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Outline	
•  Day	2:		Early	AM	

–  MoAvaAon	
–  DefiniAon	of	the	classical	state	space	form	
–  Brief	History	
–  The	Kalman	Filter	and	how	it	works	

•  IniAal	values	
•  PredicAon	
•  UpdaAng	correcAon	
•  ReiteraAon	
•  OpAmizaAon:			ML,	QML,	GLS	
•  Smoothing	and	signal	extracAon	
•  ForecasAng	

–  Classical	assumpAons	
–  Local	level	model	
–  Local	linear	trend	model	
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Outline	

•  Use	of	dfactor	in	Stata	
•  					Sargent	and	Sims,	Geweke’s	dissertaAon	
– Andrew	Harvey	1989	envisions	this	as	part	of	State	
space	models	

–  	Forni,	Lippi,	Hallin,	and	Richlin	
–  Stock	and	Watson	develop	a	coincident	indicator	
–  Kim	and	Nelson,	1999	
–  Ben	Bernanke	(2003)	looks	for	the	driving	forces	of	
the	economy	from	output	of	a	structural	VAR		with	
factor	augmented	VAR.	
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Outline	

•  Day	2:	Late	PM	
– Seasonality	and	the	Basic	structural	model	
– Cyclicity	
–  IntervenAons	
– Exogenous	series	
– autocorrelaAon	
– The	general	state	space	model	
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Outline	
•  Day	2:		Early	PM	

–  SsfPack	system	file	generaAon	
–  The	Kalman	filter	

•  Missing	observaAons	
–  The	augmented	Kalman	filter	

•  NonstaAonary	processes	
–  The	extended	Kalman	filter	

•  Nonlinear	processes	

•  Day	2:	Late	PM	

–  Filtering	and	ForecasAng	
–  Smoothing	
–  DiagnosAcs	
–  IntroducAon	to	mulAvariate	models	
–  Common	features	
–  CointegraAon	
–  AdjusAng	the	variance	matrix	structure	
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SsfAbout()	

7	

SsfPack	Extended	version	3.00	(September	2008)(c)	1997-2008	Siem	
Jan	Koopman	---	www.ssfpack.com				Please	quote:	Koopman,	S.J.,	N.	
Shephard	and	J.A.	Doornik	(1999)				StaAsAcal	algorithms	for	models	in	
state	space	using	SsfPack	2.2				Econometrics	Journal,	1999,	Volume	2,	
p.113-166.				Further	details:	Koopman,	S.J.,	N.	Shephard	and	J.A.	
Doornik	(2008)				SsfPack	3.0:	StaAsAcal	algorithms	for	models	in	state	
space				London:	Timberlake	Consultants	Ltd,	2008.	
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Why	are	state	space	models	so	
important?	

•  State	space	models	comprise	a	new	paradigm	in	Ame	series	analysis	and	
control.		

•  They	can	be	used	to	any	type	of	ARIMA	analysis.	
•  ARIMA	analysis	is	a	subset	of	the	state	space	paradigm.	
•  State	space	models	can	model	nonstaAonary	series,	which	ARIMA	models	

cannot.	
•  State	space	models	can	handle	missing	values,	which	ARIMA	models	

cannot.	
•  State	space	models	with	proper	feedback	systems	can	be	self-correcAng.	
•  Advanced	state	space	models	can	handle	nonlinear	systems,	which	ARIMA	

models	cannot.	
•  Advanced	state	space	models	can	accommodate	nonGaussian	processes,	

which	ARIMA	models	cannot.	
•  In	short,		state	space	models	comprise	a	new	paradigm	in	Ame	series	

analysis	and	control.	

8	R.	Yaffee	state	space	lecture	2009-Nov-26	



Why	is	the	Kalman	Filter	so	Important?	

•  The	Kalman	filter	is	one	of	the	major	
contribuAons	to	modern	operaAons	research.	

•  It	is	a	crucial	supplement	to	modern	
econometric	methods.	

•  The	Kalman	filter	is	a	vector	system	of	
difference	equaAons	explaining	state	
dynamics	(Athens,	M.	1974,	2).	
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What	is	the	state	space	model	based	
on	the	Kalman	filter?	

•  This	system	is	comprised	of	two	basic	equa-ons:	the	
measurement	equaAon	and	the	state	(transiAon)	equaAon.	

•  The	starAng	values	for	the	system	are	important.	
•  	Filtering	entails	the	use	of	upda-ng	equa-ons	as	well.		

These	equaAons		sequenAally	update	the	mean	and	
variance	by	a	weighted	average,	corrected	by	a	factor	
analysis.			As	it	updates	the	mean	and	the	variance,	the	
Kalman	filter	proceeds	according	to	a	Markov	evoluAonary	
process	(a	first-order	autoregressive	process)	plus	a	
regression	on	the	innovaAon.	This	Kalman	filter	is	the	
predicAve	basis	of	the	forecasts	generated	by	the	system.			
In	this	step,	the	objecAve	is	to	esAmate	the	moments	of	
the	predicAve	step	(Hyndman	et	al.,2008,	197).	This	is	the	
predicAve	step.			
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What	is	a	state	space	model	based	on	
the	Kalman	filter?	

•  The	predicAve	step	is	followed	by	a	correcAve	measurement	step.		
A	factor	analysis	of	the	unobserved	components	corrects	for	
inaccurate	measurement		error	conjoined	with	the	transiAon	error.		
The	objecAve	of	this	step	is	to	find	the	moments	of	the	response	
variable.	

•  This	completes	the	cycle	and	reiteraAon	takes	place	unAl	all	of	the	
data	are	filtered.	

•  When	all	of	the	data	are	filtered,	the	Kalman	smoother	can	be	used	
for	signal	extracAon	to	smooth	and	extract	the	signal	as	well.			Once	
the	model	has	been	specified,	fit,	and	opAmized,		and	diagnosed	as	
well	behaved,		we	can	then	proceed	to	forecast	with	it	and	evaluate	
those	forecasts.		

•  Es-ma-on	can	be	accomplished	by	maximum	likelihood	(BFGS),	
the	EM	algorithm,	or	MCMC	.			We	shall	explain	all	of	these	things	
in	more	saAsfying	detail	soon.	
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Local	level	model	
provides		an	introductory	example	

•  In	other	words,	

•  IniAal	values	of	the	mean	and	variance	of	the	state	vector	are	
found.	

