (T = 113, N = 1)
variable Y is: UKcars

Y = Trend + Seasonal + Irregular + Interventions
found

-1063.73 (-2 LogL = 2127.46).

Prediction error wvariance is 5.15371e+008

Summary statistics

T

&
std.errxor

Normality

H(35)
DW
r(l)
a
r(q)

Q(QIQ‘P)
Rs"2

Variances

Level
Slope
Seasonal
Irregular

UKcars
113.00
3.0000
22702.
0.1189%0
0.79677
2.0367

-0.033528

12.000

-0.10845

41.693¢——— Box-Ljung Q stat (12,9)

0.33489

of disturbances:

3]

[

Value (g-ratio)

.39535e+008  ( 1.000)¢—  All components are

29756.2 (0.0001242)

.21628e+006 ( 0.005078) stochastic (each > 0)
.07839e+008
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To test the chi-square at 9 df, click on model in

the menu bar and then on Tail Probability

ogram Files\OxMetrics6\data\ukcars.csv - [Results]

iew QUGGEN Run Window Help

& Graphics... Alt+G
E calculator... Alt+C
Al Algebra... Alt+A
ol @) Batch... Alt+B
0 ’d Model... Alt+Y
S| M Estimate... Alt+L
T Test... Alt+T
P

Preferences...

= 6 &
QARE - e .

ogram Files\OxMetricsé\data\ukcars.cs

.00 (Windows/U) (C) J.A. Doornik, 19¢

an and A.C. Harvey, 1935-2009

tarted at 11:50:04 on 19-11-2009 —----

Tail Probabilty... relative to le-007
e-015

009

= paramecer vy s.ous77e-008
- number of bad iterations 0
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Enter 9df in n1 and insert the critical
value given in the output

| Tail Probability

Distribution Arguments

® chi~2(n1) n1 g .
OF(n1,n2) |

ON(,1) n2 |1 v

(O N(0, 1) - one sided
(O student t-(n1)
(O student t-(n1) - one sided

Critical value | 41.693

[ OK ] [ Cancel ]
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At the bottom of your output, the
significance test will be recorded

A significant result indicates that there remains serial correlation in the
residuals.

This result will bias your t-tests , F-tests, and R*2 upward.

To be able to trust those tests, you will need to neutralize the serial
correlation in the residuais



Click on the test cube on the right, and select
component graphics from the test menu, and click ok

Test Menu

More written output...

Components graphics...
Weight functions...
Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

Forecasting...

O00000FO

Store in database...

[ oK ] | cCancel |
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A first pass, just consider the main
components

Components graphics - STAMP unobserved components module

Equation UKcars »
Trend

K]

Trend plus Regression effects
[=] Select components to plot without Y and for composite signal...

Level
Slope
Seasonal
Fixed intervention effects
Irregular

[EX] Select type of plot...

(+] Further plots...
[+] prediction, filtering and smoothing...
=] Further options...

Plot confidence intervals |
AntiJog analysis |
Zoom sample range full sample

Store selected components in database [

[ OK ] [ Cancel
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Component graphics are generated from the smoothed
components of the state vector (signal extraction)

50000G+
| [——UKesms —— Levet-tnn]
400000
300000
200000~
1980 198) 1990 199) ’000 ”00)
500000
AP
400000~ \U//AJ/AV/ﬁhrﬂ
" .
! \/\N/N
1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I J
1980 1985 1990 1905 2000 2005

25000

—— UKcars-Szzsonal

-25000

T

AR
I

11 l 11 1 1 l 11 1

1 l J

1980 1985 1990 1995 2000 2005

-25000

-50000

1500

1250

1000

20000

10000

-10000

_l—Hch_rIrtenertor
T PN [N TN SN SN T N N T T T NN I I
1980 1985 1990 1995 2000 2005

L L

1980 1985 1990 1995 2000 2005

1985 1990 1995 2000 2005

1980
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Diaghosing outliers and level shifts

2000 /////////////////////////////////////////////g

| UKcars-Irregular | e

7

T |\ ‘\| | W | ;
1 ' M i i N 1 4 ' I

‘il'“ia!%.‘!k]J"i.\.,}"!ill'nwj"'; A ||1;|.u'~'|¢ J Ilf', Z

| N C1W MY ! ol vl

LRI ||| PR IV

-1000 i | ‘ ; 7

7

—— %47%‘L%%*—,,%’Kq{w«vd;‘Js%*-,-%sslsw%%%‘v%w%é

)05 1980 1983 1990 19095 2000 2005

X 1984.8 Y -18500
\ Place cursor on outlier and
R. Yaffee state space re Zt)b@I\B\r/-—Q(per date WI” appear 133

to the left



A more detailed examination requires
more output

(click on the test icon and then in the test menu, on “More written output”. Then click ok.

Test Menu

Components graphics...
Weight functions...
Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

Forecasting...

OO000000F

Store in database...

[ OK ] [ Cancel J
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The More Written Output menu

Select these options and click ok.
More written output - STAMP unobserved components module a

Print parameters

Variances D
Parameters by component |:|
Full parameter report
Print state vector

State vector analysis

State and regression output

El Print recent state values...

Print tests and diagnostics
Summary statistics
Residual diagnostics

Qutlier and break diagnostics
Write large absolute values

exceeding the value of 3

Anti-og analysis |

[ OK ] [ Cancel ]
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Full parameter report shows no problem computing
first and 2"d derivatives

(or asymptotic standard

errors)

Full parameter report
Actual parameters (all)
Value
Var Level 2.3954e+008
Var Slope 29756.
Var Seasonal 1.2163e+006
Var Irregular 1.0784e+008
Transformed parameters (not fixed)
Transform 1stDer 2ndDer asymp.s.e
Var Level 9.6471 0.033280 -0.69824 0.32377
Var Slope 5.1504 -2.1566e-005 -0.00038409 6.1493
Var Seasonal 7.0057 0.0049193 -0.044708 0.87008
Var Irregular 9.2481 0.020847 -0.27549 0.63997
Actual parameters (not fixed) with 68% asymmetric confidence interval
Value leftbound rightbound
Var Level 2.3954e+008 1.2536e+008 4.5771e+008
Var Slope 29756. 0.13563 6.5281e+009
Var Seasonal 1.2163e+006 2.1345e+005 6.9307e+006
Var Irregular 1.0784e+008 2.9985e+007 3.8784e+008

R. Yaffee state space lecture 2009-Nov-26
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All components are significant except the slope

we could trim the model and gain power with more df for a test by pruning out the

State wvector analysis at period 2005(1)

slope

Value Prob
Level 469891.41528 [0.00000]
Slope 1542.90170 [0.39354]
Seasonal chi2 test 45.19769 [0.00000]
Seasonal effects:
Period Value Prob
1 27966.58096 [0.00002]
2 13519.89654 [0.04214)
3-34818.84346 [0.00000]
4 -6667.63404 [0.28321]
State wvector at period 2005(1)
Coefficient RMSE t-value Prob
Level 469891.41528 23742.14541 19.79145 [0.00000]
Slope 1542.90170 1800.91354 0.85673 [0.39354]
Seasonal 31392.71221 4930.13796 6.36751 [0.00000]
Seasonal 2 10093.76529 5062.46656 1.99384 [0.04876]
Seasonal 3 -3426.13125 4076.24819 -0.84051 [0.40253]
Regression effects in final state at time 2005(1)
Coefficient RMSE t-value
Cutlier 13878 (4) -62534.93392 18121.05052 -3.45096
Cutlier 1973 (3) -63562.56645 17875.22817 -3.55590
Level break 2000(2)-64718.35882 21068.46118 -3.07181

R. Yaffee state space lecture 2009-Nov-26

[0.00081]
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To test the removal of the slope against a significant change in
the LL, click on formulate icon, (the left hand cube) and then on
progress button in the dialog box

E STAMP - Models for time-series data

All Modules G@RCH Give STAMP
Module STAMP \
Category lModeIs for time-series data \ v ]
\
Model class IUnobserved Components using STA)(IP v ‘

Formulate... Test...
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Click on “mark general to specific” and
then ok.

Progress - STAMP unobserved components module

4l UC( 1) 4 x 113 -1063.73 Maximum Likelihood (exact score)

[ < ] [ Del ] [ > ] [Markgaedﬁc to General ] [Markgeneral to Spedﬁc]

Find more general models for this specific modell

| [ Cancel |
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This leaves a record in memory as to the
goodness of fit of that model as indicated
by LL or IC



When the select components menu appears, deselect the
slope and leave intervention selection on manual
then click ok.

Select components - STAMP unobserved components module @

[=] Basic components »~
Level
Stochastic ®
Fixed O
Slope [l
Seasonal
Stochastic ®
Fixed O
Select frequendies... [
Irreqular
[+] cycle(s)
=] options

Select interventions
none

O
TP
O

automatically

et

[ OK ] [ Cancel J
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When the select interventions menu appears, we do not
change it, and click ok. We are only testing the significance of
the slope.

Select interventions - STAMP unobserved components module

Press Add button to include more interventions in the model.

Select Type Period
of |yl irregular 1578 (4)
1 irregular 1875(3)
2 D irregular 1550(4)
3 level 2000(2)

ok || cancel | load... | [ savess.. | | Reset
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The estimation menu, we also leave

the same, and proceed to click ok.

Choose the estimation sample:
Selection sample

Estimation starts at

Estimation ends at

Choose the estimation method:
Maximum Likelihood (exact score)

Maximum Likelihood (BFGS, exact score)
Maximum Likelihood (BFGS, numerical score)
Expectation Maximization {(only variances)

No estimation

R. Yaffee state space lecture 2009-Nov-26

1977(1) - 2005(1)
1977(1)
2005(1)

1(0\1

s
A RN

\

oXeX

laYe
./

OK | [ Cancel

]
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The New Model appears with all
components significant.

* We go back to the formulate icon (the left hand
cube) and click on it.

* We click on the progress button on the drop down
formulate dialog box.

 We then click on General to specific.
 What appears at the bottom of our output is:

Progress to date

Model T j o log-likelihood SC HQ LIC
uc( 1) 113 4 Maximum Likelihood (exact score) -1063.7319 18.994< 18.937< 18.89¢
uc( 2) 113 3 Maximum Likelihood (exact score) -1070.9629 19.081 19.038 19.00¢

Tests of model reduction (please ensure models are nested for test wvalidity)

UC( 1) --> UC{( 2): Chi™2( 1) = 14.462 [0.0001] =**

£ s



Removal of the slope component
significantly reduced the log-likelihood

* Therefore, we will restore the stochastic slope
component to our state vector, even though it
did not appear to be important by comparison
to the other components.

 The signal to noise ratio was not very high for
that component. However, there was a
perceptible bend in the curve that matched
the trend.



2"d pass—select all components as

stochastic and reiterate

(=] Basic components N
Level
Stochastic ®
Fixed O
Slope
Stochastic ®
Fixed @)
Order of trend (1-4) 1
Seasonal
Stochastic ®
Fixed @)
Select frequendies... O
Irregular
[+] cycle(s)
=] options

Select interventions

none O
manually... O
automatically ®
Cmb mmemmnmbmem b v

[ OK ] [ Cancel ]
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If this menu appears regardless of your having
opted for automatic selection, select all
suggested and then ok.

Select interventions - STAMP unobserved components module

Press Add button to incdlude more interventions in the model.

Select Type Period
0 irregular 1578 1(4)
1 irregular 18735(3)
2l |v] irreguiar 1930(4)
3 level 2000(2)
Add
[ OK ] [ Cancel ] [ Load... ] [SaveAs...] [ Reset ]
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State Space Model Diagnosis

Omnibus model diagnostics
Component diagnostics
Residual analysis

— Auxiliary residuals

— Residuals

— Graphical diagnostics
Intervention diagnostics
Explanatory variable diagnostics
Forecasting

Forecasting evaluation
Model fitting strategies
Model adequacy

Model optimality and the progress option



This model did not fully converge to a

steady state.

Estimating....
Weak convergence relative to 1le-007

- like

lihood cvg 1.91461e-010

- gradient cvg 4.44545e-006
- parameter cvg 2.85583e-005

- numb

Very s
- 1like

er of bad iterations 0

trong convergence relative to le-007
lihood cvg 4.306%92e-015

- gradient cvg 6.41512e-009
- parameter cvg 7.26624e-008

- number of bad iterations 0O
Estimation process completed.
BUC( 3) Estimation done by Maximum Likelihood (exact score)

The database used is C:\Program Files\OxMetricsé\data\ukcars.csv
The selection sample is: 1977(1) - 2005(1) (T = 113, N = 1)
The dependent wvariable Y is: UKcars
The model is: Y = Trend + Seasonal + Irregular + Interventions
Steady state....ccece.. found without full convergence

Log-Likelihood is -1063.91 (-2 LogL = 2127.81)

Prediction error wvariance is 5.14948e+008

R. Yaffee state space lecture 2009-Nov-26
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What are our options?

We may fine-tune the model, by
Trying different starting values for parameters

We may fit other interventions to improve
convergence to a steady-state.

We begin by looking at the component
graphics and then asking for more written
output.



Omnibus Diagnosis

 We test our Box-Ljung Q for residual serial
autocorrelation with 9 df. It is still significant
so we have autocorrelation in the residuals.

 We will have to deal with that to avoid biasing
our significance tests .

 We opt for component graphics first, and also
select individual seasonals from further plots.



Omnibus model diagnostics

* These diagnhostics assess overall model
goodness of fit

* They may provide hints wrt problems

* They are helpful in initial comparison of
models



Selecting component graphics for the

Components graphics - STAMP unobserved components module a

Trend O s
Trend plus Regression effects
[=] select components to plot without Y and for composite signal...
Level
Slope
Seasonal
Fixed intervention effects
Irregular

[=] select type of plot...
Individual time plots of components
Time plot of composite signal
Time plot of composite signal with Y
Crossplot of composite signal vs Y
(=] Further plots...
Detrended Y

Seasonally adjusted Y

Individual seasonals

mmabme AE lmm.

KOO O000®

OK ] [ Cancel ]
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The slope is very different this time.
We need to ascertain why.

500000 i 0
_I—L’h:;.'s —Lev.'el-I:'.tv] ) i |
40000¢- AF g 25000 ’
3ooooc—w MMW I ‘H |
I A on AR P -50000|
200004 M -
PRRETSRET R IS U SN ISR SRS N S SR SUN SN N SRS S NSNS T N PRRETERNTIN ISR SR N SN SRS NSNS SN SN N SN SRS NSNS T S N
1080 1085 1000 1005 2000 2005 1080 1085 1000 1005 2000 2005
500000 13499
L A / ".."_/.” Vi L
400004 P 134991
Y ~N Y 1349.0
300000 ™\ N I
L Al »)»'_'5' ™~ "
. I\Jf\.\-"'. o M T T I .1349'9
1080 1085 1000 1005 2000 2005
25000 -3 10000
I | iy L
i | 0
225000 |} | | -
2 M 10000
PR ST S W U U S S W N S S S LA U S SN (S ST ST S N PR SRTS N RN T S (N SN ST SN N (T S SR SN U NN U S S S N SN S S S N
1080 1085 1000 1005 2000 2005 1080 1085 1000 1005 2000 2005
25000
250001 -
__l_. __r 1 1 __T_ _T—_ 1 T —_T 1 1 1 J
1080 1000 2000
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The Full parameter report reveals that inversion
of the vcv matrix failed and a generalized
inverse was used to proceed.

OCutlier 1979(3) -63242.04916 16246.702
Level break 2000(2)-60747.83025 20022.104
Chi~2(9) = 37.431 [0.0000] =**
Full parameter report
Actual parameters (all)
Value
Var Level 2.5464e+008
Var Slope 0.00000
Var Seasonal 1.6112e+006
Var Irregular 5.868%e+007
Warning: invertgen:
SEst.ox (2593): PrintPar
Transformed parameters (not fixed)
Transform 1stDer
Var Level 9.6777
Var Seasonal 7.1462
Var Irregular 8.9439 0.053840
Actual parameters (not fixed)
Value leftbound
Var Level 2.5464e+008 1.8301e+008
Var Seasonal 1.6112e+006 7.7832e+005
Var Irregular 5.868%e+007 2.7161e+007

State vector

Level
Slope
Seasonal
Seasonal 2
Seasonal 3

at period 2005(1)

Coefficient
465183.25500 2220
1349.90063 152
30761.14809 503
10197.289%91 523
-2221.123861 415

R. Yaffee state space lecture 2009-Nov-26
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RMSE

] O
w m
w

w o,
o

o I VI I
o m

W W b

- -

=

-0

-

-0.
righ
.543
.335

.268

W W

t-value
20.95124
0.88641
6.11142
615

.94
53506

1
-0.

invertsym failed, proceeding with generalized p.s.d.

2ndDer
.97661
067805

097339

tbound
Oe+008
3e+006

le+008

[0.37742]
.05431]
.59374]

[0.

[0.

000171

00304]

inverse

asymp.s.e

0.16515
0.36380

0.38523

[§

with 68% asymmetric confidence interval

155



Lack of variance in the slope may have
caused it to be modeled as fixed

Variances of disturbances:

Value (g—ratio)
Level 2.54638e+008 ( 1.000)
Slope 0.000000 ( 0.0000)

Seasonal 1.61120e+006 ( 0.006
Irregular 5.86886e+007 | 2



Omnibus statistics

Goodness-of-fit based on Residuals UXcars

Value

Prediction error variance (p.e.v) 5.1495e+008
Prediction error mean deviation (m.d) 4.6036e+008
Ratio p.e.v. / m.d in sguares 0.79655
Coefficient of determination R"2 0.92178
based on differences Rd"2 0.80538
based on diff around seas mean Rs"2 0.33544
Information criterion Akaike (AIC) 20.219
Bayesian Schwartz (BIC) 20.436

Serial correlation statistics for Residuals UXcars
Durbin-Watson test is 2.12445
Asymptotic deviation for correlation is 0.09759

Lag df Ser.Corr BoxLjung prob
4 1 -0.18074 14.966 [ 0.0001)
8 5 0.1077 27.708 [ 0.0000]
12 9 -0.10418 37.431 [ 0.0000]
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R? is probably inflated owing to the
residual serial autocorrelation

* The R square = .92 but this is questionable

e Serial correlation in the residuals could inflate
this, F and t values.

* Yet all residuals appear to be normal:
— lrregular
— Level
— Slope



Residuals appear normally distributed
for all components

Normality test for Irregular residual

vaiue

Sample size
Mean -0.
St.Dev
Skewness
Excess kurtosis
Minimum

Maximum
Chi~2 prob
Skewness 0.56536 [ 0.4521)]
Kurtosis 0.0014852 [ 0.9693]
Bowman-Shenton 0.56685 [ 0.7532]
Normality test for Level residual
Value

Sample size .00
Mean -0 333
St.Dev 891
Skewness -0.027343
Excess kurtosis -0.64500
Minimum -2.4666
Maximum 2.8404
Chi~2 prob
Skewness 0. 1 [ 0.9064]
Kurtosis 1 [ 0.1654]
Bowman-Shenton 8 [ 0.3795]

Normality test for Slope residual

Sample size
Mean
<




We need to examine the graphics of the
irregular to look for other interventions

Normality test for Slope residual

alue
Sample size 111.00
Mean 0.58561
St.Dev 78850
Skewness -0.088005
Excess kurtosis -0.66432
Minimum -1.5964
Maximum 2.2688
Chi~2 prob
Skewness 0.14328 7050
Kurtosis 3

Bowman-Shenton



2 candidate outliers in the irregular

and one in the level

ar interventions |
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Candidate outliers

~or the irregular, Aug 1984 and Sept 1990.
or the level, Jan 1985.

f these do not eliminate residual serial
autocorrelation, when implemented, then we
introduce an arl lag into the model.

| found that the slope had been changed by
the system to fixed so | reset that to
stochastic, selected the those 2 outliers and 1
level shift, and then re-estimated.




Pass 4 (changed the slope to random)

Estimating....

Weak convergence r
- likelihood cvg 4.
- gradient cvg 3.6

8

- parameter cvg 3.20674e-006
- number of bad iterations 0
Estimation process completed.

WUC( 4) Estimati
The database used is C:\Program Files\OxMetricsé\data\ukcars.csv
The selecti

on done by Maximum Likelihood (exact score)

on sample is: 1977(1) - 2005(1) (T = 113, N = 1)

The dependent wvariable Y is: UKcars

The model is:

Steady state. found

Log-Likelihood

2 (
Prediction error variance is

oglL = 2055.15).
47e+008

Summary statistics

T

p
std.error
Normality
H(34)

DW

r(1)

q

r(q)
Q(g,q-p)
R3"2

UKcars

113.00

-]
W
PO N S
O O b O O W
o
wn - O

oW W

w
O O ;o b O

O N .
O N W W bW

|
(=]
w
[T SRS
. N .
(=]
[T ]
o N O

(=]
B
NS
Wb
(0]

Variances of disturbances:
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Omnibus review

e Steady state was found, model converged.

Variances of disturbances

Value
Level 2.82462e+008
Slope 66766.8
Seasonal 2.30098e+006
Irregular 4.,10468e+007

(a
(
(0.0
( 0.
(

-ratio)

1.000)
002364)
008146)
0.1453)

State wvector analysis at period 2005(1)

Level 40
Slope

Seasonal chi2 test
Seasonal effects:

Period
1 286
2 120
3-317
4 -89

Va
.17
.68
33.40

n

5 N
w0 b
w O NN

[
w
[

lue Prob
363 [0.00000]
520 [0.59189]
502 [0.00000]
lue Prob
288 [0.00008]
238 [0.10717]
420 [0.00002]
106 [0.19131]

Regression effects in final state at time 2005(1)

Coefficient
Cutlier 1978 (4) -62928.26379
Cutlier 1979(3) -62495.3529¢6
Cutlier 1990 (4) 45799.27066
Level break 2000(2)-58782.04032
Cutlier 1984 (3) 23482.87575

16569.
.32708

16240

15877.
.50495
.04136

20441
16007

RMSE
84786

98409

t-value
-3.79776

W

|
NN

.84816
. 88445
.875862
.46703

Level break 1985 (1)R.6\HTSe SEARTS Rre2lecB6n08009-NEv-2R77

[o
[0

[0

.00478]
.00491]
(0.
.00320]

14544]
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We ask for more written
output from the test menu

More written output - STAMP unobserved components module

Print parameters
Variances
Parameters by component

Full parameter report

KOO

Print state vector

State vector analysis

0O

State and regression output v

T EJ Print recent state values...

i Print tests and diagnostics
Summary statistics
Residual diagnostics

Qutlier and break diagnostics

: Write large absolute values .

exceeding the value of 3

Anti-log analysis [

[ OK ] [ Cancel ]
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The dependent variable is normally distributed, residual serial
correlation persists, and this could inflate the R? and t-tests.

Normality test for Residuals UKcars

Value
Sample size 102.00
Mean 0.0910985
S5t.Dev 0.99584
Skewness -0.18420
Excess kurtosis -0.12521
Minimum -2.4413
Maximum 2.7477
Chi~2 prob
Skewness 0.57682 [ 0.4476]
Kurtosis 0.06663 [ 0.7963]
Bowman-Shenton 0.64345 0.7249]

Goodness-of-fit based on Residuals UKcars

Value

Prediction error variance (p.e.v) 4.,4347e+008
Prediction error mean deviation (m.d) 3.5376e+008
Ratio p.e.v. / m.d in sqgquares 1.0005
Coefficient of determination R"2 0.93456
based on differences Rd"2 0.83718
based on diff around seas mean Rs”"2 0.44403
Information criterion Akaike (RIC) 20.123
Bayesian Schwartz (BIC) 20.412

Serial correlation statistics for Residuals UKcars
Durbin-Watson test is 2.05325

Asymptotic deviation for correlation is 0.0990148
Lag df Ser.Corr BoxLjung prob

4 1 -0.15051 9.8817 [ 0.0017

8 5 0.073764 23.503 [ 0.0003

12 9 -0.12002 35.466 [ 0.0000)]
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Residuals are otherwise well-behaved. The slope
(not shown here) residuals are also normally
distributed.

Normality test for Irregular residual

Sample size 113.00
Mean -0.0032692
QRAeR

St.Dev 0.9888 4
Skewness 0.23553
Excess kurtosis 0.021461
Minimum -2.2647
Maximum 2.5556

Chi~2 prob
Skewness 1.0448 0.3067]
Kurtosis 0.0021685 0.9629]
1.047 0.5925]

o

Bowman-Shenton

Normality test for Level residual
Value
Sample size 111.00
Mean -0.011262
St.Dev 0.98813
Skewness -0.14663
Excess kurtosis -0.52923

Minimum -2.3309

Maximum 1.9978

Chi~2 probk
Skewness 0.39776 0.5282]
Kurtosis 1.2954 0.2551]
Bowman-Shenton 1.6932 0.4289]



As a last resort, we click on select
components and add the ar(1) component
and re-estimate

Select components - STAMP unobserved components module E

Stochastic ® A
Fixed O
Slope
Stochastic ®
Fixed O
Order of trend (1-4) 1
Seasonal
Stochastic ®
Fixed O
Select frequendies... ]
Irregular
=] cycle(s)
Cydle short (default 5 years) O
Cyde medium (default 10 years) []
Cydle long (default 20 years) |
AR(2) O
(=] options
v

[ OK ] [ Cancel ]
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Steady state is found again on this
pass

BWUC( S5) Estimation done by Maximum Likelihood (exact score)
The database used is C:\Program Files\OxMetricsé\data\ukcars.csv

The selection sample is: 1977(1) - 2005(1) (T = 113, N = 1)
The dependent variable Y is: UKcars
The model is: Y = Trend + Seasonal + Irregular + AR(1l) + Interventions

Steady state. found

Log-Likelihood is -1026.08

(-2 LogL = 2052.17).
Prediction error wvariance is 4.321

96e+008

I
an
oL

Summary statistics

UKcars
T 113.00
P 5.0000
std.erxrror 20789.
Normality 0.93851
H(34) 1.0154
DW 2.0385
r(l) -0.033170

14.000
r(q) 0.13231
Q(a,a-p) 29.775
Rs"2 0.45817

Variances of disturbances:

Value (g-ratio)
Level 32508.0 (5.302e-005)
Slope 526970. (0.0008595)
Seasonal 2.39504e+006 ( 0.0033807)
AR (1) 6.13083e+008 ( 1.000)
Irregular 113757. (0.0001855)

AR (1) other parameters:
AR coefficient 0.71183
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Some residual ar is attenuated, but not
all. We enter the ar2 and re-estimate

Bowman-Shenton 0.57886 [ 0.7487]

Goodness-of-fit based on Residuals UKcars
Value

Prediction error wvariance (p.e.v) 4.322e+008
Prediction error mean deviation (m.d) 3.4017e+008

Ratio p.e.v. / m.d in sguares 1.0277
Coefficient of determination R"2 0.93622
.. based on differences Rd"2 0.84132
.. based on diff around seas mean Rs"2 0.45817
Information criterion Akaike (AIC) 20.097
.. Bayesian Schwartz (BIC) 20.38¢6

Serial correlation statistics for Residuals UKcars
Durbin-Watson test is 2.03846
Asymptotic deviation for correlation is 0.0990148

Lag df Ser.Corr BoxLjung prob

4 0 -0.084352 5.7345 [ 1.0000]

8 4 0.048756 16.389 [ 0.0025]

12 8 -0.11991 27.159 [ 0.0007]
Normality test for Irregular residual

Value
Sample size 113.00
Mean 0.0062564
St.Dev 0.98946
Skewness 0.20587
Excess kurtosis 0.052500
Minimum -2.4043

-

Maximum 2.5012



We try an ar(1) and ar(2) and re-
estimate.

Blsccomponents K

Level
Stochastic ®
Fixed (@]

Slope
Stochastic ®
Fixed @]
Order of trend (1-4) 1

Seasonal
Stochastic ®
Fixed O
Select frequendies... O

Irreqular

=] cycle(s)

Cydle short (default 5 years) O

Cydle medium (default 10 years) []

Cycdle long (default 20 years) O

AR(1)

AR(2) v

[ OK ] [ Cancel
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Component graphics
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The variance-covariance matrix did not invert and a
generalized inverse was used. This may be associate with
the failure of AR(1) component.

Full parameter report
Actual parameters (all)

Value
Var Level 0.00000
Var Slope 5.2207e+005
Var Seasonal 2.6252e+006
Var AR (1) 0.00000
AR (1) coefficient 1 0.11531
Var AR (2) 5.0905e+008
AR (2) coefficient 1 0.51795
AR (2) coefficient 2 0.51836
Var Irregular 8.1471e+007

Warning: invertgen: invertsym failed, proceeding with generalized p.s.d. inverse
SEst.ox (2593): PrintPar
Transformed parameters (not fixed)

Transform 1stDer 2ndDer asymp.s.e
Var Slope 6.5828 7.4301e-005 -0.057022 0.39707
Var Seasonal 7.3903 0.00030442 -0.10323 0.39615
AR (1) coefficient 1 -2.0377 0.00000 0.00000 6.4975e-016
Var AR (2) 10.024 -0.0010687 -0.62373 0.18127
AR (2) coefficient 1 0.071841 -0.00025521 -0.045275 1.5582
AR (2) coefficient 2 0.073454 -0.00025835 -0.045332 1.5574
Var Irregular 9.1079 0.0006899¢6 -0.26568 0.30715
Actual parameters (not fixed) with 68% asymmetric confidence interval
Value leftbound rightbound
Var Slope 5.2207e+005 2.3596e+005 1.1551e+006
Var Seasonal 2.6252e+006 1.1887e+006 5.7976e+006
AR (1) coefficient 1 0.11531 0.11531 0.11531
Var AR (2) 5.0905e+008 3.5425e+008 7.3150e+008
AR (2) coefficient 1 0.51795 0.18447 0.83617
AR (2) coefficient 2 0.51836 0.18484 0.83628
Var Irregular 8.1471e+007 4.,4077e+007 1.505%e+008

State vector at period 2005 (1)
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We can see that the AR(1) component
did not work

State wvector at period 2005(1)

Coefficient RMSE t-value Prob
Level 424546 .93797 34489.62307 12.30941 [0.00000]
Slope 1149.54803 2428.03794 0.47345 [0.636390]
Seasonal 29629.2177 5654.744¢66 5.23971 [0.00000]
Seasonal 2 10745.27324 5985.14446 1.79532 [0.07553]
Seasonal 3 -1568.80378 4726.82869 -0.33189 [0.74064]
AR (1) 0.00000 0.00000 .NaN [ .NaN]
AR (2) -9905.76290 18360.67871 -0.53951 [0.5%8070]
AR (2) 2 2424.62188 5055.14654 0.47963 [0.63250]

Regression effects in final state at time 2005(1)

Coefficient RMSE t-value Prob
Cutlier 13978 (4) -§1014.93554 16775.76%¢61 -3.63709 [0.00043]
Cutlier 13873(3) -§4257.53147 16400.80328 -3.91795 [0.00016]
Cutlier 13990 (4) 44941 .,31741 15990.80695 2.81045 [0.00592]
Level break 2000(2)-64117.42562 19364.57045 -3.31107 [0.00128)]
Level break 1985(1) 54913.02641 189898.22880 2.89043 [0.00469]
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Irregular and slope residuals are good
but slope residuals are not.

Normality test for Irregular residual

*r= 3

vaiue

Sample size 113.00
Mean -0.015

3
St.Dev 1.01
Skewness 0.144

36
30
Excess kurtosis -0.15552
30
5

29
19]

Minimum -

nNoN

Maximum .5258

Chin2 prob
Skewness 0.39215 [ 0.5312)
Kurtosis 0.11388 [ 0.7358]
Bowman-Shenton 0.50604 [ 0.7765]

Sample size 112.00
Mean -0.017971
St.Dev
Skewness - 12
Excess kurtosis - 13
Minimum -2.425
Maximum 1.959

Chi~2 prob
Skewness 0.42681 [ 0.5136]
Kurtosis 1.418 [ 0.2337]
Bowman-Shenton 1.8453 [ 0.3875]



Residual serial correlation and misbehaved slope

residuals plague this model (failure of AR(1))

Goodness-of-fit based on Residuals UKcars

component

Normality test for Slope residual

Value
Value
] ] . Sample size 111.00
Prediction error variance (p.e.v) 4.,3824e+008 PR
] ] ) ) - - Mean 0.30453
Prediction error mean deviation (m.d) 3.4892e+008 PR
Rati / d i 1.0043 St.Dev 0.93478
1 ?‘7. . 'Y_ 1 _; : 4 lll_l $
natlo p.e. 1.d in Squares N Skewness 0.0084911
Coefficient of determination R"2 0.9347 ~ . e
) —n e mmmn Excess kurtosis -1.2212
based on differences Rd"2 0.83752 . . —_
] o - Minimum -1.6725
based on diff around seas mean Rs"2 0.4452 ] o s m
- ] ] ] o o o Maximum 2.0243
Information criterion Akaike (AIC) 20.093
Bayesian Schwartz (BIC) 20.358 o am
f‘q’f\
il <&
) ) ) ) ) . Skewness 0.0013338
Serial correlation statistics for Residuals UKcars _ ] -
Durbin—W ) o mmmmn Kurtosis 6.8975
urbin-Watson test is 2.08782
. ] ) ) ) ) e Bowman-Shenton 6.8988
Asymptotic deviation for correlation is 0.0985329 |
Lag df Ser.Corrx BoxLjung probk
4 -1 -0.084399% 4.,5647 [ 1.0000]
8 3 0.033324 14.458 [ 0023]
12 7 -0.076338 24.558
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We try again with and hope that a different
starting value will lead to a more propitious
result.

Estimating.......

Strong convergence relative to le-007
- likelihood cvg O

- gradient cvg 8.18304e-005

- parameter cvg 0

- number of bad iterations 5

Strong convergence relative to 1le-007
- likelihood cvg O

- gradient cvg 0.000234708
- parameter cvg 0
- number of bad iterations 5

Estimation process completed.

WUC( 7) Estimation done by Maximum Likelihood (exact score)
The database used is C:\Program Files\OxMetricsé\data\ukcars.csv
The selection sample is: 1977(1) - 2003(1) (T = 105, N = 1)
The dependent wvariable Y is: UKcars

The model is: Y = Trend + Seasonal + Irregular + AR(1l) + AR(2) + Interventions
Steady state. found

Log-Likelihood is -3858.678 (-2 LogL =
Prediction error wvariance is 4.57688e+00

This time a stead state is found, and although there were 5 bad iterations the
model converged.



This time the Box-Ljung Q is smaller
and the ar(1) and ar(2) worked.

Log-Likelihood is -958.678 (-2
Prediction error variance is 4.

Summary statistics
UKcars

T 105.00
p 7.0000
std.error 21394.
Normality 1.5%891
H(31) 1.2357
DW 1.9409
r(l) 0.026838
a 15.000
r(q) 0.068166
Q(g,q-p) 13.967
Rs"2 0.44419

Variances of disturbances:

(
Slope ( 0.04722)
Seasonal 4.8 ( 0.4537)
AR (1) 1.2 ( 0.1139)
AR (2) 5.3 ( 50.38)
Irregular 1.0 ( 1.000)

(1) other parameters:
coefficient 0.60756
(2) other parameters:
coefficient 0.60756
(1) coefficient 1.05169%
R(2) coefficient -0.27621

o
g

:;a
s



A Box-Ljung Q test with 8 df shows that the
autocorrelation of the residuals is not

significant.

Tail Probability

Distribution Arguments
® chi~2(n1)

1 8 A
OF(n1,n2)
C) N(Or 1) n2 B - ¢

(O N(0,1) - one sided
O student t-(n1)
(O student t-(n1) - one sided

Critical value | 13.967]
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The residuals are no longer signficantly
autocorrelated.

Goodness-of-fit based on Residuals UKcars

Prediction error wvariance (p.e.v) 4.576%e+008
Prediction error mean deviation (m.d) 4.085%e+
Ratio p.e.v. / m.d in squares 0.7988
Coefficient of determination R"2

based on differences Rd"2

based on diff around seas mean Rs"2
Information criterion Akaike (AIC)

Bayesian Schwartz (BIC)

o
) .

-
.

5 T o T §
B W
oW W
B
w -

[ LS T S B

b

RN o
w = w

0«
L

Serial correlation statistics for Residuals UKcars

Durbin-Watson test is 1.9409%

Asymptotic deviation for correlation is 0.102598
Lag d

Hh

Ser.Corrx BoxLjung prob

]

4 -1 -0.10978 3.4383 [ 1.0000]
8 3 0.10541 7.628 [ 0.0544]
12 7 -0.067548 13.134 [ 0.0e89



Irregular and level residuals remain
well-behaved.

Normality test for UKcars-Irregular residual

Sample size 105.00
Mean -0.0073490
1.1223

St.Dev 1.1

Skewness 0.1
Excess kurtosis -0.4
Minimum -

mw w ;n w

Maximum

Ll £
Skewness 0.54846 0
Kurtosis 0.7771 0
Bowman-Shenton 1.3256 0
Values larger than 3 for UKcars-Level residual:

7=

Value prob
.04466 [0.00147]

.36943 [0.00053]

|
w

|
w

Normality test for UKcars-Level residual

Sample size 0
Mean -0.027
S5t.Dev
Skewness -0.3
Excess kurtosis -0.01

" o W W o
w m W =}
(1SR S VR VI )

(3]
o

oW N

Minimum -3.
Maximum 2



Only the slope residual is potentially
problematic

Normality test for UKcars-Level residual

Sample size 103.00
Mean -0.027
St.Dev
Skewness -0.3

b]
b]
]
]
3]
N
[a)]

w

Excess kurtosis -0.0

b b W

NWwn N
MW oW )

n o, W W

Minimum -3.
Maximum 2

Chi~2 prob

Skewness 1.7947 [ 0.1804]
Kurtosis 0.0010158 [ 0.9746]
Bowman-Shenton 1.7957 [ 0.4075]

Normality test for UKcars-Slope residual
Value
Sample size 103.00
Mean 0.10017
St.Dev 1.3109
Skewness -0.56602
Excess kurtosis -0.86870
Minimum -2.5361
Maximum 2.0508

3
>

Chi~2
Skewness 5.4998 [ O
Kurtosis 3.2386 [ O
Bowman-Shenton 8.7384 [ 0.0127



However, the auxiliary residuals indicate
that the problem area for the slope is
before 2000.

Density
4 0.4
l —— t tests or UKcars-Ioregular ir.(e:var.tior.sl i I —— ¢t tests for UKcars-Ioregular interventions —— N(z=1.12)
2t 031 2T 1%

- H" " LI | "1‘.|”|||]‘ ‘,|| L ’Illlll‘ I,1|I.| 02
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We decide to use this model for
forecasting

Modeling residuals before 2000 would not help
solve the problem with the slope residuals.

We therefore suspect that this is about the best
model that we can get with these data.

This is confirmed by a likelihood ratio test of the
LL for the last model and this model.

Hence, our decision to use it as a basis for out-of-
sample (1 year) forecast.

We set the date of forecast origin to




We find a significant improvement between the
last and the current model.