•  The	model	filter	provides	for	an	AR(1)	evoluAon	of	a	random	walk	
plus	noise.			Filtering	means	recovering	the	state	variable	from	the	
noise,	given	the	previous	informaAon.		It	does	this	by	an	efficient	
one-step	ahead	forecast	plus	a	regression	on	the	error.	

•  The	measurement	model	provides	for	the	correcAon	aler	the	
predicAon	step.				

•  Maximum	likelihood	esAmaAon	provides	the	means	of	minimizing	
the	predicAve	error	variance	during	the	esAmaAon	of	the	
parameters.	

•  The	process	reiterates	unAl	a	steady-state	soluAon	is	agained.	
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Aspects	of	the	measurement	model	

•  Zt	can	be	construed	as	a	matrix	of	factor	loadings	
from	observed	variables	on	an	underlying	factor.	

•  	αt	can	include	lower	order	(r	<	k)	levels,	trends,	
seasonality,	cycles,	intervenAons,	where		r	
represents	the	number	of	these	components		to	
define	the	elements	of	the	latent	factor	and	k	
represents	the	number	of	observaAons.		It	
contains	the	past	and	current	states.	

•  εt	can	be	thought	of	as	measurement	error.	
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The	Transi-on	equa-on	
•  The	transiAon	equaAon	formulates	the	evoluAon	of	the	state	

vector.		The	state	vector	α	is	unobserved;	it	is	a	latent	variable	
or	underlying	factor.	

•  The	transiAon	equaAon	formulates	an	AR(1)	process	plus	a	
regression	on	the	innovaAon.	

•  That	is	why	this	Markov	process	is	someAmes	called	a	Hidden	
Markov	process.		T	is	a	transiAon	matrix.		ξt	is	an	evoluAonary	
innovaAon.	
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A	note	on	notaAon	

•  Many	authors	use	St	to	refer	to	the	state	
vector	instead	of	αt.		Mark	Watson	used	this	
at	his	NBER	lectures	.	Ruey	Tsay	uses	it.			Mike	
West		and	Jeff	Harrison	use	θ.				

•  	We	will	use	the	Koopman	syntax	formulae		to	
avoid	confusion	and	to	be	consist.			

•  				
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There	are	other	forms	of	state	space	
models	

•  	This	configuraAon	of	the	state	space	model	is	a	
mulAple	source	of	error	model.		Each	equaAon	
has	its	own	error	term.	

•  There	is	also	a	single	source	of	error	model	
developed	by	Keith	Ord,	Rob	Hyndman,	Anne	
Koehler,	and	Ralph	Snyder.		They	call	their	
models	innovaAons	models,	but	are	merely	single	
source	of	error	state	space	models.	

•  I	show	both	models	(in	the	form	of	a	local	level	
model)	on	the	next	page.	
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SSOE	v.	MSOE	state	space	models	
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Other	state	space	models	use	different	
esAmaAon	algorithms	

•  The	extended	Kalman	filter:			This	uses	nonlinear	
funcAons	in	lieu	of	the	system	matrices.	

•  The	unscented	Kalman	filter:	This	checks	for	higher	
order	moments	as	well.	

•  Efficient	Bayesian	esAmaAon:		Uses	an	simple	
exponenAal	smoother	as	a	transiAon	equaAon	and	a	
factor	analysis	as	a	measurement	equaAon.	

•  Wavelet	based	esAmaAon	(	which	I	won’t	cover	here)	
•  The	MCMC	esAmaAon:		Bayesian	simulaAon	with	Gibbs	
sampling,		Metropolis-HasAngs	sampling.	

•  The	parAcle	filter:			Uses	importance	sampling	
resampling	for	MCMC.	
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Historical	development	of	DKF:	
Other	types	of	state	space	models	use	different	algorithms	to	obtain	iniAal	values	

(c=covariance	matrix	of	the	state	vector,	d=that	of	the	innovaAon)	

•  Schweppe	(1965)	developed	the	Kalman	filter	
approach	to	evaluaAng	the	likelihood(DeJong,	1988,2).	

•  Rosenberg’s	(1973)	showed	that	if	C=0,	the	ml	
esAmator	of	mu	can	be	explicitly	displayed	and	
concentrated	out	of	the	likelihood(Ibid.)	

•  Schweppe	(1973)	recommends	using	the	precision	
rather	than	the	variance	as	the	criterion.	

•  Harvey	and	Phillips(1979)	propose	iniAaAng	the	
Kalman	filter	with	a	very	large	covariance	matrix.	

•  Ansley	and	Kohn	(1985)	show	that	the	informaAon	
filter	is	fragile	and	numerically	inefficient.	
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Historical	development	of	DKF	
•  DeJong’s	advocates	the	basis	for	the	diffuse	prior	(1988)	for	nonstaAonary	

series	with	a	method	easy	to	evaluate	with	the	Kalman	filter		by	using	the	
innovaAons	and	the	covariance	matrix	of	the	innovaAons		obtained	from	
the	fixed	point	smoothing	algorithm	(Ibid,166).			Yet	one	has	to	assume	
that	C=nonsingular.	

•  DeJong(1991)	advocates	use	of	the	diffuse	Kalman	filter	menAons	using	
the	Generalized	inverse	when	inversion	of	C	becomes	difficult.	He	shows	
that	the	DKF	can	be	collapsed	to	the	regular	KF	aler	a	few	iteraAons	using	
an	augmented	state	vector.			Shows	the	DKF	can	be	used	for	Dsmoothing	
too.	

•  Koopmans's	methods:		employ	splines	and	random	walks.	
•  Other	approaches:		Extended	Kalman	filter:	nonlinear		processes	by	using	

nonlinear	funcAons.	
•  MCMC	approaches:		Gibbs	sampler	and	MH	method.	
•  Importance	sampling.		Importance	resampling.	
•  ParAcle	filter:		nonlinear	and	nonGaussian	
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Other	forms	of	state	space	models	may	use	different	types	of	
variable	processing	

•  Centering:	if	we	center	we	gain	a	df	but	lose	our	
sense	of	locaAon.	We	reduce	probability	of	
mulAcollinearity.	

•  Standardizing:	loses	scale	as	well	as	locaAon	but	
renders	variables	with	different	metrics	
comparable.	

•  Normalizing	seasonal	components:	Should	we	or	
should	we	not?		Why	not	just	use	s-1	dummy	
variables?			Hyndman	et	al.	recommend	
normalizaAon	with	mulAplicaAve	models	(	

•  ParAal	normalizaAon	
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We	focus	on	the	Harvey	MSOE	and	the	later	
MCMC	models	

•  MSOE	model	is	the	model	used	in	Stamp,	in	
SAS	

•  SSOE	model	is	used	in	R	
•  MCMC	is	used	in	R.	
•  In	order	to	delve	into	this	mager	in	sufficient	
depth,	given	the	Ame	provided,	we	have	to	
focus	on	one	primary	method.			
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Ini$al	values	
–  The	starAng	values	may	be	taken	as	parameters	of	a	
prior	distribuAon.				A	prior	mean	and	variance	are	
necessary	to	define	a	Gaussian	distribuAon.	

–  The	Kalman	filter	needs	a	prior	mean	and	variance	to	
begin	the	analysis..	

–  These	values	must	be	tractable	for	the	system	to	
funcAon	adequately.		They	must	not	be	unrealisAc.		If	
they	are	unrealisAc,	the	system	may	fail	to	converge	
upon	a	soluAon.	

– When	the	iniAal	situaAon	is	essenAally	unknown,	we	
say	that	our	knowledge	of	it	is	diffuse	or	vague.			
While	Harvey	and	Koopman	tend	to	use	this	
approach,	others	may	agempt	to	use	a	random	seed.	
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Bayesian	sequenAal	updaAng	

•  A	weighted	average	of	the	previous	or	prior	
values	and	the	current	data		are	used	to	
obtain	a	posterior	predicAve	esAmaAon–	that	
is,	to	obtain	a	one-step	ahead	forecast.				

•  This	will	be	elaborated	soon.	
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Locally	weighted	averaging	
•  The	weights	used	are	precisions.		Precisions	are	inverses	of	variances.			The	less	a	

person	knows,	the	larger	the	variance	by	which	his	esAmates	of		the	prior	state	are	
divided	(and	thereby	weighted).	The	less	he	knows,	the	lower	the	weight	accorded	
his	esAmate.		Hence,	the	larger	the	variance	divided	into	his	esAmate	to	weight	it.	

•  The	more	knowledge	a	person	has	,	the	less	the	variance	in	his	esAmates.		When	
his	variance	is	inverted	to	obtain	the	precision		weight		of	his	esAmates,		we	
observe	that	the	greater	the	precision	of	his	esAmates,	the	smaller	his	variance	.		
The	smaller	the	variance	and	the	greater	the	precision,		the	more	weight	is	
accorded	to	his	esAmates.	

•  The	weights	reflect	the	amount	of	ignorance		or	assurance	about	a	condiAon		
when	the	averaging	is	performed	in	order	to	compute	the	new	posiAon.	

•  Weights	in	the	Kalman	filter	are	like	weights	in	a	locally	weighted	average	within	a	
lowess	esAmaAon.			Such	weighAng	is	used	in	the	computaAon	of	a	local	level		or	a	
local	linear	trend,	etc.	
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Bayesian	sequenAal	updaAng	

•  According	to	Bayes’	theorem,			when	the	
condiAonal	likelihood,	represented	by	the	
sample,		is	mulAplied	by	the	prior	probability	
distribuAon	(which	is	someAmes	assumed	to	
be	known	by	the	scienAst	familiar	with	the	
literature)	yields	a	joint	posterior	probability	
distribuAon.				

•  From	the	posterior	distribuAon,	the	moments	
can	be	computed.		
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The	weighted	average	of	the	mean	of	the	DGP	is	
the	formula	for	a	simple	exponenAal	smoother	

•  We	call	the	parameter	of	interest,	theta,	Θ	
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This	provides	the	basis	upon	which	Hyndman,	
Ord,	Koehler,	and	Snyder	develop	their	

approach.	
•  They	agempt	to	base	Kalman	smoothing	on	
exponenAal	smoothing.		They	treat	the	
Kalman	filter	as	though	it	is	a	more	
sophisAcated	form	of	the	exponenAal	
smoother.	
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Bayesian shrinkage 
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Bayesian Shrinkage-ctd. 
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If	we	assume	Gaussianity		
	(Carlin	and	Lewis,	2009,	3rd	ediAon,	17ff):	

	
	
	

	
The		updaAng		would		be			performed	with		a			simple		weighted		average	of		

our		sample	with	our	prior	distribuAonal	mean	and	variance		assumpAons:	
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We know that f x N y
so we can take our hyperparameters the mean

and variance of our prior and plug them
into the formula for the weighted average and obtain
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µ

τ
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2
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which	simply	reduces	to:	
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Shrinkage	in	accordance	with	relaAve	ample	size		
(Carlin	and	Lewis,	2009,	17-18)	
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Classical	state	space		
assumpAons	

•  Gaussianity	
•  Independence	of		observaAons	in	the	residual	distribuAons	
•  HomoskedasAcity	
•  StaAonarity	
•  Serially	uncorrelated	disturbances	of	components	
•  System	matrices	were	Ame-invariant	
•  Large	sample	for	asymptoAc	consistent	esAmaAon	
•  With	minimum	mean	square	esAmator	
•  InformaAon	available	from	past	observaAons	
•  Reasonable	iniAal	values	
•  Performs	best	linear	predicAon	
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What	are	the	implicaAons	of	these	assumpAons	on	the	
working	of	the	Kalman	filter?	

•  Why	is	Gaussianity	presumed?		Normal	distribuAons	of	the	
innovaAons	may	be	necessary	for	the	proper	operaAon	of	
the	maximum	likelihood	esAmaAon.	The	formula	for	such	
esAmaAon	comes	from	the	knowledge	of	the	normal	
distribuAon	parameters.		They	permit	the	construcAon	of	
convenAonal	predicAon	intervals.	

•  Independence	of	observaAons	in	the	distribuAons	
precludes	the	esAmaAon	of	one	equaAon	from	improperly	
influencing	that	of	the	other	equaAon.	

•  HomoskedasAcity	may	be	necessary	to	define	the	variance	
of	the	processes	and	confidence	intervals	around	the	
esAmate	of	the	mean.			However,	GLS	can	be	applied	to	
handle	possible	deviaAons	from	homoskedasAcity.	
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ImplicaAons	of	the	assumpAons	for	
model	esAmaAon	and	fixng	

•  StaAonarity:				Before	the	development	of	the	
diffuse	prior	or	the	informaAon	filter,	this	used	to	
be	necessary	in	order	to	keep	the	eigenvalues	
from	residing	on	the	unit	circle	where	variances	
become	infinite	and	distribuAons	become	
undefined,	as	some	matrices	fail	to	invert.		If	
variances	approach	infinity,	confidence	interval	
construcAon	becomes	impossible.		Models	could	
then	become	unstable	and	forecasAng	can	
become	impossible.	
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AssumpAon	implicaAons	

•  Serially	uncorrelated	errors	of	the	
components	prevent	bias	in	the	significance	
tesAng	creeping	in	from	correlated	
components.	