Progress to date

Model T & log-likelihood SC
ucC( o) 113 7 Maximum Likelihood (exact score)

ac( 7) 105 8 Maximum Likelihood (exact score)

U~ a T aTaTaTah
3 = w
-



Out-of-sample forecasting

* We decide to forecast over a horizon of one
year, with the forecast origin set at 2002(1).

* To do so, we have to reset the estimation
period.

* The remainder of time the data span will be
called the validation segment of the data and
will be used to test the accuracy of the
forecast.



We reformulate and when we come to
the estimation period, we set the
forecast origin to 2002(1)

Choose the estimation sample:

Selection sample 1977(1) - 2005(1)
Estimation starts at 1977(1)
Estimation ends at 2002(1)

Choose the estimation method:

Maximum Likelihood (exact score)
Maximum Likelihood (BFGS, exact score)
Maximum Likelihood (BFGS, numerical score)

Expectation Maximization (only variances)

No estimation

[ OK ] [ Cancel ]




Then we go to the test menu and
select forecasting

Test Menu

More written output...
Components graphics...
Weight functions...
Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

Store in database...

OROO00O0000

[ OK ] [ Cancel ]
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We are then presented with the
forecast menu and select:

Forecasting - STAMP unobserved components module

Edit/Save forecasts X&Y O ~
Write forecasts Y
Write forecasts components

[=) Select components to plot with Y...

Signal
Trend |
Trend plus Cycles and ARs |

Trend plus Regression effects |

Sscect components toplot without v |

Level O
Slope O
Seasonal O
Cycles and ARs |
Fixed intervention effects |
(=] Further options...
Plot confidence intervals
Antidog analysis O
Zoom sample range 1997(2) - 2002(1) v

[ OK l [ Cancel
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Stamp provides forecasts and
evaluations over their forecast horizon

Forecasts with 68% confidence interval from period 2002 (1) forwards:
Forecast stand.err leftbound rightbound
429678.53364 21681.73062407996.80302451360.26426
379333.78944 29574.04509349759.74434408907.83453
430063.36012 35881.17977394182.18035465944.53988
461409.32726 38900.70874422508.61852500310.03600
433303.11375 45150.85676388152.25699478453.97051
379487.26281 48534.39887330952.86394428021.66167
429173.50164 51589.51195377583.98969480763.0135¢8
460493.47752 53212.57159407280.90593513706.04911
432718.90920 57626.73875375092.17044490345.64795
379303.51494 60401.47215318902.04279439704.98710
429347.22775 63220.45218366126.77557492567.67993
460950.04895 64951.33082395998.71813525901.37977

S s VR ¥ 3 Y S PV S R S

w

W
o

N

Forecast accuracy measures from period 2002 (1) forwards:
Error RMSE RMSPE MAE MAPE

1 27426.53364 27426.53364 0.68182 27426.53364 6.81825
2 -12513.21056 21316.60370 0.53238 19969.87210 5.00582
3 44173.36012 30876.53332 0.79104 28037.70144 7.15293
4 37084.32726 32539.69982 0.81256 30299.35790 7.543960
5 23.11375 29104.39415 0.72678 24244.10907 6.04074
6 -11725.73719 26996.36304 0.67465 22157.71375 5.53350
7 20433.50164 26159.81022 0.65255 21911.39774 5.45716
8 15035.47752 25041.00457 0.62196 21051.90771 5.19693
9 4516.90920 23656.84714 0.58745 19214.68565 4.73670
10 255.51494 22443.00122 0.55730 17318.76858 4.26977
11 35305.22775 23900.06113 0.59610 18953.%80123 4.69613
12 28154.04895 24283.04040 0.60082 19720.58021 4.84688
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Criteria of forecast evaluation

e Criteria: =)

T
Z(yi _),}i)z
RMSE = | =

T

H
Z(yi _fi)z
RMSPE =1\|=L *100
H

H
Yly-7|
MAE= 1
H

H
Yly-7l

MAPE=100* =




Stamp will also provide forecasts and confidence
intervals of those forecasts for each component as
well(including AR(1) and AR(2)).

Forecast
Forecasts

with

68%

Forecast

355137

e I VU ¥ L B S VI S R B

w m
o

357384

m e
w N

£0

Forecast
Forecasts

354856.
. 34377
355418.
355699.
355980.
356261.
356542.
356823.
357103.

357665.

357946.
warning:

with

39999

28754
23132

"y
]
o
[y
o

0
0
]

O O K}
=W o ;N
S I Ve I S T S Y &
w o -

-] m m

w
m W w oo o B -]

m
(]
[V SN RS

68%

Forecast

-46174

e e T L BT SO VI SR S

o 1w
N O

7334.
-46174.
715.
35123.
7334.
.62175
3715.
35123.
7334.
-46174.
3715.
35123.

96779
62175
91763
73632
96779

91763
73632
96779
62175
91763
73632
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values for Level
confidence interwval

stand.err
.93043321704.
42015320320.
.65203392074.
30696317033.
44925315145.

33151

34816.
36656.
38665.
40834.
4315S.
.31810310920.
09462308599.
80654306150.

45621

48223.
50953.
53806.
.29103300890.
06794298092.

56775

59854.
CPE

can

63551318761

83164313105

62906303578

not be part

values for Seasonal
confidence interval
stand.

err

8522.78

8499.
8520.
9569.
10560.

10541

J

]
N

1
1
1
1
1
1

O N NN

1
2
2
2
3

[ T e
W N Wb

0558.

78876 -1187.8
90280-54674.
-4805.
83400 25553.
43744 -3225.
.97601-56716.
-6843.
.19915 23701
.08372

94847

95228

leftbound

leftbound

-4929.1
.19043-58422.¢
80490 -8546.
.513%0 22110.

from per
righ
46956388008
92361389953

92436394364

72584396814.
.28724399416.

74456402163

91181405046.
14367408057.7
.26492411191.
54673414441.
71359417800.

of signal

from per
righ
2097 15857
52454-37674
03083
90233 44693
46965

anna

03465

122386.

17895.
59775-35632.
14274.
.53718 46545.
93 19599.
7-33926.

iod 2002 (1)

tbound
.33042
. 76392
92305
.53828
62435
95051
.38075
10105

iod 2002 (1)

tbound
.75655
.71895
86610
.57032
40523
64574
86991
93547
05151
43132
8.72253

25022

forwards:

forwards:
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Forecasts can be graphed as well
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Forecast Profiles may be edited and changed
into forecast fan charts or error bar charts

t | — UKcars

= Realised-UKcars

— Forecast-UKcars +/- SE

197

1998

1999 2000 2001 2002 2003 2004 2005
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Other prediction graphics are available, including

coverage, cumsum, and cumsum squared plots.
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Diagnhosing the State Space model

Residuals are used for diagnosis. These are the innovations. But the
auxiliary residuals are estimators of the disturbances associated with the
unobserved components. Although they are related to the residuals,
they may display the information somewhat differently.

Residuals are useful for diagnostics in large samples. However, in finite
samples, auxiliary residuals may be more helpful. They may be
regarded as minimum mean square estimators under conditions of
Gaussianity, according to Harvey and Koopman 1992, in Harvey and
Proietti (2005), 84.

Auxiliary residuals are serially correlated. However, they are useful in
detecting outliers and level shifts. The Bowman-Shenton test, which is
distributed as a x? test with 2 df, is modified to account for this
autocorrelation, they can be used to distinguish between them as well.



Computation of Auxiliary Residuals

Just run the Kalman filter and then the smoother. When computing
the variances at the beginning or end of the series, they will seem very
large compared to the others.

For test statistics, only the observations in the middle of the series
should be used. The variances at either end are much larger.

Auxiliary residuals are standardized for presentation.

By dividing the residual by the square root of the variance t-tests for
significance are obtained. Using all of the data as a basis for the
significance test, these auxiliary residuals are usually preferred for the
first pass of the diagnostics of model adequacy.



Applications of the Auxiliary Residuals

Testing for a level shift is best done with the use of the auxiliary
residuals.

Testing for seasonal change would be better done with
auxiliary residuals.

Testing for an individual outlier is perhaps better done with
residuals that are not autocorrelated. Harvey and Koopman
argue that auxiliary residuals combine in the best way to use
them for testing in this kind of case (/bid, 86)

Tests based on skewness and kurtosis:



Forecasting with State Space Models

Three methods are provided with Stata’s
space.

One-step-ahead forecasting is performed
by the Kalman filter in its filtering
process.

Iterative projection results from repeated
application of this process.



Forecast evaluation

Forecast evaluation is performed by out-of-sample comparison of
the forecasts to the actual data.

Aside from the predictive error variance computed from the
predictive error decomposition, error, Root mean square error, root
mean square percentage error, mean absolute error, and mean
absolute percentage error are criteria employed to evaluate the

forecast accuracy.

Other predictive graphics tests can also be applied to the forecasts
for evaluation: Predictive error variance, cumsum, and cumsum
squares, and Chow’s predictive failure test are among them.



Relationship of State Space
to ARIMA models

( Ruey Tsay, class notes)

Cayley-Hamilton Theorem:
for any m x m matrix F, with characteristic equation, such a matrix is
reduce able to an ARIMA model. (Details are not presented here).

What do ARIMA models look like when presented as State Space
System form?
We consider just a few cases.
The AR(1) case
The AR(2) case
The MA(1) case
The MA(2) case
The ARMA(1,1) case
The ARMA(2,2) case
The ARIMA(0,1,1) case
The ARIMA(0,2,2) case



The equations are stacked within System matrices (a,
®,Q,and 2, T, Z, R and H(=1 and in front of epsilon)

If a,,=To +Rn, n =iid N (O’O-fi) transition equation

v, =20 +¢&, g =iid N (0,0'; ) measurement equation,
then A o,
o.\ (T _ (Rp o
+1 || T ((Zt)-l' 'l Qt _| 7
Y, Z, £, 0 o,
where

—1
v,=u+¢, &= iid NO,0,) Ez( J

o, ~ N(a,, F)
NB: In a local level Model : T, =1, so
at-f-l a al‘ +Rl‘77t



SsfPack program to generate AR(1)

and AR(2)
system matrices

W m -] o b W N

[ R R R
MW -d ;s WO

19
20
21
22
23
24
25
26
27
<

#include <oxstd.h>
#include <oxdraw.h>
#import <maximize>
#include <c:\Program Files\OxMetricsS51\Ox\packages\ssfpack\ssfpack ex.h>

main()

decl mPhi, mCmega, mSigma;

println("System matrices for an AR1 model");
println("AR(1) = 0.6 sigma_eps”2=.4 ");
println (" ")
GetSsfArma
(£.6>,<>,8qgrt(.4), &mPhi, &mOmega, &mSigma):;
print ("Phi = ", mPhi, "Omecga = ", mOmega, "Sigma = ",mSigma):;
println (" ")
println(" Specification of the AR2 Model"):;
println( "AR1 = .5, AR2= -.4, sigma_eps”2 = .9");
GetSsfArma
(<0.5,-0.4>,<>, sqgrt(0.92), &mPhi, &mOmega, &mSigma):;
print ("Phi = ", mPhi, "Cmecga = ", mOmega, "Sigcma = ",mSigma):;
println (" ") I
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ARIMA(1,0,0) and ARIMA(2,0,0)

state space system matrices

AR(1) model: ¢,=0.6, 0%=.4; AR(2) model: ¢,=0.5, ¢,=-.4, 6°=.9

$(1) co

o(2) coef

Bl GetSsfArma_eg1.out

System matrices for an ZR1 model
AR (1) = 0.8 sigma_eps”2=.4

Phi =

& >0.60000

1.0000
Cmega =
0.40000 0.00000

/o.ooooo 0.00000

Sigma =
0.62500
0.00000 \
Specification of the ARZ Model
AR} = .5, AR2= -.4, sigma_eps”2 = .9
Phi =

0.50000 1.0000
-0.40000 0.00000
1.0000 0.00000

unconditional variance

of initial state

is in Sigma
»90000 0.00000
0.00000 0.00000

0.00000 .0000
Sigma =

0.00000

1.2281 .17544
-0.17544 0.19649
0.00000 0.00000
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ARIMA(0,0,1) and ARIMA(O,0,2
state space system matrices
SsfPack code

i GetSsfArma_eg1.0x - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\GetSsfArma_eg1.0x

23 (GetSsfirma

24 (<0.5,-0.4>,<>, sgrt(0.9), &amPhi, &amOmecga, &mSigma):

25 print ("Phi = ", mPhi, "Cmega = ", mOmega, "Sigma = ",mSigma):

26 println (" "y ;
27

28 println(" MA(1l) Model");
29 println( "MA1 = .4 sigma eps = .6 ");
30 GetSsfArma(<>,<.4>,8qrt(.6), &mPhi, &mOmega, &mSigma);

31 print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ",mSigma):;

32

33 println(" ")
34

35 println (" The Following specification is that of an MA(2) model™):;

36 println( "The parms are ar=0, mal = -.3, maz2z = - .4, sigma=sgrt(5)"):;
37

38

32 (GetSsfirma

40 (<>,<-0.3,-.4>,3qgrt(.5), &mPhi, &mCmega, &mSigma):;
41 print("Phi = ",mPhi," Cmega = ",mCmega," 5

42

43

44 3

45

46

47
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State Space System matrices
for MA(1) model 0.,=.4 0%=.6

Bl GetSsfArma_eg1.out Q@@
-~

MA (1) Model
MAl = .4 sigma eps = .6 .4*.6
Phi =
0.00000 1.0000
0.00000 0.0008
1.0000 00000
Cmega =
0.60000 0.24000 0.00000
0.24000 0.096000 0.00000
0.00000 0.00000 0.00000
Sigma =
0.6%9600 0.24000
0.24000 0.096000
0.00000 0.00000
v
< >
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State Space System Matrices for MA(2)
model 6,=-0.3 6, =-0.4 0%=5

GetSsfArma_eg1.out

h

The parms are ar=0,

Phi =
0.00000
0.00000 -0.3x.5
0.00000
1.0000 4x.5
Cmega =
0.50000 -0.2000 0.00000
-0.15000 0.060000 0.00000
-0.20000 0.060000 0.080000 0.00000
0.00000 0.00000 0.00000 0.00000
Sigma =
0.62500 -0.090000 -0.20000
-0.080000 0.12500 0.060000
-0.20000 0.060000 0.080000
0.00000 0.00000 0.00000
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SsfPack code snippet
for system matrices
for ARMA(1,1) and ARMA(2,2) models

ST

s GetSsFARMA. ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\GetSsf..

44
45 println(" ARMA (1,1) Models ") ;
46 println(" arxl = .6 ma = -0.3 sigma esp"2=.4 ")

47 GetSsfirma
48 (<.6>,<-0.3>, sagrt(.4), &mPhi, &mOmecga, &mSigma);

49 print("Phi = ",mPhi," Omega = ",mCmecga," Sigma = ",mSigma);

50

S1 println(" "

52

53 println(" ARMA (2,2) Models ")

54 println("™ arl = 0.6 ar2= -0.3 mal = -0.3 ma2=.5 zigma esp”2=.4 "

SiE GetSsfirma
56 (<.6,-.3>,<-0.3,.5>, sagrt(.4), &mPhi, &mOmecga, &mSigma);

S7 print("Phi = ",mPhi," Omega = ",mCmega," Sigma = ",mSigma):
58
589
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System matrices for ARMA(1,1) models
Can you tell from output what the parameters are?

i -

- et

B GetSsfARMA.out

ARMZ (1,1) Models
arl = .6 ma = -0.3 sSigma esp”2=.4
Phi =
0.60000 1.0000
0.00000 0.00000
1.0000 0.00000
Omega =
0.40000 -0.12000 0.00000
-0.12000 0.036000 0.00000
0.00000 0.00000 0.00000
Sigma =
0.45625 -0.12000
-0.12000 0.036000
0.00000 0.00000
<
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ARMA(2,2) system matrices

Can you tell what the parameters are from this output (ignoring the listing of
Them on the top?

ARMA(2,2) Models

arl = 0.6 ar2= -0.3 mal = -0.3 maz2z=. Sigma esp”2=.4
Phi =
0.60000 1.0000 0.00000
-0.30000 0.00000 1.0000
0.00000 0.00000 0.00000
1.0000 0.00000 0.00000
Omega =
0.40000 -0.12000 0.20000 0.00000
-0.12000 0.036000 -0.060000 0.00000
0.20000 -0.060000 0.10000 0.00000
0.00000 0.00000 0.00000 0.00000
Sigma =
0.50354 -0.11588 0.20000
-0.11588 0.061319% -0.060000
0.20000 -0.060000 0.10000
0.00000 0.00000 0.00000
< \ ?

ﬁ
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SsfPack code snippet:
System matrices for
an ARIMA(1,1,1) model

s ARIMA. ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\ARIMA.ox

1 #include <oxstd.h> A
2 #include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>

3

4 main()

5 4

(3} println ("Chapter 3 ARIMA Model (with 1st differencing)"):

7 println (M"=====s==ssssssSSSSSSSSSSSSSSSSSSSSSSSSSSSSsS=Ss=s=====s===============""
8 println( " d=1, arl=.6, MAl= - .4, sigma eps”2 = .9");

9 decl mPhi, mCmega, mSigma;

10 GetSsfSarima

11 (1,<0.6>,<-0.4>, =sqgrt(0.9), &mPhi, &mCmega, &mSigma):

12 print ("Phi = ", mPhi, "Cmega = ", mOmega, "Sigma = ",mSigma): B
13 1}

14 N
¢ s
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State space system matrices for
~ARIMA(1,1,1) model

Chapter 3 ARIMA Model (with 1st differencing)
d=1, arl=.6, MAl= - .4, sigma eps”2 = .9
Phi =
1.0000 1.0000 0.00000
0.00000 0.60000 1.0000
0.00000 0.00000 0.00000
1.0000 1.0000 0.00000
Cmega =
0.00000 0.00000 0.00000 0.00000
0.00000 0.90000 -0.36000 0.00000
0.00000 -0.36000 0.14400 0.00000
0.00000 0.00000 0.00000 0.00000
Sigma =
-1.0000 0.00000 0.00000
0.00000 0.95625 -0.36000
0.00000 -0.36000 0.14400
I 0.00000 0.00000 0.00000
< \
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ARIMA(O,1,1) aka
simple exponential smoothing

s ARIMAO11.0x - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\ARIMAO1... Q@@

3 A~
1 ES main()
s ¢

3 println("Chapter 3 ARIMA (0,1,1) Model"):;

7 println ('============sSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS=S===========s=s=======1

8 println( " d=1, MAl= - .4, sigma eps”2 = .9")

9 decl mPhi, mOmega, mSigma;

10 GetSsfSarima

11 (1,<> ,<-0.4>, sgrt(0.9), &mPhi, &mOmega, &mSigma):

12 print ("Phi = ", mPhi, "Cmega = ", mOmega, "Sigma = ",mSigma):

13

14
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System matrices for
ARIMA(O,1,1) model

B ARIMAO11.out
Chapter 3 ARIMA (0,1,1) Model

d=1, MAl= - .4, sigma eps”2 = .9
Phi =
1.0000 1.0000 0.00000
0.00000 0.00000 1.0000
0.00000 0.00000 0.00000
1.0000 1.0000 0.00000
Cmega =
0.00000 0.00000 0.00000 0.00000
0.00000 0.90000 -0.36000 0.00000
0.00000 -0.36000 0.14400 0.00000
0.00000 0.00000 0.00000 0.00000
Sigma =
-1.0000 0.00000 0.00000
0.00000 1.0440 -0.36000
0.00000 -0.36000 0.14400
0.00000 0.00000 0.00000

Vg |
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ARIMA(O,2,2) system matrices

| @ *ARIMAO11.0x - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\ARIMAO... E]@

3

4 main()

S {

6 println("Chapter 3 ARIMA (0,2,2) Model"):;