•  Matrices	were	Ame-invariant:		this	permiged	
arrival	at	a	steady-state	where	moment	
esAmates	could	be	generated.	
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State	Space	extensions	
•  Use	of	the	informaAon	filter	instead	of	the	Kalman	
filter.	

•  Enhancement	of	basic	concepts:	from	2	moments	to	
higher	moments.			

•  IncorporaAon	of	the	regression	effects	
•  IncorporaAon	of	Ame-varying	parameters	
•  AugmentaAon	of	the	filter	to	overcome	nonstaAonarity	
•  Use	of	QML	and	MCMC	to	overcome	the	requirement	
of	Gaussianity	

•  Development	of	extended	Kalman	filter	to	handle	
nonlinearity	

39	R.	Yaffee	state	space	lecture	2009-Nov-26	



Smoothing		
Harvey,	A.C.	and	Priox,	T.	(2005,10)	
•  Disturbance	smoothing	provides	esAmaAon	of	
errors,	parAcularly	those	in	the	measurement	
model.	

•  The	main	purpose	of	this	smoothing	is	signal	
extracAon.	

•  Standardized	smoothed	esAmates	of	those	
errors	are	called	auxiliary	residuals	
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Smoothing	algorithms	

•  Fixed	interval	smoothing	
•  Fixed	point	smoothing	
•  Smoothing	splines	and	nonparametric	
regression	
– Koopman	quotes	Green	and	Silver	who	say	that	
smoothing	splines	are	equivalent	to	signal	
extracAon(Harvey	and	Priox,	2005,	11).	
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Some	Historical	Background	
•  The	development	of	a	new	paradigm	in	Ame	series	has	taken	

place	since	the	early	1970s.			
•  This	approach	can	handle	nonstaAonary	series	and	missing	

values,	unlike	the	classical	Box	Jenkins	model	developed	in	
the	1970s.		The	new	paradigm	is	called	a	state	space	model.	

•  Rosenberg	(1973)	and	DeJong(1988,1991)	had	developed	a	
procedure	for	diffuse	iniAalizaAon	by	augmenAng	the	
observed	vector.		

•  State	Space	Models	were	developed	by	Rudolf	Kalman	in	
1960	as	well	as	by	Rudolf	Kalman	and	Bucy	in	1961.	
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Historical	background	conAnued	
•  Andrew	C.	Harvey	(1983)		introduced	them	to	econometrics.	
•  They	have	since	evolved	into	different	forms.		There	is	the	mulAple	

source	of	error	model	that	was	developed.	
•  The	method	by	which	esAmaAon	could	be	done	at	first	seemed	to	

depend	on	staAonary	series.	
•  Since	then	DeJong	and	others	have	developed	the	Augmented	

Kalman	filter	that	can	handle	nonstaAonary	series.	
•  Recently	a	single	source	of	error	model	was	formulated	by	Keith	

Ord,		Ralph	Snyder,		Rob	Hyndman	and	Ann	Koehler	out	of	the	
exponenAal	smoothing	literature.	

•  More	recent	developments	(Kitagawa,	1996)	have	included	
esAmaAon	with	importance	sampling	and	MCMC	simulaAon.	We	
will	explore	this	type	of	model	tomorrow.	
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The	state	space	models	are	based	on	a	
nonstaAonary	random	walk		

•  Because	this	integrated	system	comprises	the	
basis	of	the	dynamic	framework,		this	system	
is	theoreAcally	capable	of	handling	an	
integrated	or	nonstaAonary	system.	

•  This	represents	an	important	shil	in	the	Ame	
series	paradigm	from	an	ARIMA	model	that	
can	only	analyze	staAonary	series	to	a	state	
space	model	that	can	incorporate	
nonstaAonary	in	its	dynamics.	
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Dynamic	Factor	Analysis	

•  If	the	state	vector	is	considered	a	dynamic	factor,	
then	this	approach	can	incorporate	dynamic	
factors	that	have	been	interpreted	by	Stock	and	
Watson	(1991)	has	coincident	economic	
indictors.				

•  Whereas	early	agempts	to	deal	with	dynamic	
factor	models	required	staAonary	processes,	the	
use	of	the	state	space	form	to	model	them		
permits	“empirical	model	building”	and	
nonstaAonary	evoluAon		(Reinsel	quoAng	Aoki,	p.
227).	
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Dynamic	factor	analysis	

•  A	case	of	a	single	common	factor	configured	
as	part	of	a	state	space	analysis		
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Local	level	model	

•  This	model	is	basically	a	random	walk	plus	
noise	model	
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2
t t t t ε

2
t+1 t t t η

measurement model : y = µ +ε ε ~ NID(0,σ )
transition model : µ = µ +η η ~ NID(0,σ )

Epsilon	and	eta	are	two	white	noise	series	that	are	not	
correlated	with	one	another.	
	
Tsay	maintains	that	the	iniAal	values	of	eta	and	epsilon	are		
known	or	given.		They	are	not	correlated	with	either	of	the	
two	error	terms.	
	
Although	yt	is	observed,	mu	is	not.		It	is	a	latent	or	hidden	
construct,	someAmes	referred	to	as	a	factor.		Epsilon	is	
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A	dynamic	local	level	model	

•  μ	is	a	latent	variable	or	factor	that	is	not	directly	
observable.			Its	condiAon	at	Ame	t	is	called	the	state.		
η	is	the	unobserved	error	of	this	random	latent	
variable.	We	assume	it	to	be	normally	and	
independently	distributed.	For	this	reason,	this	process	
is	someAmes	called	the	state	or	transiAon	equaAon.	
This	μ	is	called	a	trend	even	though	it	has	no	slope.		

•  The	measurement	equaAon	related	the	observed	
indicator,	yt,	to	it.	The	noise	gives	rise	to	random	
variaAon	in	the	indicator	and	is	presumed	to	be	
normally	distributed.	
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The	local	level	model		
and	the	Kalman	filter		

	Ruey	Tsay	(2005)		Analysis	of	Financial	Time	Series	2nd	ed.,	chapter	11.	