7 PN (N e W |
8 println( " d=2, Mal= - .4, MAZ = 0.5, sigma eps”2 = .39");

9 decl mPhi, mCmega, mSicgma;

10 GetSsfSarima
11 (1,<> ,<-0.4>, sgrt(0.9), &mPhi, &mCmega, &mSigma):;
12 print ("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ",mSigma):;
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ARMA(2,2) system matrices

ARMZ (2,2) Models
arl = 0.6 ar2= -0.3 mal = -0.3 ma2=.5 Sigma esp”2=.4
Phi =
0.60000 1.0000 0.00000
-0.30000 0.00000 1.0000
0.00000 0.00000 0.00000
1.0000 0.00000 0.00000
Cmega =
0.40000 -0.12000 0.20000 0.00000
-0.12000 0.036000 -0.060000 0.00000
0.20000 -0.060000 0.10000 0.00000
0.00000 0.00000 0.00000 0.00000
Sigma =
0.50354 -0.11588 0.20000
-0.11588 0.061319 -0.060000
0.20000 -0.060000 0.10000
0.00000 0.00000 0.00000
<

ﬁ
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H ARKIMAU

System matrices

for ARIMA(O,2,2) model

Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
Chapter 3 ARIMZA (0,2,2) Model
d=2, Mal= - .4, MA2 = 0.5, sigma eps”2 = .9
Phi =
1.0000 1.0000 1.0000 0.00000 0.00000
0.00000 1.0000 1.0000 0.00000 0.00000
0.00000 0.00000 0.00000 1.0000 0.00000
0.00000 0.00000 0.00000 0.00000 1.0000
0.00000 0.00000 0.00000 0.00000 0.00000
1.0000 1.0000 1.0000 0.00000 0.00000

Cmega =
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.80000 -0.36000 0.45000
0.00000 0.00000 -0.36000 0.14400 -0.18000
0.00000 0.00000 0.45000 -0.18000 0.22500
0.00000 0.00000 0.00000 0.00000 0.00000

Sigma =
-1.0000 0.00000 0.00000 0.00000 0.00000
0.00000 -1.0000 0.00000 0.00000 0.00000
0.00000 0.00000 1.2690 -0.54000 0.45000
0.00000 0.00000 -0.54000 0.36900 -0.18000
0.00000 0.00000 0.45000 -0.18000 0.22500
0.00000 0.00000 0.00000 0.00000 0.00000
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Structural time series model (Stsm)

Koopman et al.(2008)

The state space form of the structural time series mod el
LS
V=M AL EY Y,

where

U, =unobserved trend (level) component

B, = unobserved slope component

¥, = unobserved seasonal component

W, =unobserved cyclical component

& =unobserved irregular component



Structural time series models

Koopman, S.J., Shephard, N. and Doornik, J. (2008)

V=M AV Y, +, & ~ NID(0,07)
where

y, = response variable

U, = local level

[, = unobserved slope component

Y, = seasonality

W, = cycle

ft = measurement error



Nonstationary trend component

When the trend contains drift or deterministic slope, it is not
stationary.

Hence, the slope component is added to the trend in order to handle
Such nonstationarity. All of these components are random effects.
They are characterized by their own measurement error, sampling
error, or other error in variables. Consequently, each unobserved

component has its own error term. (Zjvot and Wang, 530.)



Is the level fixed or random

Usually, the level will be time-varying and possess an
evolutionary error ,eta, (n,). Moreover, unless measured
without error, the measurement error, epsilon( € , ) will be
nonzero as well. Hence, their standard deviations, apparent in
the sigma matrix, will also be nonzero.

If there is no error of measurement, then the epsilon would be
fixed at zero. In the measurement equation. The error term for
the transition (evolutionary) process then can be set to zero by
equating eta to 0. and letting its standard deviation in the
sigma matrix = 0 as well. This can be done in the transition
equation while any representation of that variation in the
sigma matrix can be set to zero.



The local linear trend model

Contains drift or stochastic trend (random walk) (error allowed to vary)
or
Contains deterministic trend (error=0) sometimes called smooth trend

fo =+ B+, 1,1 GWN(0,0,)
B.a=b +¢, g, NGVWV(0,0'§)
when the error =0, these trends are smooth
and fixed(deterministic), but when
the errors and error variances are
nonzero, these components are
random (having either measurement,
sampling, or some other kind of

error.
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Initial values of trend

K1, =N(0,0;)
ﬁ] ZN(O,O?)

when the error variance- > oo,

this indicates reductionin the precision of

the prior parameterto 0, so the data receieve almost

give all of the weight in the sequential weighted averaging
processthat predicts the posterior predictive

mean or variance. On the computer, a very large
number, such as 10° or 10" replaces the infinite

variance. After a few more iterations, the process usually

converges to a solution.



This is a local trend

The trend is a local rather than global trend. The trend is
allowed to varying over time.

It can be time varying or fixed, depending upon whether
the errors positive or equal to zero.

Trends are evident in changes in the level and/or slope,
sometimes apparent in a graph of the series.



ldentifying the nature of the trend

When we test the signal to noise ratio of the trend and find that it is zero,
We infer that the trend is not stochastic but fixed (deterministic).

There are also higher order trends suchas um-1, um-2, ... that can be
interpreted as first, second, or higher order (m) derivatives.

Mg =M, T Mg,
where
1=2.3,....m



Local Linear Trend model

W|th OX (Koopman, Shephard, and Doornik, 2008, 8)

#include <oxstd.h>
#include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>

main()

decl mPhi, mSigma, mCmecga;

GetSsfStsm
(<CMP_IRREG, 1.0, 0,0,0;
CMP_LEVEL, .5,0,0,0;

cMP_SLOPE, .1,0,0,0>,

&mPhi, &mCmega, &mSigma);
format ("%F6.2¢")

r
println("Local Linear Trend Model ");

println (" o X
print ("Phi = ", mPhi, " Omega = ",mOmega, " Sigma = ",mSigma):;
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Local Linear Trend
Model system matrices

——————————————— Ox at 21:32:37 on 09-Nov-2009 -—-—————-—----——-

Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 19384-2008
Local Linear Trend Model

Phi =
1.0 1.0
0.00 1.0
1.0 0.00
Cmega =

0.25 0.00 0.00
0.00 0.010 0.00

0.00 0.00 1.0
Sigma =

-1.0 0.00

0.00 -1.0

0.00 0.00
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Seasonal component

Seasonality, like all unobserved
components, can be stochastic (random)
or fixed or nonexistent.

Seasonality, an annual variation, may
render a series nonstationary and
difficult to use for forecasting.

Seasonality may be defined by dummy
variables or trigonometric functions.



Defining seasonality

2
7/1,t+1 — _7/1,1,‘ o 7/2,1 o 7/3,t T, @, ~ N]D(O, O-a))
Another formulation is

y(UH)Y=1I+L+I°+L +L"+caw
where
s = seasonal periodicity

cw, = random error of seasonal componernt

If omega is non-zero, the series is random (stochastic).

If omega is zero, the series can be seasonal yet have a fixed
seasonality.



ldentifying and assessing seasonality

Is it fixed or random? Is it continuous or discrete? Should we

select
Dummy variables or trigonometric variables to represent the

seasonality?

All these gquestions need to be answered for us to decide how to
define the variable.

Koopman et al. generally suggest beginning with a stochastic model
And looking at the signal to noise ratio (q) for evidence of a random
effect. If the coefficient =0, it may be fixed or non-existent. We
try it as fixed and test for the model fit. We select the better fit.



co2

i CO?2 pollution measured at NOAA wx station at Mauna Loa
3601 observatory in Hawaii

350

330

320




Co2 measurement at NOAA
observatory at Mauna Loa

BB STAMP - Models for time-series data X
v —)
<) =
All Modules G@RCH PcGive

Module STAMP

Category Models for time-series data

Model class | Unobserved Components using STAMP

v
v
Formulate... Test...
L < Progress... <

Click on formulate
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Then click
On OK.

Move the dependent variable over
into the selection box

Formulate - STAMP unobserved components module - co2.in7

Selection

Y co2

0 Use default status

» Recall a previous model

<< Lags Database

None v co2

Clear>>

v co2.in7
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Begin by testing a basic structural
model (level, slope, and seasonal)

Allow the
Stochastic
Options
to be

checked
at the
first pass.

Then click
On OK.

Select components - STAMP unobserved components module @
E] Basic components ~
Level
Stochastic ®
Fixed O
Slope
Stochastic ®
Fixed O
Order of trend (1-4) 1
Seasonal
Stochastic ®
Fixed O
Select frequendies... ]
Irregular
=] cycle(s)

Cycdle short (default 5 years)
Cycle medium (default 10 years)

Cycdle long (default 20 years)

AR

jo~o-o-0Od

[ OK ] [ Cancel ]

%
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Leave the default estimation checked

and first test on the full sample

Choose the estimation sample:

Selection sample 1859(1) - 1997(12)
Estimation starts at 1955( 1)
Estimation ends at 1997(12)

Choose the estimation method:
Maximum Likelihood (exact score)

Maximum Likelihood (BFGS, exact score)
Maximum Likelihood (BFGS, numerical score)

Expectation Maximization (only variances)

O000®

No estimation

Then click on OK.
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Examine the errors. Each component

reve

The model
converged as is
indicated by

the steady state

having been
found.

We do observe
some normality

of the residuals.

6) Estimation done by

als a nonzero error variance.

Maximum Likelihood (exact score)

The database used is C:\Program Files\OxMetricsé\data\co2.in7

The selection sample is: 1959(1) - 198387 (12)
The dependent
The model is:
Steady

Log-Likelih
Prediction error

(T = 468, N = 1)
variakle Y is: co2

Y = Trend + Seasonal + Irregu
state. found

-2 LogL = -1075.38).
0.0834561

ood is 537.692 (

variance 1i

Summary statistics
co2
: e This means that all components
SEd.error fi-26689 are random and have an error
Normality 1.33186
H(151) 0.96985 term.
DW 1.8683
r(l) 0.055094
a 24.000
r(aq) -0.05648
Q(g,q-p) 30.012
Rs"2 0.085267
Variances of disturbances:
Value (g-ratio)
Level 0.0285623 ( 1.000)
Slope 4.44185e-006 (0.0001555)
Seasonal 2.48387e-005 (0.0008696)
Irregular 0.0254314 ( 0.83904)



All components of the state vector are
significant. We retain all of them.

State wvector analysis at period 19387 (12)

Level  364.97931 [0.00000]

Slope
Seasonal chiZ test

w
) (a2
] O Wb

w
(&)
o

Seasonal effects:
Period Value

S B e VT ¥ 1 BRY SO L I S R B

DOw
| | |

O MWW O N W e OO
(93]
o
o
15
15

i
[N
|

We then
proceed.



We click on the test icon to obtain a

Al [
AE

test dialog box

¥ 6
Q@ -

24.000
-0.056483

O (D m O

1lalys

.est

Penx

Test Menu

More written output...
Components graphics...
Weight functions...
Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

Forecasting...

OO0000000

Store in database...

R. Yaffee stfte sprce |dcfureai@d-Nov-26

We click on
more test

output and
then ok at the

bottom
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Another dialog box appear and we

check the boxes accordlngly

Print parameters

Variances D
Parameters by component I:]
Full parameter report
Print state vector

1 State vector analysis

State and regression output

@ Print recent state values...

Print tests and diagnostics

Summary statistics Then click ok
Residual diagnostics

Qutlier and break diagnostics at h e bOtto m

Write large absolute values

exceeding the value of 3

Anti-og analysis [l
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The full parameter report shows actual
and transformed stochastic parameter

Full parameter report
Actual parameters (all)

Value
Var Level 0.028562
Var Slope 4.441%e-006
Vvar Seasonal 2.483%e-005
Var Irregular 0.025431
Transformed parameters (not fixed)

Transform 1stDerx 2ndDer asymp.s.e

Var Level -1.7778 7.9936e-010 -0.45820 0.0918672
Var Slope -6.1622 5527e-010 -0.0077765 0.52466
7700e-010 -0.066040 0.18925
.0436e-009 -0.55919 0.081027
Actual parameters (not fixed) with 68% asymmetric confidence interval

Value leftbound rightbound
Var Level 0.028562 0.023778 0.034310
Var Slope 4.4419%e-006 .5554e-006 .2685e-005
Var Seasonal 2.483%e-005 7012 .6267e-005

3.
Var Seasonal -5.3016 -9.

Vvar Irregular -1.8359 -

W

7012e-005

~ Ame ~

Var Irregular 0.025431 0.021627 0.0293805

We observe that all derivatives were successfully
computed. Then we look below



We note that all components are
significant and look below

State wvector analysis at period 1997(12)

Level 364.97931
Slope 0.1
Seasonal chi2 test 3837.2

Seasonal effects:
Period Value

[Y S VLI S I S

] ;™ n
N oW WO N W e OO
w
wn
w
NS
NS

w0 -
|

L T e T I e e e I I T L B

10 -3.40383
11 -2.13673
12 -0.84294



We observe the coefficients for the components
and note their sign, magnitude and significance.

State vector at period 1997 (12)

Coefficient RMSE t-value Prob
Level 364.97931 0.14260 2559.42414 [0.00000]
Slope 0.12858 0.01902 6.76195 [0.00000]
Seasonal -1.73438 0.05053 -34.32131 [0.00000]
Seasonal 2 2.38882 0.05105 46.79554 [0.00000]
Seasonal 3 0.84459% 0.04038 20.91501 [0.00000]
Seasonal 4 -0.02917 0.04106 -0.71032 [0.47787]
Seasonal 5 0.12645 0.0377 3.35040 [0.00087)]
Seasonal 6 -0.05475 0.03800 -1.44095 [0.15029]
Seasonal 7 -0.11719 0.03706 -3.16209 [0.00167]
Seasonal 8 -0.03915 0.03664 -1.06832 [0.28594]
Seasonal 9 0.0087 0.036397 0.23637 [0.81325]
Seasonalll -0.00263 0.03601 -0.07309 [0.94176]
Seasonalll 0.0288 0.03082 0.93594 [0.34%980]
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We begin to diagnhose the model

We look for violation of the
assumptions of normality,

independence of observations,

and white noise residuals.

The residuals appear to b
normally distributed but

Normality test for Residuals co2

Value
Sample size 455.00
Mean 0.065963
St.Devwv 0.99782
Skewness —0.077487
Excess kurtosis —-0.23697
Minimum —-2.7429
Maximum 2.5714
Chi~2 prob
Skewness 0.45532 [ 0.4998]
Kurtosis 1.06486 [ 0.3022)]
Bowman—-Shenton 1 [ 0.4677]

?_7)
(m.d)

(p.e.
mean dewviation

/S m.d in sguares

r wariance

Ratio p.e.v.

there is evidenc
spurious correlation and
consequent bias in our
estimates upward.

S
Coefficient of determination R"2 -
based on differences RdA™2

bPased on diff around seas mean Rs™2
formation criterion Akaike
(BIC)

(BARIC
sian Schwartz
statistics for

Serial correlati

Durbin-Watson test iS

Asymptotic dewviation for is
Lag df Ser.Corrxr ung

= i —-0.054437 .298

5 2 —-0.03%8249 7.0098

) 3 —-0.081798 10.108

7 4 —0.01865 10.27

o = —N NnE=sTos 17 a7”

<
R. Yaffee state space lecture 2009-Nov-26

(]

Residuals

Value
0.083456
0.087424

0.97333
0.99964
0.84402
0.0852867
—-2.4236
—-2.23985
co2
0468807
prob
0.0121)]
0.0300]
0.0177]
0.03861]
al N22093
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We examine the goodness of fit test
and find the R*2 to be too high

Goodness-of-fit based on Residuals co2

Value
Prediction error wvariance (p.e.v) 0.08345¢6
Prediction error mean deviation (m.d) 0.067494

—~aana

Ratio p.e.v. / m.d in squares 0.97333

AUtocorreIaﬁon Coefficient of determination R"2 0.99964
In the reSiduaIS based on differences Rd"2 0.94402

based on diff around seas mean Rs"2 0.085267

And unmodeled ér.fo:matior. criterion Akaike (AIC) -;.4
. - Bayesian Schwartz (BIC) -2.2

outliers seem to

be evident.

Serial correlation statistics for Residuals co2
Durbin-Watson test is 1.86825
Asymptotic deviation for correlation is 0.0468807

Lag df Ser.Corr BoxLjung prob

The model fit B 1 -0.054437 6.298 [ 0.0121]
5 2 -0.039249 7.0098 [ 0.0300]

could be 6 ; —o.cé;i_s 10.108 | o.oiff
improved by 7 4 ~0.01865 10.27 [ 0.0361)
_ 8 5 -0.068798 12.472 [ 0.0289]
adding an ar(1) 12 9 0.029252 18.643 [ 0.0284]
24 21 -0.056483 30.012 [ 0.0918]

Component and 36 33 -0.00081262 49.121 [ 0.0352]

tTr=

modeling the . . e .
Values larger than 3 for Irregular residual:
outliers. Value prob

-3.30415 [0.00051]

[Te)
)

(N
[Te)
) -
n N
w0 W b

Te)
o



There remain problems in the level
and slope residuals as well

There is an
unmodeled level
residual and the
slope residuals
are not quite
normal.

v =

Values larger han 3 for Level

Value prob
1973 (12) —-3.49240 [0.00026]

Normality test for Level residual

Sample size

Mean

St.Dev

Skewness

Excess kurtosis 0.040163

Minimum —-3.4924

Maximum 2.4945
Chi~2

Skewness 0.74127

Kurtosis 0.031455

Bowman—-Shenton 0.77272

0
o

w K

< nom'g
0w
n N W

bohd b

0O 0 o0

oo W

[(e]

Normality test for Slope residual

val

Jalue
Sample =size 467.0
Mean 0.763903
St.Dev 0.62943
Skewness -0.28796
Excess kurtosis -0.015191
Minimum -0.78047
Maximum 2.96286
Skewness 6.4541
Kurtosis 0.0044904
Bowman—Shenton 6.4586

prob

.9466]
.03986]

000

residual:



Click on the model icon and then on

B af
Xa

formulate:

) k=
= Q@ -

Value prob
-3.49240 [0.000286]

B STAMP - Models for time-series data

at

All Modules G@RCH PcGive STAMP

Module STAMP

Category Models for time-series data v ]

Model dass | Unobserved Components using STAMP v ]

Formulate...
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Click on ok again

| Formulate - STAMP unobserved components module - co2.in7

Selection << Lags Database

! Y co2 None v co2

n
Clear>>

{Use default status v

i ’Recall a previous model v ‘ ’coZ.in? v

R. YaffefFSTag spafe IectFFCZQ@TN‘PV—26 247
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In the Select components box, click on

Cycles(s), on ar(1), and then Ok.