•  We	need	to	know	the	condiAonal	mean	and	
the	condiAonal	variance	of	a	process	that	is	
normally	distributed	over	Ame.	

•  What	we	mean	is	that	if	our	process	is	
Gaussian	or	normally	distributed,	the	mean	
and	the	variance	are	sufficient	to	define	the	
normal	distribuAon:		hence,	they	are	called		
sufficient	staAsAcs.	
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CondiAonal	probability		
and	its	implicaAons	

•  The	condiAonal	mean	is	the	μt|j	,	condiAonal	on	the	
values	of	yt		in	informaAon	set	Ψj	from	Ames	t-1	to	t0.			

•  The	condiAonal	variance	is	Σt|j	=Var(μt	|Ψj	).	
•  	y	t|j	=	the	condiAonal	mean	of	yt,	given	Ψj.	
•  Suppose	the	vt	=	yt	–	yt|t-1		and	Vt=Var(vt|Ψt-1).	
•  These	are	respecAvely,	the	one-step-ahead	forecast	
error	and	the	forecast	error	variance,	given	the	
informaAon	set.	

•  The	forecast	error	is	independent	each	Ame	it	occurs	
and	the	condiAonal	variance	is	also	the	uncondiAonal	
variance	so	Var(vt)=	Var(vt|Ψj)	
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How	is	the	observed	variable	related	
to	the	latent	state?	

•  Tsay	(2005,	494)	explains	the	link	between	the	latent			
and	the	observed	variable	in	the	local	level	
model:	
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Kalman	filtering	
	

•  recursions	for	the	principle	steps	of	the	
Kalman	filter	(Lutkepohl,	H.	2005,	627):	

–  IniAalizaAon	
– PredicAon	
– CorrecAon	or	revision	
– ReiteraAon	to	a	steady	state	
– ForecasAng	
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IniAalizaAon	step	

•  In	this	case	starAng	values	have	to	be	provided	for	
both	the	mean	of	the	state	vector	and	its	variance.	

•  If	ligle	is	known	about	the	prior	distribuAon	or	its	
mean,	the	mean	is	customarily	set	to	zero	and	a	diffuse	
prior	is	assumed.		In	order	to	designate	a	parameter	as	
diffuse,	most	programs	(parAcularly,	dlm	in	R,	SsfPack	
in	Ox,	SsfPack	in	S-Plus	use	a	-1	)	in	the	computer	code	
to	designate	the	parameter	as	having	a	diffuse	prior	
distribuAon.	

•  There	a	mulAple	algorithms	for	the	diffuse	prior.	
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Kalman	Filtering		
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We	begin	our	introducAon	with	a	local	level	model	as	an	
example.			
When	the	local	level	is	forecast	then	the	difference	between	
the	forecast	and	the	actual	can	be	observed	and	the	
forecast	error	computed:	
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The	PredicAon	step	
•  PredicAng	(one-step-ahead)	the	mean	and	the	variance	of	the	

state	vector.		These	are	standard	formula	for	obtaining	
moments.	
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Revision	or	CorrecAon	step	

•  Using		the	measurement		equaAon	
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corollary	

•  Durbin	and	Koopman	(2001,67)		show:	
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The	correcAon	(revision)	
	step	contd.	

•  It	is	assumed	that	the	predicAon	errors	are	not	
only	not	serially	correlated,	they	are	not	
correlated	with	the	state	either.	

•  The	error	mulAplied	by	the	Kalman	gain		corrects		
the	mean	and	variance	of	the	state	vector	from	
the	predicAon	variance	to	obtain	the	proper	
esAmate	of	the	state	variance	(Durbin	and	
Koopman	(2001,	66-67);	Hyndman	et	al.	
(2009,189);	Lutekepohl,	2005,	627).	
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The	forecasAng	step	

•  ForecasAng	is	merely	an	extension	of	the	
filtering.		It	is	done	aler	the	opAmum	model	
has	been	agained	and	diagnosed	as	
acceptable.	

•  We	will	delve	into	different	methods	of	
forecasAng	later.	
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What	are	the	system	matrices?	
Koopman,	Shephard,	and	Doornik	(2008,	9)	
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We	can	define,	constrain,	or	limit	
parameters	in	these	matrices	

61	

We	can	define	whether	these	elements	are	known	or	unknown,	to	
be	iniAalized	as	diffuse	or	not.	
	
We	can	insert			-	1		to	indicate	that	the	element	will	receive	diffuse	
iniAalizaAon	or	not.	
	
	

Most	matrices	start	with	an	m	before	their	name.		This	is	a	
notaAonal	convenAon	of	SsfPack.	
	
We	can	decide	whether	these	matrices	will	be	Ame-varying	or	
constant.			We	index	these	Phi,	Omega,	and	sigma	matrices	by		
J.			All	elements	within	are	=	-1	except	those	that	vary	with	
Ame.	
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Input	to	Stsm	matrix	
Ibid,	24	
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The	local	level	model	
	and	its	components	
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FormulaAng	the		
state	space	local	level	model	with	SsfPack	
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The	most	elementary	models	only	require	specificaAon	of	the		mPhi	and	
mOmega	.	

R.	Yaffee	state	space	lecture	2009-Nov-26	



Local	Level	configuraAon	of	system	
matrices	in	Ox	
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Is	the	level	fixed	or	random?	

66	

If	the	level	is	fixed,	it		has	no	error	term.			If	a	
mathemaAcal	formula	determines	the	level	
without	measurement	error,		this	might	be	
possible.					
	
If	the	level	is	fixed,	there	will	be	no	variaAon	in	
the	error	term.			In	that	case,	the		variaAon	of	
the	error	(ση2		located	in	the	Ω	matrix)	term	for	
the	level	can	be	set	to	zero.				
	
This	condiAon	is	called	that	of	a	smooth	trend.	
	
In	any	case,	this	is	a	very	flexible	model.				
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Component	Loading	into	State	Vector	

•  Koopman	et	al.	(2006,	p.144)	show	how	components	load	into	the	
State	vector	for	a	model	with	a	local	level,	trend,	and	quarterly	
seasonal	component	(3	dummy	variables):	
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Case 3:  Local Level Model 
Measurement Equation 

ln( )
1,...,

t t t
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t
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t t t

t

y
where y MNAtotal

level for t n
error or disturbance

if where random walk
where all random variables are normally distributed
and has constant variance.