Stochastic ®
Fixed O
Slope
Stochastic ®
Fixed O
Order of trend (1-4) 1
Seasonal
Stochastic ®
Fixed O
Select frequendies... O
Irregular
(=] cycle(s)

Cydle short (default 5 years)

Cycle medium (default 10 years)

O~ 0" 0O

Cycdle long (default 20 years)

AR(2)
(=] options

O &

[ OK ] [ Cancel ]
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When the estimate box appears, leave
the defaults checked and click ok

Estimate - STAMP unobserved components module

Choose the estimation sample:

Selection sample 1959(1) - 1997(12)
Estimation starts at 1959( 1)
Estimation ends at 1937(12)

Choose the estimation method:

Maximum Likelihood (exact score) ®

Maximum Likelihood (BFGS, exact score) O

Maximum Likelihood (BFGS, numerical score) ()
Expectation Maximization (only variances) O

No estimation O

oK | [ Cancel ]

~n_rra : e
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All components remain significant—
including the AR(1) component

#JC( 7) Estimation done by Maximum Likelihood (exact score)

1
le

The database used is C:\Program Files\OxMetricsé\data\co2.in7
The selection sample is: 1959(1) - 1997(12) (T = 468, N = 1)
The dependent wvariable Y is: co2
The model is: Y = Trend + Seasonal + Irregular + AR(1)
Steady state. found
Log-Likelihood is 539.403 (-2 LogL = -1078.81)
Prediction error wvariance is 0.0827491
Summary statistics
co2
T 468.00
o 5.0000
std.error .28766
Normality 1.1240
H(151) 1.0028
DW 1.9210
r(l) 0.029069
a 25.000
r(qg) 0.076226
Q(g,a-p) 29.432
Rs"™2 0.093016
Variances of disturbances:
Value (g—ratio)
Level 0.0190756 ( 0.6218)
Slope 4.81875e-006 (0.00015 0)
Seasonal 2.24881e-005 (0.0007328)
AR (1) 0.0306863 ( .OO-)
Irregular 0.0165861 ( .5405)
AR (1) other parametels¥affee state space lecture 2009-Nov-26 250

AR coefficient 0.57117



All state vector components appear
significant as we scroll down

Variances of disturbances:

Level
Slope
Seasonal
AR (1)

Irregular

AR (1)
AR coeffi

oth

State wvector analysis at period 19

Level
Slope
Seasonal
Seasonal

Value
0.0190756
4,81875e-006
4881e-005
0.0306863

0.0165861

(4]

3]
3]
(4]

er parameters:

0.5711

cient

chi2 test
effects:
Period

[ )

o b W N

(85

(g-ratio)
0.62186)

A AAATETA Y
O.00041 Q)

7228
J.UUU TS0

g7
Value
364.86769

0.123807

0.74286 [0
1.43756 [0
2.70289 [0

w N
-]

W b
'Y

oW

W

w o,
&%

D«

C

L T e T e T I e e e T I e e TS T

P
0.76663 [0
-1.39481 [0
-3.40881 [0
-3.38622 [0
-2.13111 [O
-0.84677 [0

(1

. 00000
.00000

.00000

. 00000
.00000
.00000
. 00000

.00000

3]

Probk

Prob
87580]

=0
000001

000001

00000

ANAAAT

(10101010

000001

L.000007



We click on the test icon and the more
written output box and then OK.

Test Menu

More written output...

Components graphics...

Weight functions...
Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

Forecasting...

O000000H

Store in database...

R. Yaffee gtate—spapa ITemfe—Z-eea—Nov—% 252
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In the More Written output, we check
the boxes below and then click on ok.

More written output - STAMP uhobserved components module

Print parameters

Variances O
Parameters by component |:|
Full parameter report
Print state vector

State vector analysis

State and regression output

[+] Print recent state values...

Print tests and diagnostics
Summary statistics
Residual diagnostics

Qutlier and break diagnostics

Write large absolute values

exceeding the value of 3

Antidog analysis ]

| Cancel |
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Observe a decline in the BIC, a high R*2
but no more residual autocorrelation.

Goodness-of-fit based on Residuals co2

Value

Prediction error wvariance (p.e.v) 082749

Prediction error mean deviation (m.d) .066934

Our model’ Ratio p.e.v. / m.d in squares 0.9729

. Coefficient of determination R"2 0.993%64

however, is not ... based on differences Rd"2 0.94449

. . based on diff around seas mean Rs"2 093016

Yet Optlm|ZEd Information criterion Akaike (AIC -2.4321

because we Stl” ... Bayesian Schwartz (BIC) -2.308

have unmo EIed Serial correlation statistics for Residuals co2
. Durbin-Watson test is 1.92102

OLIUIerS' Asymptotic deviation for correlation is 0.0468807
Lag df Ser.Corr BoxLjung pr

-0.016078 2.6012 [ 0.1068

We will begin to -0.069725 4.8526 0.088¥

-0.0061134 4.8699 0.18186]

model those 7.1998 [ 0.1257]

11.934 0.0357]

next. N w2

0.035624 13.613 0.0924]

-0.060105 26.622 0.1462]

-4.4464e-005 45.76 0.05486]

Value rob
-3.19234 [0.00075
-3.24716 [0.000862]

.14235 [0.00089]
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We examine the residuals of the other
components too.

Normality is no
longer a problem for
irregular or level
residuals, although
both components
have unmodeled
outliers.

Normality test for Irregular residual

Value

Sample size 468.00
Mean 0.0009432¢6
St.Dev 1.0026
Skewness 0.031373
Excess kurtosis 0.12461
Minimum -3.2472
Maximum 3.1423

Chi"2
Skewness 0.076775
Kurtosis 0.3028
Bowman-Shenton 0.37958

tr—

Values larger than 3 for Level residual:
prob

000391

Value
1973 (12) -3.38167

—_—ma

anma s

Normality test for Level residual

Tr=

Value
Sample size 467.00
Mean 0.00043138

St.Dev 1.001
Skewness -0.034242
Excess kurtosis -0.018064

Minimum -3.381
Maximum 2.6242

Chi~2
Skevness QP82
Kurtosis 0.00634391
= e = o TR = e e = o O NQ7&N0Q

prob

76261
.9365]

Q243



Yet the slope residual is still not
normal.

Normality test for Slope residual
Value
Sample size 466.00
Mean . 69058
St.Dev . 716086
Skewness -0.38642

).16212

[ T T e T |

Excess kurtosis
Minimum -1.1089
Maximum 2.905¢6

Skewness 11.598 [ 0.0007]
Kurtosis 0.51034 0.4750
Bowman-Shenton 12.108 0.0023]



Diagnosis of residual problems begins
with the Auxiliary residuals

* The auxiliary residuals are smoothed residuals
divided by the square root of the F, the
measurement variance. So they in effect are
t-tests.

 We can look at graphical analysis of them for
quick



In the test menu, we select Auxiliary
residuals graphics and then click OK.

Test Menu

More written output...
Components graphics...
Weight functions...
Residuals graphics...
Prediction graphics...

Forecasting...

O00xrO0O000

Store in database...

[ OK ] [ Cancel ]
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In the drop-down menu, we make the
selections shown below:

Auxiliary residuals graphics - STAMP unobserved components module

Select equation and auxiliary residuals (t-tests for)...

. Equation o2
Irreqular (outlier intervention)

1 Level (break in level intervention)
Slope (break in slope intervention)
Select plots

1 Index plot
Histogram
QQ plot O
Write

Normality tests

Large absolute values
3

E exceeding the value of

3 Store

Selected auxiliary residuals ]

[ OK | [ cancel |
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Time index plots and histograms of our
auxiliary residuals

_ Density
r ests for co-Iregular interventions 2sts for col-Imezular intefvedtions
25 t tests for co. I.frgbl&mereruorl | 0'44 t tests for col-Iregular is %ﬁ:ﬁ\
L [ L . | - A HL
L 4
_— 02 B 4
- T T T '] -
25 | L
L | 1 1 1 | 1 1 1 1 1 1 1 1 ! | 1 L L ] Lttt s bl L h
1960 1970 1980 1990 -4 -3 -2 -1 0
- Density
25 —{ t tests for co2-Lavel intprventions t tests or co2-Level interventions ——— f(s=1)|

0_0: JIH 1h |I

Il | 0-4:_|

25F I
I M R R L
1960 1070 1980 1990 -4
) _ Density
-I t tests for co2-Slope ir.z-:n‘er.!im:s| -| t tests for co2-Slops interventiens{e—dt—]
[ l 0.50 )

(5]

T
LI B B S N B B B B
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We examine the outliers and find that during

the oil embargo of 1973 there was a huge drop

in co, level and irregular

_ Density

i ﬂ— t t23ts for col-Irrezular interventions ‘ 04 4 —— t t2sts for col-Irrezular int —‘“‘if:— _\'(5=1j.|
i X |1 Iy ; | - Pl =N
| . /
TS U N A S S S HE S S S S R S S T o= Lol b b ol
1960 1970 1980 1990 -4 -3 -2 -1 0
) _ Density
) —i— t tests for co2-Lavel ir:e:*-‘er.tior.sl 1 | 04 -I— t tests or co2-Level interventions ——— (s
] L
L 02k
5 o T
1 Il i
|- PR PR [ S TR ST S N ST SR S |-
1960 1970 1980 1990 -4
) _ Density .
3 | —— t t23ts for col-Slop: ir.raver.lim:sl - | —— t tasts for co2-Slop2 interventiens fm—d—]
0.25
| | L | | - i

PENIARE | o = ® )
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We go to our select components menu again
and in the select interventions choose manual

Insertion

[+] Basic components
=] cycle(s)

We then click
on OK.

Cycle short (default 5 years) ]

Cydle medium (default 10 years) []

Cyde long (default 20 years) O

AR(1)
AR(2) O]
=] options
Select interventions
none O
®
automatically O

Set parameters to
default values
default values and edit...

current values and edit...

[

OK

] [ Cancel

]

R. Yaffee state space lecture 2009-Nov-26
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In the select menu, click on add to

open up two intervention boxes

Press Add button to include more interventions in the model.

Now we will 0 Sele|¢_—~’-| i::egzij 19:?:?‘
proceed to 1 [] irregular  1353( 1)
define the

interventions

[ OK ][ Cancel ] [ Load... ][SaveAs... ][ Reset ]

R. Yaffee state space lecture 2009-Nov-26
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We click on type in the lower box and
choose level

Select interventions - STAMP unobserved components module

Press Add button to include more interventions in the model.

Select Type Period
0 [] irreguiar  1333( 1)
1 [] irregular w |1959( 1)
level
slope

OK ] [ Cancel ] [ Load... ] [SaveAs... ] [ Reset
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We change the date to the proper
date and then click the box on the left

Select interventions - STAMP unobserved components module
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We configure the other outlier and

then click ok at the bottom

Press Add button to include more interventions in the model.

Select Type Period
0 _ irregular 1374( 1)
level  1374( 1)

[ OK ] [ Cancel ] [ Load... ] [SaveAs... ] [ Reset
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Leave the defaults in the Estimate

menu and click ok.

Choose the estimation sample:
Selection sample 1959(1) - 1897(12)
Estimation starts at 1955( 1)
Estimation ends at 1997(12)
Choose the estimation method:
Maximum Likelihood (exact score) ®
Maximum Likelihood (BFGS, exact score) O
Maximum Likelihood (BFGS, numerical score) O
Expectation Maximization (only variances) O
No estimation O
OK i [ Cancel
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Our new model appears. Steady state
strong convergence is found.

Estimating........
Strong convergence relative to 1le-007
- likelihood cvg 8.24892e-011
- gradient cvg 2.03461e-008
- parameter cvg 5.52095e-006
- number of bad iterations 0
Estimation process completed.
iJC( 8) Estimation done by Maximum Likelihood (exact score)
The database used is C:\Program Files\OxMetricsé\data\co2.in7
The selection sample is: 1959(1) - 1997(12) (T = 468, N = 1)
The dependent wvariable Y is: co2
The model is: Y = Trend + Seasonal + Irregular + AR(1l) + Interventions
Steady state. found
Log-Likelihood is 539.123 (-2 LogL = -1078.25).
Prediction error variance is 0.0821776

Summary statistics

(23]
(&3]

4
ol S.

0

std.error 0.28

Normality 1.0

H(151) 1.0

DW 1.918

r(l) 0.030328
25.000

(a) 0.07799%
(g,a-p) 29.647
2

372 0.101

MO HoQ



We see that all components remain
stochastic (with a random error)

Summary statistics
coz2
T 468.00
o) 5.0000
std.error 0.28667

Normality 1.0323
H(151) 1.0042
DW 1.9184
r(l) 0.030328

(a) 0.077997
(g,a-p) 29.847

A A A

s"2 0.10126

a0 HoQ

Variances of disturbances:
Value (g—-ratio)
Level 0.0182309 ( 0.5882)
Slope 4.98100e-006 (0.0001607)
Seasonal 2.2462%e-005 (0.0007248)
AR (1) 0.03098919 ( 1.000)

rregular 0.0155850 ( 0.5032)

AR (1) other parameters:
AR coefficient 0.52894



Observe that the level shift at 1974 is
not quite significant (n=468)

There is plenty of
reason to believe
that other
outliers have not
yet been
modeled and
that our model is
afflicted by
specification
error.

Level

Slope

Seasonal chi2 test

Seasonal effects:
Period

S I e ST 3 TR S WS T S B

[
O W m

]

[

19397 (12)

alilue Prob
365.31871 [0.00000]
0.12%929 [0.00000]
3809.58740 [0.00000
alue Prob
0.01656 [0.86626
0.74517 [0.00000]
1.44037 [0.00000)]
2.70524 [0.00000]
3.1508 [0.00000]
2.35317 [0.00000
0.76517 [0.00000
-1.39704 [0.00000]
-3.41117 [0.00000]
-3.38855 [0.00000]
-2.13292 [0.00000]
-0.84685 [0.00000]

Regression effects in final state at time 1997 (12)

Coefficient

Level break 1974 (1)

RMSE

0.25408 -1.80928 [0.07107]

-0.45870



We therefore request more written
output

Test Menu

More written output...

Components graphics...

Weight functions...

Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

Forecasting...

OO000000H

Store in database...

OK ] [ Cancel ]
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We ask for a rerun of the residual
diagnostics and click on OK

More written output - STAMP unobserved components module

Print parameters

Variances E]
Parameters by component |:]
Full parameter report O
Print state vector

State vector analysis D

State and regression output E]

[+] Print recent state values...

Print tests and diagnostics

Residual diagnostics
Outlier and break diagnostics
\Write large absolute values

exceeding the value of 3

Antiog analysis |

[ OK ] [ Cancel ]
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We observe more unmodeled outliers.

-

Goodness-of-fit based on Residuals co2

Value

Prediction error variance (p.e.v) 0.082178
Prediction error mean dewviation (m.d) 0.066542
Ratio p.e.v. / m.d in squares 0.97083
Coefficient of determination R"2 0.99%64
based on differences Rd"2 0.945
based on diff around seas mean Rs"2 0.10128
Information criterion Akaike (AIC) -2.4348
Bayesian Schwartz (BIC) -2.3018

Serial correlation statistics for Residuals co2

Durbin-Watson test is 1.91839
Asymptotic deviation for correlation is 0.0469323

La

w N

=4
5

6

o Wb NWw

df Ser.Corr BoxLjung prob
1 -0.01416 2.8394 0.0920]
2 -0.066555 4.8863 0.0869]
3 -0.0050167 4.898 0.1794)
4 -0.06751 7.0135 0.1352]
5 0.09933 11.604 0.0406]
8 0.035746 13.419 0.0982)
20 -0.066052 26.711 0.1436])
32 0.0015844 45.994 0.0521]

Values larger than 3 for Irregular residual:

Value prob
1971 (4) -3.19262 [0.00075]
1972 (3) -3.25050 [0.00062]
1986 (9) 3.14345 [0.00089]
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We select automatic intervention

modeling this time around.

[+] Basic components
=] cycle(s)

Cydle short (default 5 years) O
Cyde medium (default 10 years) []
Cydle long (default 20 years) O
AR(1)
AR(2) O]
E] Options
Select interventions
none O
manually... O
automatically ®
Set parameters to
default values ®
default values and edit... O
current values and edit... O

[ OK ] [ Cancel ]
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This time we have a good model with
strong convergence.

AR (1) other parameters:
AR coefficient 0.41730

State vector analysis at period 1997(12)

Value
7.30883
.13797

96405

Level
Slope
Seasonal chi2 test
Seasonal effects:

P

7

lue Prob

m

]
&
[}
2

1 0.01425
2 0.73328
3 1.42725
4 2.67870
5 3.11441
6 2.31165

-
(53]
(=)
o
w
~J

8 -1.36072
9 -3.39110
10 -3.36828
11 -2.12097
12 -0.84544

Regression effects in final state at time 1997 (12)

Coefficient RMSE Prob

]

Outlier 1971 (4) -0 0.20702 00076]
Outlier 1972(3) -0 0.20699 00049]
Outlier 1986(9) 0 0.20687 3
Level break 1973 (12) -0 0.22330 -3
Level break 1991 (7) —( 0.22515 -3
Level break 1992 (7) - 0.22558 -3




We proceed to residual diagnosis
looking for white noise residuals

Goodness-of-fit based on Residuals co2

7=

vailue

(=]

Prediction error wvariance (p.e.v) .072109

Prediction error mean dewviation (m.d)

(]
(]
(a3
5
Yol
5

J

(=]
(53]
o
W
s

]

Ratio p.e.v. / m.d in squares

Coefficient of determination R"2 0.99969
based on differences Rd"2 0.95227
based on diff around seas mean Rs”"2 0.22006

Information criterion Akaike (AIC) -2.5441
Bayesian Schwartz (BIC) -2.3668

Serial correlation statistics for Residuals co2
Durbin-Watson test is 1.9389%91
Asymptotic deviation for correlation is 0.0471

b}
w0
i8]
w0

Lag df Ser.Corr prob
5 1 -0.019196 [ 0.08638]

2 -0.072638 [ 0.0538]

7 3 0.023065 [ 0.1073]

8 4 -0.045068 [ 0.1347]

9 5 0.085687 10.402 [ 0.0646]
12 8 10.676 [ 0.2207]
24 20 26.077 [ 0.1633]
36 32 52.499 [ 0.01286]

Normality test for Irregular residual
Value
Sample size 468.00
Mean 0.00078048
S5t .Dev 1.0601

Skewness ).11722

Excess kurtosis -0.13869

Minimum -2.7
2.939

o

Maximum



The level residuals are good, but there
remains a slope shift at 1997(9)

Normality test for Irregular residual

7=

vaiue

Sample size

Mean 0

St.Dev

Skewness 0
Excess kurtosis -0.13869

Minimum
Maximum

2 prob
Skewness 8 0.3005]
Kurtosis 7508 0.5402])
Bowman-Shenton 1.4468 0.4851)

Normality test for Level residual

Value

Sample size 467.00
Mean -0.00096108
St .Dev 1.0666
Skewness 0.26111
Excess kurtosis -0.15426

. 7689

.9577

Minimum -
Maximum

ST 8]

Chi~2 prob
Skewness 5.3066 0.0212]
Kurtosis 0.46305 0.4962
Bowman-Shenton 5.7696 0.055%

Values larger than 3 for Slope residual:
Value prob
997 (9) 3.18025 [0.00078]



We add that intervention and then run
the model

Select interventions - STAMP unobserved components module

Press Add button to include more interventions in the model.

[ =]

woowm

14

i
w

Select

<

!I!!IDIIDDDIIDDI

Type
level
irregular
irregular
irregular
irregular
irregular
irregular
irregular
irregular
irregular
irregular
level
level
level
level
level

Pericd
1574( 1)
15€1(10)
186z ( 9)
1371( 4)
1372( 3)
1380( 3)
1383( 8)
1s8s5( 3)
1s8&( 9)
1887( 9)
1587(12)
1572 (10)
1873(12)
1983( 4)
1881( 7)
1882( 7)

Add

ok ||

Cancel

[ Load... ] [SaveAs...] [ Reset

]
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The new model is interesting for the

interventions found

e Vo eAT

Coefficient
Level 365.49444
Slope 0.12829
Seasonal -1.74460
Seasonal 2 2.35447
Seasonal 3 0.82588
Seasonal 4 -0.00646
Seasonal 5 0.13084
Seasonal 6 -0.06255
Seasonal 7 -0.13079
Seasonal 8 -0.03528
Seasonal 9 0.01058
Seasonall0 0.00014
Seasonalll 0.02368
AR (1) 0.01123

State vector at period 1997 (12)

OO0 00000 Oo0o

o

=] M W -]
~J

S I (S I N ]

.02819
.17655

t-value

602.