µ ε

µ
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µ α α

ε
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=
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Case 2:  Local Level Model + Interventions 
Measurement Equation 

1 0

ln( )
1,...,
( , , )
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t t it t t
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y I
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Case	1:	Local	Level	Model	+	Ame	varying	
parameters	+	intervenAons	
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Stacked Matrix Formulation 

•  Local	level	model		(random	walk	plus	noise)		(and	
Koopman	(2004,	287);	Zivot	and	Wang(2005,	521).	
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The	Kalman	filter	

72	

The	Kalman	filter	is	the	process	by	which	the	forecasAng	or	filtering	is	
performed.				
	
It	takes	the	starAng	values	and	applies	its	AR(1)	filter	to	predict	the	
next	state	of	the	latent	factor	(	the	condiAon	of	that	factor	at	the	next	
Ame	period).					
	
It	corrects	its	predicAon	a	measurement	of	that	state	as	soon	as	the	
data	become	available.	
	
The	combining	of	the	esAmaAon	with	the	data	is	performed	by	a	
Bayesian	or	sequenAal	updaAng	that	is	based	on	a	weighted	averaging.	
	
It	employs	sequenAal	updaAng	of	its	esAmates	of	the	future	state	with	
a	factor	analysis	upon	the	latent	variable	it	encounters.	
	
This	updaAng	process	prevents	the	process	from	going	too	far	awry.	
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The	Kalman	filtering	process	

73	

| || |

| || |

|

:
:
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t Y t t t t t t tfor the variance estimator of  : P T P T RQR
Estimation is performed by a mean - square error minimization

process Reinsel,2008, 229
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R.	Yaffee	state	space	lecture	2009-Nov-26	



Kalman	filtering	process	
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| | |ˆ ˆ( )( ) '

.

t h t t h t h t t h t h tP E

The predictive error variance is minimized
in the processof filtering

α α α α+ + + + +⎡ ⎤= − −⎣ ⎦
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Andrew	Harvey	(1989,106)	
presents	the	Predic8on	Equa8ons	

75	
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T matrix of Markovian transition coefficients
c some constant
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The	Error	Covariance	Matrix		Pt|t-1	
Ibid.	

76	

' '
| ,...,t t t t t t t tP T P T RQ R for t T
which is anasymptotic variance estimator
is amenable to an
eigenvalue decomposition

− −= + =1 1 1

These	predic$on	equa$ons	have	upda$ng	equa$ons	
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	if		centering	renders	ct=0	
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Kalman	Predic$on	and	Upda$ng			Equa$ons	
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The	Kalman	filter	can	be	expressed	in	
terms	of	recursive	equaAons		

79	
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By	subs$tu$ng	
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Stability	of	the	system	depends	on	the	existence	of	a	
steady-state	soluAon	
to	the	Ricax	equaAon	

81	

Andrew	C.	Harvey	writes	:	
	
						“The	steady-state	filter	is	said	to	be	stable	if	the	roots	of	T	are	less	
than	one	in	absolute	value.		The		Kalman	filter	has	a	steady-state	
soluAon	if	there	exists	a	Ame-invariant	error	covariance	matrix	which	
saAsfies	the	Ricax	equaAon	.	…		If	such	a	soluAon	exists,	we	can	get	
	
	
	
	
	
Harvey,	A.C.	(1989),	118.		

| |t t t tP P P+ −= =1 1
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An	algebraic	Ricax	equaAon	
formulates	the	steady-state	soluAon	

82	
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If	there	is	a	steady	state	soluAon	
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lim
't

the matrix of
innovations F ZPZ H

→∞
= Σ = +
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With	steady-state	convergence	recursive	filtering	
generates	v(t),	F^(-1)	

and	kappa	
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The	General	State	Space	Model	

85	
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The	General	State	Space	Model	

•  Measurement			model	

86	
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For	a	mulAvariate	state	space	model	

87	
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' '
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We know that for a steady state solution in
a state space model
P TPT RQR

In a multivariate model
P TPT RQR
P I T T RQR
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IniAal	condiAons	and	convergence	

88	

1.  For	Ame	invariant	models	

1.  StarAng	values	for	the	mean	and	variance-covariance	
matrix	of	the	uncondiAonal	distribuAon	of	the	state	
vector	must	be	provided.	

2.  The	transiAon	equaAon	provides	the	mean	

var( )
( )

( )
' '

t t t t

t t t t

t t

c T R Q
c T T

T c is the mean
and P the variance from P TPT RQR
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1
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CondiAon	of	nonstaAonarity	

89	

		T	must	remain	nonsingular	for	
	
	
	
	
	
	
	
	

P− =10 0

The	state	vector	remains	staAonary	in	the	stochasAc	process	
if		λ(T)<	1	and	ct	remains	constant.	
	
P=TPT’	+RQR’.	
	
If	the	variance	(K)=σk2							then		P=	σk2		/(1-ρ2	)					
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CondiAon	of	nonstaAonarity	

90	

If	the	transiAon	equaAon	is	nonstaAonary,	the	uncondiAonal	
distribuAon	is	undefined	(Harvey,	op.	cit,	120).	
	
	P0			prior	variance	→														while	the	precision	drops	to	
zero.			Something	cannot	be	divided	by	a	precision	of	zero	
and	remain	mathemaAcally	defined.	
	
	
																																where	k=a	nonnegaAve	scalar,			with	a		
	
diffuse	prior	obtained			
	This	means	that	the	iniAal	distribuAon	of	the	state	vector	
alpha	sub	zero		has	a	non-informaAve	or	diffuse	prior.			With	
kappa	=	infinity,		we	have	reached	the	limit.		We	don’t	need	
it	to	be	that	large.		10^7	or	10^6		can	approximate	infinity	
and	remain	algorithmically	tractable.																																									
		

∞
P Iκ=0 κ →∞

R.	Yaffee	state	space	lecture	2009-Nov-26	



InformaAon	filter	

91	

When	the	variance	of	P0	is	infinite,			the	informaAon	filter	may	provide	a	
more	stable	algorithm		than	the	Kalman	filter	to	apply		(Harvey,	120).			
Hence,	the	Precision	P0			-1		=zero.				The	inversion	of	F	is	not	required	by	
the	informaAon	filter.			When	the	dimensions	of	the	state	vector	are	
larger	than	the	dimension,	m,	of	the	state,		the	avoidance	of	inverAng	a	
large	matrix	like	F	could	render	the	esAmaAon	much	more	efficient.		
	