34127

.64424
.43570
.70084
.83749
.16676
.76308

77220

.86044
.05251
.31452
.00411
.84005
.06359

Regression effects in final state at time 1997 (12)

Coefficient
Cutlier 1971 (4) -0.72283
Cutlier 1972 (3) -0.70844
Cutlier 1986(9) 0.71065
Slope break 1997 (9) 0.19328
Level break 1972 (10) 0.68416
Level break 1973(12) -0.85455
Level break 1983 (4) 0.61582
Level break 1991(7) -0.79240
Level break 1992 (7) -0.79662

LIS TR S I N ]

[ RS S I ST (VT S ]

RMSE
1741

-

o O

(=]
o

o

o
w

N

W oW W W Www
o
W NN W N
(s e I S

8]

AW NN WoWw

w

w

O 0O 0O o000

Prob
.00000]
.00000]
.00000]
.00000]
.00000]
.86764]
.00019]
.07704]
.00013]
.29313]
.75327]
.99673]
.40133]
.94932]

[T e T T T e

o o

t-value
3.

32474 [0.
.25863 [O.
.27074 [O.
.12719 [O.
.97064 [O.
.71127 [O.
.67450 [O.
.41655 [0.
.42757 [O.
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00096]
00121)
00116]
03395]
00313]
00023]
00776]
00069]
00067)
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Although the AR(1) term is no longer significant,

we leave it in

to avoid biased estimation

* Thisis a judgment call. It we should try it both
ways and see what happens. As long as we
have well behaved residuals with the slight

exception of the slope residual which appears

to be significant
nonnormal, we
likelihood that t

y skewed and hence
Kknow from quasi-Maximum
nis may not be a real problem.




Further diagnosis

* There is no evidence of specification error

since we modeled all of the outliers and level
shifts we could.

* Now we review our residual graphics to see
how well our model fits.



Residual graphics show residuals to be well

—not too noisy and they stay in line.

| [—— co2-Stzndaerdised Residuats = - 23E]
|

behaved

[—— AcF-standardised Resicuats
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Click on formulate icon and then the
progress button

B STAMP - Models for time-series data

~ WA ey T
o =

All Modules G@RCH PcGive

Module STAMP

Category {Models for time-series data v

\
Model class ‘ Unobserved Components using ST AMP\ v

Formulate...
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Of all the models run, the most recent
um likelihood.

v
Uc(1i0) & x 4¢8 562.55% Maximum Likelihood (exact score)
uc( 9 & x 4¢8 558.€45 Maximum Likelihood (exact score)
uc( 8) & x 4¢8 535.123 Maximum Likelihood (exact score)
uc( 7) & x 4¢e8 535.403 Maximum Likelihood (exact score)
uc( e) 4 x 4@8 537.€%2 Maximum Likelihood (exact score)
uc( s) & x 4¢ 561.712 Maximum Likelihood (exact score)
uci 4) & x 4¢ 560.37% Maximum Likelihced (exact score)
uc( 3) 4 x 4¢ 558.523 Maximum Likelihood (exact score)
uc( 2) 4 x 4e8 557.08% Maximum Likelihood (exact score)
uc( 1) 4 x 4e8 537.€%2 Maximum Likelihood (exact score)
[ < ] [ Del ] [ > ] [ Mark Specific to General ] [ Mark General to Specific ]
[ OK ] [ Cancel ]
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The end effect on the slope may bias a forecast but
not the fit. Be wary of using this model for
forecasting.

_ Density
5 r I_——|t tests for|co2-lrezular interventions | | | | 04 —l — t t25ts for col-lrezular i
0 -
-2 i | i
| T SN Y TR TR (NN SR RN TR SN NN SN S S S |
1960 1970 1980 1990
)  Density
2.5 —I t testy for co2-Lavel iﬂte‘ver.:ior.sl “ | 04 —I t tests for co2-Level interventiond —1— .\'{s=1)|
| . L 71-— NN
0.0R 02F
251 S ' L : ﬁr
i I T S (S S S (S S SR S N S S 1 el PR Y I S I I Y A P Y P
1960 1970 1980 1990 3 2 -1 0
i _ Density
-| t tasts for co2-Slop2 ir.:rremions| -I t tests for co2-Slop2 interventions 7;—_ NE= 1.841)|
04 N ) L] _F‘T:_
— \
02f Y
AN
N
W
-
1 1 1 L IR TR B | 1 | N SN |
1960 1970 1980 1990 1 2 3
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Suppose we had to forecast, we would
then select forecast in the test menu

Test Menu

More written output...
Components graphics...
Weight functions...

Residuals graphics...
Auxiliary residuals graphics...
Prediction graphics...

| r——

Store in database...

OROO0O000

[ OK ] [ Cancel ]
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We could select these options and

click on OK.
Forecasting - STAMP unobserved components module @

Select equation and forecast settings

Equation co2
Horizon 47
Edit/Save forecasts X&Y O
Write forecasts Y O

Write forecasts components [:]

[=] Select components to plot with Y...
Signal
Trend [l

Trend plus Cydes and ARs

Trend plus Regression effects
[+] Select components to plot without Y...
=] Further options...

Plot confidence intervals
Antidog analysis [
Zoom sample range 1930( 3) - 1997(12)

[ OK ] [ Cancel ]
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We can obtain ex ante forecasts for the whole
series as well as for the separate components

Forecasts with 68% confidence interval from period 1997 (12) forwards:

Forecast stand.err leftbound rightbound
1 365.46677 0.31697 365.14980 365.78373
2 366.51499 0.41157 366.10342 366.92656
3 367.52956 0.50445 367.02511 368.03401
4 369.10108 0.59376 368.50733 369.69484
5 369.85947 0.68349 369.17598 370.5429¢6
) 369.37681 0.7714% 368.60533 370.14830
7 368.19980 0.86125 367.33854 369.06105
8 366.35732 0.95181 365.40551 367.30912
9 364.62113 1.03029 363.59084 365.65142
10 364.95447 1.10898 363.84549 366.06346
11 366.51755 1.1879¢9 365.32956 367.70554
12 368.09861 1.26200 366.83661 369.36060

Forecast wvalues for Level
Forecasts with 68% confidence interval from period 1997 (12) forwards:
Forecast stand.err leftbound rightbound

1 365.62273 0.62018 365.00255 366.24290
2 365.75101 0.63372 365.11729 366.38473
3 365.87930 0.64743 365.23188 366.52673
4 366.00759 0.66129 365.34630 366.66888
5 366.13588 0.67532 365.46056 366.81120
6 366.26417 0.683950 365.57467 366.95367
7 366.39246 0.70384 365.68862 367.09630
8 366.52075 0.71833 365.80242 367.23908
9 366.64904 0.73297 365.91607 367.38200
10 366.77732 0.74776 366.02957 367.52508
11 366.90561 0.76269 366.14292 367.66830
12 367.03390 0.77777 366.25613 367.81167

Ssf() warning: SLOPE can not be part of signal
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Stamp warns us about the slope being an
unreliable part of the signal (the end effect

Forecast wvalues for Level
Forecasts with 68% confidence interval from period 1997 (12) forwards:

Forecast stand.err leftbound rightbound
1 365.62273 0.62018 365.00255 366.24290
2 365.75101 0.63372 365.11729 366.38473
3 365.87930 0.64743 365.23188 366.52673
4 366.00759 0.66129 365.34630 366.66888
5 366.13588 0.67532 365.46056 366.81120
6 366.26417 0.68950 365.57467 366.95367
7 366.39246 0.7038 365.68862 367.09630
8 366.52075 0.71833 365.80242 367.23908
9 366.64904 0.73297 365.91607 367.38200
10 366.77732 0.74776 366.02957 367.52508
11 366.90561 0.76269 366.14292 367.66830
12 367.03390 0.77777 366.25613 367.81167

S5sf() warning: SLOPE can not be part of signal

Forecast wvalues for Seasonal
Forecasts with 68% confidence interval from period 1997 (12) forwards:
Forecast stand.err leftbound rightbkound

1 0.01323 0.09192 -0.07870 0.10515
2 0.74218 0.09192 0.65026 0.83410
3 1.43682 0.09203 1.34478 1.52885
4 2.68793 0.09212 2.59581 2.78005
S 3.12558 0.08237 3.03321 3.21796
& 2.32185 0.09261 2.22934 2.41456
7 0.82378 0.09287 0.73091 0.91665
8 -1.33%897 0.09344 -1.43341 -1.24653
9 -3.39751 0.09248 -3.48999 -3.30503
10 -3.38559 0.09243 -3.47802 -3.29316
11 -2.14398 0.09317 -2.23715 -2.05080
12 -0.88441 0.09669 -0.98111 -0.78772
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Ex ante forecast

col Forecast-co2 +/- SE

380
370

360

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

col

Level e

380
370

360

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Andnl aV nZ4a0 ~V AT
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Forecast evaluation

Forecasting - STAMP unobserved components module

Select equation and forecast settings

Equation o2
Horizon 12

Edit/Save forecasts X&Y O
Write forecasts Y

Write forecasts components

[=] Select components to plot with Y...

Signal
Trend O
Trend plus Cydes and ARs |

Trend plus Regression effects O
Select components to plot without Y...
[=] Further options...

Plot confidence intervals

AntiJog analysis O

oomsompe e PO =

[ OK ] [ Cancel
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We can shorten the forecast horizon
to improve our forecast accuracy

370.0 [ |—— co2 —— Forecast-co2 +/- SE

3675
365.0
3625

360.0F




After requesting Prediction Graphics select
the boxes below for forecast evaluation

Prediction graphics - STAMP unobserved components module |
One-step ahead ® A
Multi-step ahead O
Post-sample size 12
Plot predictions and Y
Predictions
v With Y
... with standard errors
... and scaled by 2
Cross-plot predictions x Y
Plot residuals
Residuals |
... with standard errors J
... and scaled by 2
Standardized residuals
Cumulative sum
Cumulative sum t-test [

Write
prediction tests
v
[ OK ] [ Cancel ]
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Some of the Prediction graphics

3675 . i
[| ——+ Actuval co2 -B-'éﬁr-;éiqtion :oll 'l + Actual co2 x Pradiction co2 *
L L +
- 366
L L +
365.0 r
L - . R
+ o +
i 364} +
362.5 - +
[ ] o
r 3621
360.0 ,, I
+ / L+
I | 1 1 1 1 1 1 1 1 '\I-" 1 1 1 ) -l[llll[lllllllllllllllllllllllllllll|
1998 360 361 362 363 364 365 366 367

1997

o | —+—+— Standardisad r-:-sidulsl A
Z ‘ L
L N A 5 o
— i _____________
1 A .
| IR
| |'| 5 L
II| \ A | /
0 J \.I _v" 0 — S
II,' -\.I JIF | — A
\ - P
I ~ '.I/*..\ l'l 'l'u { B N o /
+ f \ / | Y AN 4
-1F Ill Y ||l — N ____/"
Y I". / T — —
I * v el o T—
)= ll'-, ,IJ B B ——
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1998 1997 1998

1997
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Out-of-sample forecast evaluation

Prediction analysis for 12 post-sample predictions (with 1 missing values).

error stand.erxrr residual cusum sgrsum
1937(1) -0.2208 0.2692 -0.8204 -0.8204 0.6730
19387(2) -0.1134 0.28692 -0.4212 -1.242 0.8504
19397 (3) -0.4193 0.2892 -1.557 -2.799% 3.276
1397 (4) 0.3308 0.2892 1.229 -1.570 4,786
1997 (5) -0.04834 0.2892 -0.1796 -1.750 4,818
19397 (86) -0.6106 0.28692 -2.268 -4.018 9.964
19387 (7) -0.001921 0.2703 -0.007105 -4.025 9.964
19397 (8) 0.09913 0.2694 0.368 -3.657 10.10
1937(9) .NaN 31e62. 0.0000 -3.657 10.10
1997 (10) 1.041 0.4683 2.222 -1.435 15.04
1997 (11) 0.4474 0.3688 1.213 -0.2217 16.51
1897 (12) 0.5104 0.3348 1.525 1.303 18.8

Post-sample predictive tests.
Failure Chi2( 11) test is 18.8346 [0.0641]
Cusum t( 11) test is 0.3%929 [0.7019]

Post-sample prediction statistics.

Sum of 11 absolute prediction errors is 3.84283
Sum of 11 squared prediction errxors is 2.27563
Sum of 11 absolute prediction resids is 11.8111
Sum of 11 squared prediction resids is 18.8346
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Stochastic cyclicity :

_l//t+1
W*

t+1

p =damping parameter st. 0<=p<=1

ﬂ“c — f”eqwency Of the Cycle — ——

The cyclical component

—sin A,

cos A,
=P

where

sin A,

cos A,

|

27
P

A

where p. = period of the cycle

A

ZwZz* - N(0,0';t )

cov( x,, 1, ) =0



The cyclic distribution
Koopman et al. (2008, 22-23).
Wi

_ |cosd,  sind, ||V
v P —sin4, cosA, ||y

(Z }J NID{[O} 0',/2,(1—,02)]2}
X 0

when p — 1, the cycle component reduces to

X "
+L{J XX ~ N(o,ajl)

cov()(t,)(;) =0

a deterministic (but stationary) sine - cosine

wave.



What are the system matrices?
Koopman, Shephard, and Doornik (2008, 9)

(04 d 7 H
t+1 — 14 —l— 14 at + 14 8t
yt Ct Zt mx1 Gt rx1
m~+N x m~+N x 1 m—+N xm m—+N xr

m = dimension of the transition equation

N = dimension of the measurement model

at+1 \ dt
= Stlate vector O = = constant vector
yt ) Ct
(m+N)x1
(T, . .
D, = = lransition matrix
<

(m+N)x m

H, HH' HG'
u, = £ ~ NID(0,Q2) Q =

G, GH' HH'

(m+N)xr (m+N)x(m+N)
where n = number of observations

r =dimension of the disturbance vector



We can define, constrain, or limit
parameters in these matrices

Most matrices start with an m before their name. This is a
notational convention of SsfPack.

We can decide whether these matrices will be time-varying or
constant. We index these Phi, Omega, and sigma matrices by
J. All elements within are = -1 except those that vary with

time.

We can define whether these elements are known or unknown, to
be initialized as diffuse or not.

We can insert -1 to indicate that the element will receive diffuse
initialization or not.



Input to Stsm matrix

Ibid, 24

Cmp Col 1 Col 2 Col 3 Col 4
Level 0, 0 0 0
Slope o, 0 0 0
Trend o m 0 0
Seas o, G 0 0
_dummy ,
CycleO Oy ¢ P !

M M M M
Cycle9 0, ’lc p 0
BWCYC g, A p m
Irregular O; 0 0 0
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Missing Values

Missing data can be estimated by data augmentation or filtering if
they exist in the measurement model or the data matrix.

Periods signify missing values in Ox. In SPlus, the missing value is
NA. Vectors with missing values are automatically reduced to
Vectors without missing values for analysis.

The system matrices are presumed known and given and cannot
have missing values within them. When some matrices are not

Relevant for the formulation of a state space, they can be left blank.



Data matrix mxXt

mXt is a k by n matrix of exogenous variables.

The number of columns = sample
size
The number of rows= number of

time-varying elements in the
matrix.

If this is a time series, it is usually
called mYt



A side note.

When regressors are added to a local level model, the time-varying level
serves as a constant. Therefore, we do not add a column of ones to them
to avoid unnecessary multicollinearity lbid, 28.

If you are adding a deterministic time trend and do not already have a local
level, a constant would be acceptable so long as you did not previously
center your data.



Adding Regressors to the State Space
Model

GetSsfReg is the function that is used for this purpose.
When it does so, it estimates the model by recursive least
squares. This is an OLS algorithm applied to a widening
window expanding one step ahead each cycle of window

extension. Koopman et al(2008,27) suggest that the multiple
linear regression analysis can be specified in state space form
as

04

t

v =Xa+Ge, & ~NID@0,0)) t=1,..,n

+1 :at



To add regressors to a model in
SsfPack

#include <oxstd.h>
#include <c:\Program Files\OxMetricsS51\Ox\packages\ssfpack\ssfpack ex.h>

. —fmd Da = R - = P g— y = - -
generated Regression terms as time-varying parameters
o G P
X SOoITware prograr

Adding the random
gression data to
System matrices that
have just been
specified.

main ()

decl mPhi, mOmega, mSigma, mJPhi=<>;
GetSsfStsm
(<CMP_IRREG, 1, O
CMP_TREND, .4, 2
&mPhi, &mCmega, &mSj

AddSsfReg(rann(3,20), &mPhi, &mCmega, &mSigma, &mJPhi):;
format ("$%6.2¢");

println("System Matrices for adding regression terms ")
println (" "):

print ("Phi = ", mPhi, " Omega = ",mOmega, " Sigma = ",mSigma);

println("JPhi = ", mJPhi);
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System matrices for adding regressors
as tlme varylng parameters.

- o P T T —— S —————
enren tat: For adding regress ’f?f (T oemmRR, e
Prs =
Mrgianib
S50 0.00 o.00 o.00 o.1e o.00
sigma = Co The Jphi matrix
00 1.0 0.00 0.00 0.00 contains -1
0.00 ©0.00 0.00 -1.0 0.00 except where
_Pé Ei 000 008 G.00 D00 time varying

parameters are
specified.

1.0 2.0 -1.0 -1.0



Trend-cycle models

#include <oxstd.h>
#include <c:\Program Files\OxMetricsS51\Ox\packages\ssfpack\ssfpack ex.h>

e 28

Trend Cycle Model CK p
Order of trend

\]
0y

main()

decl mPhi, mCmega, mSigma;

GetSsfStsm

(<CMP_IRREG, 1.0, 0, 0,827 this 1s the irregu
CMP_TREND, 0.4, 3%~ 0, 0O; 3rd order trend sd=.4
CMP_BWCYC, .8, .9, .3, 2>, Butterworth filter for order 2, sd=.6, dampi
&mPhi, &mCmega, &mSigma):;
format ("%%5.2¢"):
println("Trend-cycle CK p.26 ");
print ("W ) »
println (" ")
print ("Phi = " ,mPhi, " Cmecga = ",mOmega, " Sicma = ",mSigma):;
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Trend-cycle system matrices

Ox at 21:43:55 on 09-Nowv-2009%

()

Ox Professional version 6.00 (Windows/U/MT)
Trend-cycle CK p.Z26
Phi =
1.0 .0 0.00 0.00 0.00 0.00 0.00
0.00 .0 1.0 0.00 0.00 0.00 0.00
0.00 0.00 1.0 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.19 0.23 1.0 0.00
0.00 0.00 0.00-0.23 0.19 0.00 1.0
0.00 0.00 0.00 0.00 0.00 0.19 0.23
0.00 0.00 0.00 0.00 0.00-0.23 0.19
1.0 0.00 0.00 1.0 0.00 0.00 0.00
Cmega
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0
Sigma =
-1.0 0.00 0.00 0.00 0.00 0.00 0.00
0.00 -1.0 0.00 0.00 0.00 0.00 0.00
0.00 0.00 -1.0 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.47 0.000.074-0.083
0.00 0.00 0.00 0.00 0.470.0930.074
0.00 0.00 0.000.0740.093 0.36 0.00
0.00 0.00 0.00-0.0930.074 0.00 0.36
0.00 0.00 0.00 0.00 0.00 0.00 0.00

J.A. Doornik,
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Interventions

Just as regressors can be added to the
model, so can dummy variable identifying
additive outliers or level shifts. Several

adjacent outliers can define outlier
patches.



Adding Regressors

code from Zivot and Wang,(2005), pp. 526ff

When regressors are added to a local level model, the time-varying level
serves as a constant. Therefore, we do not add a column of ones to them
to avoid unnecessary multicollinearity lbid, 28.