This	method	involves	triangular	structure	of	the	stochasAc	equaAons	in	
the	covariance	matrix,	which	have	a	limiAng	form	for	infinite	variances.		
This	permits	the	use	of	this	filter	for	staAonary	as	well	as	nonstaAonary	
series	without	modificaAon	(Hyndman	et	al.,	2009,	189).	
	
The	informaAon	filter	is	deployed	in	Stamp	during	recursive	filtering.	
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ParAAoning	the	state	vector	into	
nonstaAonary	and	staAonary	porAons	

92	

,

.

.

When the series is nonstationary the
transition matrix can be partitioned to
divide the nonstationary from the stationary
components The nonstationary portion can
be confined to T to which the diffuse prior
can be applied
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Matrix	parAAons	for	nonstaAonary		
and	staAonary	components		

(Harvey,	1989,	123)	

93	

|

' '

The covariance matrix P can be conformably
partitioned so that

'

'

are observa

t t t

kI
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P
and the
Z matrix can be partitioned as

z z
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y Z the measurement model still
holds
so long as the first d nonstationary elements
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Even	with	a	nonstaAonary	process,	it	is	possible	
to	show	that	this	system	is	stable	and	can	

converge	to	a	steady	state	soluAon	

94	

Convergence	is	exponenAally	fast	even	with	a	nonstaAonary	process.	
	

Harvey	suggests	parAAoning	the	transiAon	matrix	into	
segments.	In	one	segment,	the	staAonary	elements	can	
reside,	while	in	another	segment	the	nonstaAonary	elements	
can	reside.	
	
This	permits	proper	prior	assignment	to	parAAons	of	the	
iniAal	value	for	the	state	vector.	
	
The	nonstaAonary	parAAon	can	have	a	diffuse	prior	while	the	
staAonary	segment	can	have	a	proper	prior.	
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Stability	of	the	process	

95	

A		necessary	and	sufficient	condiAon	for	stability	of	the	state	space	evoluAon	
Is	that	the	characterisAc	roots	of	the	transiAon	matrix,	T,	should	have	
eigenvalues	with	a	modulus	less	than	unity	(Hamilton,378;	Harvey,	114).		In	
other	words,	this	is	a	condiAon	necessary	and	sufficient	for	covariance	
staAonarity.	
	
	
	
	
This	means	that	there	are	no	unit	roots	in	the	evoluAonary	process.	
	

( ) , ,...,j T for j mλ < =1 1
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ParAAoning	the	state	vector	and	
transiAon	matrix	
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( )

( ) ( )

:

dxd dx m d

t

m d x m d

Harvey suggests conformably partitioning the transition
matrix and the state vector

T T
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EsAmaAon	

97	

ML	
						Assumes	that	observaAons	are	Normal	and	iid.			Hence,	the	
likelihood	is	the	product	of	the	individual	likelihoods.		When	
logged,	the	likelihood	is	the	sum	of	the	individual	likelihoods.	
	
						With	Ame	series,	that	is	not	the	case.		ObservaAons	are	
condiAonal	on	the	previous	informaAon	set.				
	
	
	
	
							We	write	the	joint	density	as	a	funcAon	of	the	condiAonal	
density	Ames	a	prior	distribuAon.	
	
	

( ; ) ( | )
T

t t
t

L y p y Yψ −
=

=∏ 1
1
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Likelihood	of	the	state	space	
model	

Ibid,	120.	
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'
*

,
.

log log log | | | |
T

t t t
t

The model is estimated by maximizing the likelihood by
minimizing the prediction error variance and maximizing
the fit with the recursive equations when the DGP process
is NID

T TLL F v F vπ σ −

=

= − − − −∑2 1

1

1 12
2 2 2 2

|ˆ

.

T

t
t

t t t t

where
v y y
The first term on the rhs is a constant. The last term
on the far rhs requires inversion of a matrix If the
rank of that matrix is of low dimension, the algorithm
proceeds quickly. If it is of high order, this process

=

−= −

∑
1

1

can become time - consuming.
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AsymptoAc	characterisAcs	
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The	esAmator	is	asymptoAcally	mulAvariate	normal	if	
T	is	inverAble.	
The	parameters	within	the	parameter	space	are	
idenAfiable.	
Deriva$ves	up	to	order	3	exist	within	the	parameter	
space	of	the	informa$on	set	and	are	con$nuous.	
	
The	term	on	the	far	rhs		of	the	predic$on	error	
decomposi$on	of	the	variance	reveals	that	this	
algorithm	proceeds	according	to	a	minimiza$on	of	
the	mean	square	error	of	predic$on	as	well	as	fit	(as	F	
is	included	in	the	likelihood	func$on).	
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Exact	Maximum	Likelihood	

100	

When	the	model	is	staAonary	and	the	prior	is	proper,	the	exact	likelihood	
can	be	esAmated	with	the	formula	just	given.	
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Quasi-Maximum	Likelihood	

101	

Generalized	least	squares	with	a	White		or		a	Newey-West	esAmator	
can	be	used	for	mulAvariate	models	to	handle	situaAons	where		Kim	
and	Nelson	(1999)	provide	an	excellent	account	of	how	this	works	as	
does	Harvey.		DeviaAons	from	Gaussianity	can	be	handled	so	long	as	
the	distribuAon	is	symmetric.			Log-normal	distribuAons	can	sAll	yield	
approximate	likelihood.	
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GLS	can	be	used	to	esAmate	state	space	models	when	unknown	
exogenous	variables	are	added	to	the	measurement	model	

102	

The	state	space	model	can	be	rewrigen	in	a	regression	form	
	
	
	
	
	
	
	

( , , ) ' '

'
'

( ) , ( )
'

t t t

t t

t t t

t t

Harvey writes that because y z x v
we can rewrite the state space model as related regressions :
y x e
e z v
If we assume E e Var e V
Even if the unknown x in the model
generates heteroskedasticit

α β

β
α

= + +

= +
= +

= =

1989 130

0

,

( ' -1 -1

y we can
solve for

X V X ) (X'V Y) using thisGLS.β −= 1

R.	Yaffee	state	space	lecture	2009-Nov-26	



The	ProperAes	of	V	render	it	amenable	
to	a	Cholesky	decomposiAon	

103	

Harvey,	1989,	131		writes	that	because	V	is	posiAve	
definite,		there	is	a	matrix	L,		which	is	lower	triangular	
and	has	ones	in	the	principle	diagonal,	which	can	be	
pre	and	post-mulAplied	by	F	inverse	to	yield	the	
inverse	of	V.	