X.mat = cbind(l, as.matrix(seriesData(excessReturns.ts[,"SP500"])))
Phi.t = rbind(diag(2), rep(0,2))

Phi.t

Omega = diag(c((.01~2),(.05~2),(.1)~2))

Omega

J.Phi= matri
J.Phi[3,1]=1
J.Phi[3,2]=2

x(-1,3,2) # time-varying parameter J matrix

J.Phi

Sigma= - Phi.t

mX=X.mat

mX # construction of design matrix

#mapping matrices into SsfPack

ssf.tvp.capm = list (mPhi=Phi.t,mOmega=0Omega, mJPhi=J.Phi,mSigma=Sigma,
mX=X.mat)

ssf.tvp.capm

# let's simulate the model
# Simulation

= first check it
ssf.tvp.capm // This checks tc see whether your code is syntactically correct.
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Non-parametric cubic splines
for smoothing

Nonparametric cubic splines are smoothers used to extract
signal from noise. They are designed to capture the
nonlinearity of a function. These may be added as regressors
to define a function or process that serves as an explanatory

variable in a model.

If we have a stationary error process, such
that y, =u + €. We are trying to find

a nonlinear or piecewise function [, for which

argmin =§T:(yt —1,) + /’Li(A{Ur )
t=1 t=1

where

2

the term on the far right = penalty function(Durbin
and Koopman(2001,61).



Basic structural model

It has a level, a slope, and a seasonal component

V=M AL AV Y,
where
U, =unobserved trend (level) component
[, = unobserved slope component

¥, = unobserved seasonal component

& =unobserved irregular component
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The GetSsfStsm function

If we provide the input of what components we wish to have in our
model this function in SsfPack (in Ox or in S-Plus) will construct our

system matrices for us.

The system matrices are the model matrices which stack the state
equation atop the measurement equation. They are the Phi, the Omega,

and the Sigma matrices.



GetSsfStsm in S-Plus

$33#334538343#8%4%%# VUncbserved component Zormulation #3#3#3333333333333333333333333338343385837858888883
args (GetSsfStsm)

FREFF3388538888F The local level model #FFFFFFFFFF333 3334388888988 884 0884000800000 004498

ssf.stsm = GetSsfiStsm(irregular=1l, level=.5) # irregular=1 and level = .5 specify sigma_epsilon = 1
# and sigma_eta=l

class(ssf.stsm)

names (ssf.stsm)

ssf.stsm # displays the system matrices of the state space local level model

args (GetSsfStsm)
names (GetSsfStam)

v
< >
> names (GetSsiStsm)
[1] "irregular" "level™ "slope" "trend" "seasonalDummy"” "seasonallrig"™ "seasonalHS"
[E] "BWcycle" "cycleO"” "cyclel” "cycle2” "cycle3"” "cycled"” "cycle5"
[15] "cycle&" "eycle?” "eycled” "eycled” "AR1"™ "AR2"™ nn
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System matrices for local level model

306 1

3sf.stsm = GetSsiStsm(irregular=1l, level=.5) # irregular=1 and level = .5 specify sigma_epsilon =1
# and sigma_eta=l

class(ssf.stsm)

names (ss3f.stsm)

ssf.stsm # displays the system matrices of the state space local level model

args (GetSsfStsm)
names (GetS3£Stam)

ssf.stsm

<

> gsf.stsn

=
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Local level model with stochastic regressors
(time-varying parameters)

we could treat the parameters as random walks
(Zivot and Wang, 2005, 533)

at+1 — ]—;at + thl‘

y, =xp+ ¢
with
Oy,
o
H = B,
M
| O,

in this case the exogenous series
are treated as random walks

SO

ﬁi,t+.l — ﬂi,t + O-i,,b’,



SsfPack code for reading the
Norwegian traffic fatalities data

206

207 }

208

209 main()

210 ¢

211 decl data;

212 data = loadmat ("NorwavFinland.txt")'; // load data, transpose
213

214 print ("\nNorway 1970-2003");

215 print("\n-——————————————— \n");

216 s mY = log(data[l][])’ log 1970-2003

217 s cT = columns (s _mY); // no of observations
218

219 MaxLik():

220 DrawComponents (s mY) ;

221 B
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Ox code for setting up a stochastic
local level model

Commandeur and Koopman code snippet

1 chapter2-1&2-2.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_2\c... Q@@

11 #include <oxstd.h>

12 #include <oxdraw.h>

13 #import <maximize>

14 #include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>

i5

16 static decl s m¥, s_cT; // data (1 x n) and n

17 static decl s _mStsm, s_vVarCmp; matrices for state space model

18 static decl s_dVar; // scale factor

19 static decl s _vPar; // parameter vector of model

20 '/ Determination of the level variance as stochas

21 static decl s_iLvlvVar = 0; // 0 = stochastic level; -1 = deterministic level

22 static decl s_asCmps; // string array of component names

23

24 SetStsmModel (const vP)

25 ¢

26 map to local level model

27 s mStsm = < CMP_LEVEL, 0.5, 0, 0;

28 CMP_IRREG, 1, 0, 0>;

29 / change BFGS parameters into error variances

30 decl vr = exp(2.0 * vP):

31 s vVarlmp 1s used to update diagonal (Omega)

32 if (s_iLvlvar != -1)

33 /S level irregular

34 s_vVarCmp = vr[0]]| vr[1]:

35 else A

< > W
—
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Ox code for Local level model

}
InitialPar()

decl dlik, dwvar, vp:

if (s iLwvlVar != -1) diffuse prior
s asCmps = {"level ", "irregular "} local level model

"
m
ct
w

-8

]

-8

e
@
2
et
o
=
@
e
<
[ul]
H

LogLi

scale

u

return vp +
}
Likelihood (const vP, const pdLik, const pv5Sco, const pmHes)

arguments dictated by MaxBFGS ()
decl ret wval;
SetStsmModel (VP) ; // map vP to local level model

ret_val = pvSco ? LogLikScoStsm(s_mY, pdLik, pvSco)
LogLikStsm(s_mY, pdLik, &s_dVar);

< n

return ret wval; // 1 indicates success, 0 failur

1]
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Code snippet

MaxLik()

{

decl vp, dlik, ir;

vp = InitialPar(): // initizlise unconstrained BFGS parameters
print ("\ninitial wvaluesz BFGS parameters",vp):

print ("\n");

MaxControl (50, 1, 1): // start itera

1 t1
ir = MaxBFGS (Likelihood, &vp, &dlik, 0, FALS

println("\n", MaxConvergenceMsg(ir),
" using analytical derivatives",
"\n(1l/n) Log-likelihood = ", "%.8¢g", dlik,
ll; n = ll' S_CT, ll; ll) ;

// set up system matrices and compute AIC

decl mphi, momega, msigma, daic, 1i;

GetSsfStsm(s_mStsm, &mphi, &momega, &msigma);

daic = (-2%dlik*s_cT) + (2* (rows(vp)+columns (mphi))):
println("\nAkaike Information Criterion = ", daic/s _cT):

s_vPar = vp;
print ("\nparameter estimates (unconstrained)");
for (i=0;i<=rows (vp)-1; i++)
print ("\n ", s_asCmps[i], vpli]l):
print ("\n\nerror variance estimates");
for (i=0;i<=rows (vp)-1; i++)
print ("\n ", s_asCmps([i], exp(2.0 * wvp[i])):
print ("\n");
println("Printing system matrices for local level model"™):;

PRI I T - L | S (. VU | (PSR § S - © - S
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Output of local level model for Norwegian traffic

Ox Professional version 6€.00 (Windows/U/MT) (C) J.A. Doornik,

] N\

fatalities

VOeAT - ~ -1 =N

Norway 1970-2003

initial wvalues BFGS parameters

ito
itl
itz
it3
it4
its

BFGS:

-3.1656

-2.4725

0.7755300 df= 0.1692 el= 0.5780
0.8205218 df= 0.1248 el= 0.4053
0.8464840 df= 0.02166 el= 0.06664
0.8468296 df= 0.005806 el= 0.01800
0.8468620 df= 0.0003184 el= 0.0009332
0.8468622 df=1.947e-005 el=5.706e-005

Strong convergence

Strong convergence using analytical derivatives

(1/n)

Log-likelihood = 0.84686222; n = 34;

Akaike Information Criterion = -1.51725

parameter estimates (unconstrained)

level

-2.67982

irregular -2.86173

error variance estimates

level
lrreggla* 0.00326838

0.0047026

(data from Commandeur and Koopman (2007)

1994-2009
e2= 0.006215 step=1
e2= 0.009751 step=1
ez2= 0.01080 step=1
e2= 0.0007435 step=1
e2= 0.0003626 step=1
e2=2.895e-005 step=1
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Printing system matrices for local level model

Phi =
1.0000
1.0000
Cmega =
0.25000
0.00000
Sigma =
-1.0000
0.00000

mKF[][0:4]
0.00000
1.0000
0.00000

0.00000

lag
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10.000

W M <] o b W N

95%-confidence

0.00000
1.0000

-0.049415
0.70820
88.973
1.0000

autocorrelation

-0.12733
-0.012441
0.109498
-0.10540
-0.13824
-0.22535
-0.15301
-0.04778
0.042202
-0.10378

limit = 0.34299

-0.098486
0.68234
97.192
1.0000

-

0.010678
0.67961
98.028

1.0000

System Matrices

-0.00050003
0.67933
98.114
1.0000
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Initial conditions
depend on prior distribution

To indicate a diffuse distribution and or a noninformative prior, the
variance of the prior is flat and almost infinite. This means that the
precision of such knowledge is the inverse or reciprocal of the
variance. The precision -> 0 as the variance-> infinity.

Problems of estimation arise when you approach the perilous

precipice (boundary) of the parameter space. Estimates tend to break
down at such extremes.

Therefore, we use in our computers approximations. Infinity is
therefore represented by a very large number, such as
107 . We suggest such a condition by assigning a value of -1 to a

parameter for an initial condition. If parameters are mean-centered,
the initial value of their means can easily be zero.



Time-varying parameters

Many simple models can be defined by specifying the mPhi, mOmega, and
mSigma matrices.

However, sometimes parameters vary over time. They may be random
coefficients.

To indicate such parameters, we use J matrices. Instead of mPhi, the
matrix would be called, mJ_Phi. This would indicate the presence of a
non-constant system matrix for mPhi.



Graphical output of Model of
Norwegian traffic fatalities

6.25 i | '}"T log fatalities jn Norway stochastic level
- — or ..'-"-_
6.00
5751
| 1 1 1 1 | 1 1 |
1970 1975 1980 1985 1990 1995 2000 2005
— irregular . Iu'ﬂlll !
0.05- /\ [ lll
L ." III '!| II III | ! | ! |
A A fA . f [ |'I || A
{0 ! . f | | A / ]'I | \
. /o Il'. I'I [ \ | f l'l {o |II I| III \
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Local linear Trend Model

U, =d +Tu+p5+n, 1, ~NID(0,0,)=(0,H, €,)
mx 1 mxr rx

xr rxl
ﬂt+1 = IBI +§z é/z ~ N[D(0,0'i) :(o,nqu{rgt)
yl :Ct+ZZ ﬂt+§[ ft NNID(09()-£):(09]$;82‘)

Nxm



Local linear Trend model
System matrices

;ut+1

. =| B., |=state vector (unobserved factor)

Vi

mx1

d
o) =[ ’}= mean matrix(if model is not mean centered)

Ct
®, = | ' | =mPhi matrix
(m+N§xm
HH' HG' ' _
.= = mSigma matrix
GH' GG'

(m+1)xm
assumed that cov ariance =0 so mSigma matrix is
defined by it's principle diagonal
where
m = dimension of state vector
N = number of variables
n = number of observations

r = dimension of error vector



W M - o, b Wk

LT T T T o S S SR SO SO S O
WO Wm-1o0 o WO

Ox Code for local linear trend model

#include
#include
#include
#include

main ()

decl
decl
decl

decl
decl
decl

DrawTitle (O,
DrawTMatrix (0O,
‘: "-_\‘v-t. Il’

"%C",

<oxstd.h>
<oxdraw.h>
<oxfloat.h>

<packages/ssfpack/ssfpack _ex.h>

mPhi <1,1;0,1;1,0>;
mOmega = diag(<0,0.1,1>);
mSigma «.5>;

<"‘\ O=<0_0
e R

mr
md

= ggrt (mCmega) *
SsfRecursion (mxr,

.....

rann (3,
mPhi,
~ M NAN;

21):

mCmega, mSigma);

nNn

ZU

(t=10) for local
{"mu[t+1]","beta[t+1]","v[t]"},
trend model");
md[:11(],

1"k,

linear trend model",

nd[][10]")>

"local linear
mYt |
"Tma[t]","betalt

i, 1, 1); // 1o

ShowDrawWindow () ;
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Ox Output

--------------- Ox at 23:30:40 on 18-Nov-2009 -—————————-———-

Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
Generated data (t=10) for local linear trend model
ma[t+1] beta[t+1] vit]
9.4880 2.2385 6.8327
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ro
A

10

Ox graphical output for
local linear trend model

_ local linear trend model

v[t]

mut]

beta[t]

pX 12744 pY -114
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Defining the system matrices and
specifying the model

It can be done without reference to ARIMA
models, as we have already shown.

We will now provide examples of how these
models may be formulated in an ARIMA
framework as well.

We shall give examples of both, with Ox and S-
Plus.



Ox code specifying
an AR(1) model

#include <oxstd.h>

#include <packages/ssfpack/ssfpack ex.h>

main|()

decl mPhi, mOmega, mSigma;
format ("¥5.1£f");

GetSsfArma

(<0.86>, <>, sq*t(D 9), &mPhi, &
print (" An (1) odel "
print ("Phi =",mPh
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AR(1) system matrix output

- n -~

——————————————— Ox at 23:55:19 on 18-Nov-2009 -—-———-----——-

Ox Professional wversion 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
An AR(1l) model Phi =

-
L0
-

[T
2 C
O O

0



Local Level model with stochastic
regressors with AR(2) errors

at+1 T* * Hnt
=| , |o+
Y, Z, 0



W M <) o, 0 Wb W N

N
WMo

AR(2) Ox code

Koopman, Shephard, and Doornik (2008, 16)

v v - A b - - -

#include <oxstd.h>

#include <packages/ssfpack/ssfpack ex.h>
main|()
decl mPhi, mCmega, mSigma;
format ("$5.1£f");
GetSsfArma
(<0.6,0.3>, <>, s8qgrt(0.9), &mPhi, &mOmega, &mSigma):;
print (" An AR(2) model ");
print ("Phi =",mPhi, "Cmega =",mOmega, "Sigma =",mSigma):;
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AR(2) system matrix output

——————————————— Ox at 23:58:23 on 18-Nov-2009 ——————————————n

Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1984-2008
An AR(2) model Phi =

W

0.6 1.0

0.3 0.0

1.0 0.0
Cmega =

0.9 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

Sigma =
3.7 1.0
1.0 0.3
0.0 0.0
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Ox Code specifying
an MA1 model

-

W <] o 00 Wb W N

#include <oxstd.h>
#include <packages/ssfpack/ssfpack ex.h>

main|()

decl mPhi, mOmega, mSigma;
format ("%5.1£f");

GetSsfArma

(<>, <0.8>, sqgqrt(0.2), &mPhi, &mOmega, &mSigma);

print (" An MA (1) modell\n"):;

print ("Phi =", ,mPhi, "Omega =",mOmega, "Sigma =",mSigma)’;
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MA 1 system matrix output

an N

--------------- Ox at 23:58:23 on 18-Nov-2009 -—————————————-

~ A

Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
An AR (2) model Phi =
6

-~
8}

- -
8]

0 = 0 0
U3 .U
~ ~ o~
A 8} 9
-V Ve

- Woe W -
A A A ~

). 0 0.0 0.0
~ A ~n A ~ A
). 0 ). 0 ). 0
e U Ja U Ja U

- - 0
/ -

- 0 n =
. U JeD

-
-
.
-

C
.
C
C
.
C



A~ W = S

MA(2) system matrix output

#include <oxstd.h>
#include <packages/ssfpack/ssfpack ex.h>

main|()

decl mPhi, mCmega, mSigma;

format ("$5.1£f");

GetSsfArma

(<>, <0.6,0.3>, sgrt(0.9), &mPhi, &mOmega, &mSicma);
print ("™ An MA(2) modell\n"):;

print ("Phi =",mPhi, "Cmecga =",mOmega, "Sigma =",mSigma);
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MA2 system matrix output

——————————————— Ox at 00:05:11 on 19-Nov-2009 -——---———c——-

Cx Professional wversion 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-20¢
Zn MA(2) model

P

0.9 0.5 0.3 0.0
0.5 0.3 0.2 0.0
0.3 0.2 0.1 0.0
0.0 0.0 0.0 0.0
Sigma =
1.3 0.7 0.3
0.7 0.4 0.2
0.3 0.2 0.1

o
(]
(]
(]
(]
(]
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An ARMA(2,1) model

Ox code from Koopman, Shephard, and Doornik
(2008, 16)

#include <oxstd.h>
#include <packages/ssfpack/ssfpack ex.h>

main()

decl mPhi, mOmega, mSicma;
format ("$£5.1£f");

GetSsfArma

(<0.6,0.2>, <-0.2>, s8qgrt(0.92), &mPhi, &mOmega, &mSigma):
println("™ An ARMA(2,1) model™);

print ("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
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ARMA(2,1) model output

Ox Professional wersion 6.00 (Windows/U/MT) (C) J.A.

P

¥
I

(8]

o

[ ]

o = O

An ARMR (2,1)
h

0.

0

- .

model
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ARIMA(2,1,1) model specification

Koopman, Shephard, and Doornik(2008, 18) .

#include <oxstd.h>
#include <packages/ssfpack/ssfpack ex.h>

main()

decl mPhi, mCmega, mSicgma;

GetSsfSarima

(L,<0.6,0.3>,<-0.2>,8grt(0.9), &mPhi, &mOmega, &mSigma):
println("ARIMA (2,1,1) model specification"):;

print ("Phi =",mPhi, "Cmega =",mOmega, "Sicgma =",mSigma);

12
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System matrices for
an ARIMA(2,1,1) model

Ox Professional wversi (C) J.A. Doornik, 1994-2009
ARIMZ (2,1,1)
Phi =

1.0000

0.00000 0.6000

0.00000 0.30000
1.0000 1.0000
Cmega =
0.00000 0.0000 0.00000
0.00000 0.90000 -0.18000 0.00000
0.00000 -0.18000 0.036000 0.00000
0.00000 0.00000 0.00000 0.00000
Sigma =
-1.0000 0.00000 0.00000
0.00000 2.5988 0.41112
0.00000 0.41112 0.26989
0.00000 0.00000 0.00000
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Adding data containing
exogenous series
to the model using SsfPack

#3#3###388884## State Space Form = local level + stochastic regression effects

#
#
#
#
#

#

Initial state: alpha = 0
P = k*I
assunmption is that prior=diffuse
sigma = <-1, 0; 0, -1; 0, 0>

code from Zivot and Wang, (2005), pp. 5261t

# Construction of the system matrices for time-varying parameters

X.mat = cbind(l, as.matrix(seriesData(excessReturns.ts[,"SP500"])))
Phi.t = rbind(diag(2), rep(0,2))

Phi.t

Omega = diag(c((.01~2),(.05~2),(.1)"~2))

Omega

J.Phi= matrix(-1,3,2) # time-varying parameter J matrix

J.Phi[3,1]=1
J.Phi[3,2]=2

J.Phi

Sigma= - Phi.t

mX=X.mat

mX # construction of design matrix

#mapping matrices into SsfPack

ssf.tvp.capm = list (mPhi=Phi.t,mOmega=0Omega, mJPhi=J.Phi,mSigma=Sigma,
mX=X.mat)

ssf.tvp.capm
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How the Kalman filter functions

e The Kalman filter evaluates moments of the
state vector over time.

* Filtering is a one-step-ahead forecast of the
mean and variance plus a regression on the
innovation to provide a correction at one-lag
of this process. Hence, there is iterative
correction over time.



To estimate the mean and variance of
the state vector

The Kalman filter adds the data to the structure
specified by the system matrices and uses the data
to recursively computethe innovations that will be
used to correctthe one - step - ahead expectation
of the state first and second moments : the
statemean and statevariance :

a,.,=E(|Y)

P

t+1

=cov(, | X))



Kalman filter ALgorithm

¢ A I’GCUI’SIVG a/gOI’Ithm proceeding 1 step at a t7'me...

v, =y —c, —Z,0, innovations are computed
F =var(v))=Z,PZ +G,G,' innovation variance is computed,
subject to eigenvalue decomposition for further
analysis, so Z ,P, G and G' become defined.
kK = Kalman gain can be computed from
k=(TPZ'+HG"F' so T is now known.
o, =d +Ta +kxv, (if not mean centered;d, =0 if mean— centered)
P=TPT +HH,' can finally be computed.

The state moments are estimated.



Convergence problems

e |If |F|=0, or when there is not enough
computer memory, this procedure may not
converge.

* |t has to be able to invert F. If F->large, the
speed will degrade.



Kalman filter without diffuse initialization

Md->md-> Recursion

#include <oxstd.h>
#include <oxdraw.h>
#include <oxfloat.h>
#include <packages/ssfpack/ssfpack_ex.h> Kzlman filter
withhout diffuse
main|() as our dgp 1s st
decl mPhi = <1,1;0,1,;1,0>;
decl mCmega = diag(<0,0.1,1>);
decl mSigma = <0,0;0,0;1,.5>; Note that O 1s zero
decl mr = sqgrt (mCmega) * rann(3, 21):; // mr 1s designed to input
decl md = SsfRecursion(mr, mPhi, mCmega, mSigma);
println("mr = ",mr);
println("md = ",md):
decl mYt = md[2][1:]; 20 observations of data
println("m¥t = ",m¥Yt):
decl mKF = KalmanFil (mYt, mPhi, mOmega):;
print ("mKF\' (t=10)","%c",{"v","K(1,1)","K(2,1)","F~-1"},
mKF[]1[2]1"):
DrawIMatrix (0, mEF[O][], {"v"},1,1,1):;
DrawTMatrix (1, mKF[1:][], {"K(1,21)","K(2,2)","F*-1"},1,1,1);

ShowDrawWindow () ;
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Data matrix and Kalman Filter output
at t=10

0.83317 1.9783 2.2372 2.3553 2.5553 4.4531
2.5337 5.3342 6.2209 6.8327 9.9575 11.804
13.006 15.987 18.685 20.571 23.932 25.869
28.095 31.990

nmKF' (t=10)

: K(1,1) ¥(2,1) | it |
.27618 0.76491 0.21161 0.44669



Conventional Kalman filter output

9 I
2 ' [N
A / \\ / ) A —
1+ N ‘."" II| \ |‘ll‘ ._,r"-l.) . ’./ \
- \ FaR / \\ / \ N PN
\ I S \ pd
l"'-. / I' | ‘ v .
0 Y [ ]
1 - I
\
! |
1 1 1 1 | 1 IUI 1 1 | 1 1 1 1 | 1 |
0 5 10 Steady state is 20
2.0 :
[ T o0 achieved
— F 1 l.l"r,
15k
1of
05k
1 1 1 1 1 1 l I
10 15 20
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Kalman filter
with diffuse initialization

#include <oxstd.h>

#include <oxdraw.h>

#include <oxfloat.h>

#include <packages/ssfpack/ssfpack ex.h>

main ()

{

decl mphi = <1,1;0,1;1,0>;
decl momega = diag(<0,0.1,1>);
decl msigma = <0,0;0,0;1,.5>; // Note tha

ot
8]
.
n
]
1]
N
8]

decl mr = sqgrt (momega) * rann(3, 21):;
decl md = SsfRecursion(mr, mphi, momega, msigma);

decl myt = md[2][1:]: // 20 observations

decl mif = KalmanInit (myt, mphi, momega):; // applies univariate KF to nonstationary local
decl mkf = KalmanFilEx(mif, myt, mphi, momega):; // nonstationary time series modeﬂ
print(lln-‘if".\lll, ll%cll, {ll-..,vll, IIK‘_", "KZ", IIF’\_‘_", ll:‘ll}, mifl) ,-

print("n‘.}(f\'\' (t='.0:' ll, ll%cll, {ll-_.,-ll, IIK'.", llell, IIE‘/\_'.", ll:‘ll}, mkf[] [9] l) ’.

DrawTMatrix (0, mk£[0][]1, {"v"}, 1, 1, 1):
DrawTMatrix (1, mkf[1:3][], {"K1", "K2", "F~-1"}, 1, 1, 1):
ShowDrawWindow () ;

R. Yaffee state space lecture 2009-Nov-26 353



Output from diffuse initialization

B OxMetrics - Results - [ssfkfinf.out]

[Z) File Edit Search View Model Run Window Help

-

73 { —_— ™\ )
viga RAE Q & @
Documents B ———— Ox at 10:01:45 on 20-Nov-2008 - - ————————————-
(] Data
{_J Graphics Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009%
ssfkﬁnf mif’
(] Code v X1 X2 Fr-1 3

Flr *ssfkfinf.ox 0.00000 1.0000 0.00000 1.0000 0.00000
{2 Text 0.00000 1.0000 1.0000 1.0000 0.00000

] Results mkf' (£=10)

@ ssfkfinf.out v K1 K2 F~-1 5
(#] Modules 0.27618 0.55331 0.21161 0.44669 1.0000
=% Model |

# G@RCH
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Graphical output from diffuse initialization
applied to nonstationary data

Documents

(| Data
() Graphics
ssfkfinf
(] Code
HZ *ssfkfinf.ox
() Text
[Z] Results
[Z) ssfkfinf.out
(# Modules
=) % Model
# G@RCH
# PcGive
4% STAMP
W
W
W
# OxPack
# OxRun
# Ox -interactive
% X12arima

0.75}

0.50

20

5 10
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Displaying the state vector

A function called mstate will generate
the state vector after

After the data and mpred and the
system matrices are combined in



Kalman Smoother

For signal extraction, for residual analysis,
and auxiliary residual analysis,

we need to
1. smooth the moments,

2. smooth the disturbances,
3. and smooth the states.
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Moment Smoothing

ibid, 40; Durbin and Koopman, 2001,15-23

All smoothing equations depend on backward

recursions based on :

e=F"v—Kr (NxI) smoothing error e, = O'ez, u,
D, =F"'—xN,k (NxN) smoothing variance
r,=Z F'v+Lr (mxI) Var(r)=N,

N_,=Z F7'Z +LNL (mxm)

2
L=1-KZ, :1_Kt :78
with initialization that v, =0 and N, =0 for t=n,...,1



Disturbance smoothing

Koopman, Shephard, and Doornik, 2008, 43

Em,|Y)= o, 1, =smoothed mean of state disturbance

Var(n, |Y,) = O'j —0';7’ N, smoothed variance of state
disturbance

E(,|Y,)=E(He, |Y,)=HHpr

E(Ge |Y)=GG, e,

Var(u,|Y,)=Var(Ge, |Y,)=GGD,G,G,

/A A A A 4
Var(He, |Y,)=H H N H H,



W m o n s W N

W oW W wWwwMNRNRNRRNNNMNRLR DS D S s s s
b WA OWMm-1o b W OWD- ;0 s Wi o

State Smoothing

#include <oxdraw.h>
#include <oxfloat.h>
#include <packages/ssfpack/ssfpack ex.h>

main ()

{

decl mPhi = <1,1;0,1;1,0>;
decl mCmega = diag(<0,0.1,1>);

decl mSigma = <0,0;0,0;1,.5>; // Note that ¢ 1s zero
decl mr = sgrt (mOmega) * rann(3, 21):
decl md = SsfRecursion(mr, mPhi, mCmega, mSicgma):;

decl m¥Yt = md[2][1:]: // 20 observations

decl mKF = KalmanFil (mYt, mPhi, mOCmega):

decl mKS = KalmanSmo (mKF, mPhi, mCmega):;

print ("Basic smoother output: mEsS\' (t=10)",
"$c", {"xr(1i,1)","r(2,1)","e","N(1,1)","N(2,2)","D"},
mKS[][10]"):

decl msmodist = mKS[0:2][0] ~ mOmega * mKS[0:2][1:]:

print ("Smoothed disturbances (t=10)",

"c", {"E[H.eta] (1,1)","E[H.eta] (2,1)","E[G.eps]"},
msmodist([] [10]"');
decl msmostat = SsfRecursion (msmodist, mPhi, mCmega): // smoothed states
print ("Smoothed states (t=10)", "%c",
{"muhat[t+1]", "betahat [t+1]","y([t]"}, msmostat([][10]"'):
DrawIMatrix (0, msmodist([1:2][],
{"E[H.etal] (2,1)[t]","E[G.ep=s] [t]1"}, O, 1, 1): // smoothed disturbances
DrawIMatrix (1, msmostat[0:1] [:columns (m¥Yt)-1] | mY¥t ,
{"muhat([t]","betahat[t]","yv[t]"}, O, 1, 1); // smoothed states

ShowDrawWindow () ;
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State smoothing output

- | —— E[Heta]2.1)[t]

E[G.eps][t}]

/\5/ Lrv %AA /

AASE

| 1 1 1 1 1 | 1 1 1 1 |
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#include
#include
#include

main ()

decl
decl
decl

decl
decl
decl

decl
decl
decl

Kalman smoothing with diffuse

initialization

<packages/ssfpack/ssfpack ex.h>

=7 =m e wre ¥ -
Kalman smoother with di

use 1nitiallizactlion

mphi = <1,1;0,1;1,0>;
momega = diag(<0,0.1,1>);

msigma = <0,0;0,0;1,.5>; // Note that Q0 1s =z

i
N
Q

mr = sgrt (momega) * rann(3, 21);
md SsfRecursion(mr, mphi, momega, msigma);
myt cme e s

20 observations

]
=}
[}
[N
I

mif = KalmanInit (myt, mphi, momega):
mkf = KalmanFilEx(mif, myt, mphi, momega):;
mks = KalmanSmoExX (mkf, mphi, momega);

print ("Basic smoother output: mks\' (t=10)",

"gc", {"r(1,1)","r(2,1)","e","N(1,1)","N(2,2)","D"}, mks[][10]');

decl msmodist = mks[0:2][0] ~ momega * mks[0:2][1:]:
print ("Smoothed disturbances (t=10)",
"c", {"E[H.eta] (1,1)","E[H.eta] (2,1)","E[G.eps]"}, msmodist([] [10]"'):

DrawTitle (1, "Smoothed disturbances"):;
DrawTMatrix (0, mks[0][] {"w"}, 1, 1, 1):

DrawTMatrix (1, mks[0:2][], {"E[H.eta(1,1)]", "E[H.eta(2,1)]1","E[

"]
D
(s}
w

'_"}I ;I ;I

- Lo L

ShowDrawWindow() ;
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Output of Kalman smoothing with
diffuse intialization

A 4 v e v "=
Documents A I i Ox at 10:18:11 on 20-Nov-2008 --————————————-
|| Data
J Graphics Ox Professional wversion 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
L,J Code Basic smoother output: mks' (t=10)
o ssfkfinf.ox r(i,1) r(2,1) € N(1,1) N(2,2) P
1z ssfsmoinf.ox 0.77454 2.0120 -0.89484 ). 60208 2.0578 0.79365
C T?Xt Smoothed disturbances (t=10)
=] Results E[H.eta] (1,1)E[H.eta] (2,1) E[G.eps]
=] ssfkfinf.out 0.00000 0.20120 -0.89484
|=] ssfsmoinf.out
% Madiiles



Smoothing with diffuse initialization

1.0

051 !.’/ I}. //‘\
| /’ \ //\ \/\ / \\
. - N

0.0 /\ ."f\ A
osk \_/ \ /'/
\'".
\

-1.0- \ l|'l
\/
1 1 1 1 1 1 1 1 | L 1 1 L | 1 1 1 1 |
0 5 10 15 20
3 Smoothed disturbances
i E[H.eta(1.1)] E[H.eta(2.1)]
— E[G.eps]
2 -
1 — I_..""Il
0 ff*\/ e / e
e MH -"-.____.',f' '|II 4 g"‘
. 'H.______,..—F"P-# |,., .Ill
FAl /
AN
/ \ /
| 1 1 1 | | |
0 5 10 15 20
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Simulation smoothing with MCMC

L main()

r { , .
3 decl mphi = <1,1;0,1;1,0>; Koopman’s code shippet :
i decl momega = diag(<.5,.1,1>); .

5 decl msigma = diag(<-1,-1>) | 0O: SSfSImmC4'OX
3 decl cst = columns (mphi), csy = rows (mphi):

7

3 decl myt = S5sf5imObs (sgrt (momega) * rann(3, 21), mphi,

3 momega, <0,0;0,0;1,.5>);

) decl ct = columns (myt)

L decl mif = KalmanInit (myt, mphi, momega, msigma);

2 decl mkf = KalmanFilEx(mif, myt, mphi, momega, msigma);

3

i // monte carlo study

5 decl i, imc = 10000, md, mdcum, mdcum2;

5 mdcum = mdcumZ = zeros (columns (mphi), ct):

[ for (i=0; i<imc; i++)

3 .

3 md = SsfCondDens (DS _SIM, myt, mphl, momega, mSigma)’

) md = SimStSmoDraw(rann(3, 21), mkf, myt, mphi, momega, msigma);

L mdcum += md;

2 mdcum2 += sgr (md);

3 }

i mdcum ./= imc; mdcum2 ./= imc; // Mean, Mean squared

3 mdcumZ -= sqgr (mdcum) ; / Variance

5 mdcumZ2 = diagonal (momega[:cst-1][:cst-1]) "' - mdcum2; Cond Variance
7

3 decl mmom;

3 SsfMomentEstEx (5T_SMO, &mmom, myt, mphi, momega, msigma);

) println("Exact moments:");

L printla(" - - ———————- mean-———————-— --mean sguare error--",

2 mmom[:1]J[]"' ~ mmom[3:4][]")>

3 println("Monte Carlo moments:");

! println(" = ——————o Ri\3iTee state space lecture 2009-NQV26 . _w, 365



Convergence of distribution under
simulation

I— Mor2 Monte Carlo Moments

10

10

0.020

0.015

0.010

0.005

These are the simulations

™

— 0.6
[ 0.4
I 0.2
[ ] |
3 4
(=rs)
— A 0.6
[ 0.4
I 0.2
[ ] ]
3 4
__ mdif .
1 ]
5 6
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Simulation smoothing output

Exact moments:

1.
0.8
1.
0.9

=] oW N

0354
5005
0021
3074

.7458
. 6431
.8615
.6175
.2890
.2294
11.
13.
15.
17.
19.
21.

~n
-

646
917
809
662
456
065
890

0O 0000000
w
s
N
1S
(s}

L O S S S S T T SUR SO SO

Monte Carlo moments:

0.6
1.
1.
1.

0.8
1.

0.9
1.

w N

2446
1963
2722
0315
4797
0036
2894
7504

.6541
.8656

0.94910

—--mean sJquare error--

0.65215
.40750
.37147
.36913
.36903
.36824
.36737
.36679
.36647
.36634
.36634
.36647
.36679
.36737
.36824
.36903
.36913
.37147
.40750
.65215

O 00 0000000000000 ooo

——-mean sJguare
0.64441
.40544
.36087
.36585
.36666
.36503
.36198
0.36603

[T v B e T e T s }

0.
.18349
.1478

.13103
.12381
.12094
.11987
.113950
.11938
.11935
.11938
.11950
.11987
.12094
.12381
.13103
.1478

.18349
.24967
.34967

O 00 0000000000000 ooo

249867

error—-

0.
.18404
.14509
.13160
.12130
.11900
.11485
0.

[T v B e T e T s }

25021

11790
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Interventions

The data are smoothed with backward
recursions condition not just on the previous
observation, but on the whole dataset. The
result is a smoother signal. Then a residual
diagnosis can reveal outliers and level shifts
which can seriously bias estimation of a model.
Unless these structural breaks are modeled,
their effects will be in the error term.
Intervention dummy variables can be
constructed to model these outliers or level
shifts to remove them from the aggregate error.



ldentifiability

 According to Andrew Harvey, the order condition is
necessary and sufficient for identification of a
structural time series model (Harvey, 1989,209).

 Under the condition of normality assumption,
identifiability depends upon the nature of the
covariance matrix(ibid,206). If this is stationary, so is
the autocovariance. To attain stationarity, It may be
necessary to place restrictions on the structural model.

* Harvey notes that Hotta (1983) has shown that an

order condition is both necessary and sufficient for
identifiability (Ibid).



ldentifiability-contd.

For each of the variances of the innovations, we need a separate
independent equation to solve for them. These elements
constitute the main diagonal of the Q, system matrix.

Also, each of the polynomials must be stationary and of order p_...
Each of the parameters of ®, and of 8, must be invertible.

Any nonstationary polynomial must have no common factor.
Each error must sum to zero.

The errors should be normally distributed and independent of the
others.

If the model had an ARIMA configuration of ARIMA(p,d,q), then
p+d > g + 1 would be sufficient for identification. For example, an
ARMA(2,1) is identified if both autocorrelations > 0.

For more detail, consult Harvey (1989,208).



Diagnostic tests

Diagnostic tests are applied to identify the
components and parameters of the model.

Diagnostic tests are performed to test the
independence, normality, heteroskedasticity, and
serial correlation of the residuals.

These tests are applied to the models to
demonstrate that the assumptions are not
violated. They are tests of the validity of the
model.

These tests may be applied to filtered or
smoothed moments of the model.



Kalman Smoothing

Smoothing for state space models is used for signal extraction and maximum
likelihood estimation.

It is used for missing value interpolation (Ansley and Kohn, 1986), cross-validation
(Ansley and Kohn, 1987).

Kitagawa (1987) dealt with smoothing for nonlinear processes.

Moment smoothing
Simulation smoothing
Disturbance smoothing

Spline smoothing



Multivariate State Space Models

Multiple time series analysis

Common trends
levels
slopes
Common trends and cycles

cointegration

Dynamic factor analysis



Practical Modeling issues

Assessment problems
Non-constant innovations problem
Non-constant variance problems
Prior problems
Infinite variance problems
Convergence to zero problems
Gaussianity problems: Conditional Gaussianity
Data irregularities
Different sampling frequencies
delayed observations
Outlier problems
Level shift problems
Convergence problems
Multi-modal problems
Convergence to zero problems
Nonlinearity
Time-varying parameters



Diagnostic Checking of the model

The auxiliary residuals should be used for diagnosing the model. They
examine the state residuals as by dividing them by the square root of
their variance to provide an effective t-test of the significance of the
signal.

These tests are performed on the smoothed residuals and dividing
them by their std error.

The auxiliary residuals are functions of the innovations and therefore
might be serially correlated. Check to be sure that they are not
correlated with the measurement error, which is not supposed to be
serially correlated. If there is a cross-correlation here, it may bias
estimation in the model (Harvey and Koopman , 2005, 77).



Diagnostic checking of the model

Examine the residuals for nonnormality , serial correlation and
lack of independence, homoskedasticity, and excess kurtosis
Look for outliers and level shifts that could render increase the
aggregate error and bias the significance test results

downward.
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