'V L F L− −=1 1

By	mulAplying	those	regression	equaAons	by	L,	we	
obtain	a	heteroskedasAc	regression	equaAon	that	
solves	for	beta	with	GLS.	(See	Kim	and	Nelson,	
1999,	20.	
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The	F	can	be	used	in	GLS	for	V.	

104	

The	log	likelihood	for	GLS	then	becomes	
	
	

log | | log | ' |
T T

t t
t t

LL LogL F v F v
τ τ

−

= + = +

= − −∑ ∑ 1

1 1

1 1
2 2

( ' ) ( ' )X F X X F Yβ − − −= 1 1 1

So				GLS	is	funcAonally	equivalent	to	a	maximum	
likelihood	soluAon	for	the	parameters,	though	ML	
usually	proceeds	by	arriving	at	the	mean	and	the	
variance	through	the	gradient	and	the	informaAon	
matrix.	 R.	Yaffee	state	space	lecture	2009-Nov-26	



The	EM	algorithm	
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The	expectaAon	maximizaAon	algorithm.			It	consists	of	expectaAon	step	
followed	by	a	maximizaAon	step.		The	algorithm	iterates	unAl	the	likelihood	
given	the	data	can	no	longer	be	improved.	
	
	
Commandeur	and	Koopman	maintain	that	this	algorithm	assures	
nonnegaAvity	of	hyperparameter	esAmaAon.				
	
The	disadvantage	of	this	algorithm	is	that	it	is	very	slow,	especially		when	
there	are	many	parameters	to	be	esAmated.	
	
The	BFGS	algorithm	is	much	faster,	but	does	not	assure	monotone	
convergence.					A	combinaAon	of	these	two	algorithms	is	used	to	find	the	
proper	balance.	
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Rosenberg’s	algorithm	(1973)	
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The	state	vector	is	parAAoned	into	a	staAonary	sub-vector	and	a	
nonstaAonary	sub-vector.		The	state	vector	a		=		Ta*	+	Ta	

*

. '
* *t t t t t

t t
t t

B Rosenberg s algorithm
=Ts T s e e

one s is stationary and theother s * is
not. s *uses adiffuse prior while s
uses anormal prior.

partitions the state vector into 2 subvectors,

The priors are used as starting values fo

α + −+ + +1 1

r
the mean and variance of the state vector.
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DeJong’s	algorithm	for	diffuse	
smoothing.	

107	

Requires	the	inversion	of	large	matrices	but	Rosenberg’s	does	not.		Rosenberg	
just	augments		the	state	vector	to	accommodate	the	nonstaAonary	components	
using	a	diffuse	prior	for	them	only.			To	invert	the	singular	matrix,	
He	employs	a	generalized	inverse.			Eventually,	the	nonstaAonary	part	collapses	
to	the	classical	Kalman	filter	
As	it	becomes	staAonary	and	then	it	proceeds	unAl	convergence	is	agained.	

DeJong		in	1989	in	JASA	provides	new	algorithm	for	fixed	lag	smoothing	
which	more	efficiently	performs	diffuse	smoothing		while	covering	the	
degenerate	cases	and	happens	to	be	more	computaAonally	efficient.	To	
model	diffuseness	of	beta,	he	lets	beta	=	b	+	Bδ		where	b	is	a	fixed	vector,	B	is	
a	fixed	matrix	of	full	column	rank	and	delta	is	a	random	vector	unrelated	to	
the	v(t)	and	u(t)	and	the	nonsingular	covariance	matrix	σ^2	Σ	
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Exact	iniAal	Kalman	filter	
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Koopman	discovered	a	means	of	finding	the	exact	iniAal	Kalman	
filter.			This	is	more	computaAonally	efficient	when	dealing	with	
nonstaAonary	series.			(Koopman,	S.J.	“The	Exact	IniAal	Kalman	filter	
and	the	smoothing	of	nonstaAonary	Ame	series,”	in	Harvey	and	
Proiex,	(eds.)	,2005,	54).						The	smoothing	of	this	filter	leads	to	the	
exact	score	vector	of	the	iniAal	state	vector.	
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Diffuse	Log	Likelihood	
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'
*, , *,

( ) log ( ) log( )

( ) log | |
n n

t t t t t
t t

mDiffuse LL y L y

where

Log y constant F F v F v

κ

− − −
∞

= =

= +
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1 1

2

1 1
2 2

(Schweppes,	1965),		according	to	Koopman,	2005,	
55.	
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IdenAficaAon	

110	

Hamilton	(1994,	387)	maintains	that	unless	proper	constraints	are	introduced,	
into	the	T,		Q,		G,	H,	β,	and	R		matrices,	the	state	space	model	will	be	
unidenAfied.				
	
Recall	that	the	model	is	
	
	
	
	
	
So	the	quesAon	arises,			how	many	of	what	kind	of	constraints	must	be	
applied	to	idenAfy	such	a	model?	
	
	

~ ( , )
~ ( , )

t t t t t t

t t t t t t

T WX R NID Q
y Z X G NID R
α α η η

α β ε ε
−

−

= + +
= + +

1

1

0
0
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Smoothing	

111	

Smoothing	is	esAmaAon	of	the	signal	from	the	measurement	model.	
	
It	involves	extracAon	and	projecAon	of	this	signal	onto	the	y	vector.					
	
InterpolaAon		is	the	projecAon	of	x(t),	or	alpha(t),	onto	the	y(t)	space		
	
(DeJong,	P.			Smoothing	and	Interpola$on	with	State	Space	Models,		in		

(1989) 		Harvey	and		Proiex	(eds)	(2005),	73).	
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Smoothing	

112	

A	set	of	backward	recursions	using	the	output	of	the	
Kalman	filter,	formulated	in	Durbin	and	Koopman	(2001)	
Time	Series	Analysis	by	State	Space	Methods.	
This	smoothing	is	funcAonally	equivalent	to	the	output	
of	a	Weiner-Kolmogorov	filter	(Hyndman	et	al.,2009,225):	

	
	
	
	
Smoothing	can	be	used	for	interpolaAon,	signal	
extracAon,	residual	analysis,	deleted	residuals,	and	
auxiliary	residuals.		Residuals	can	be	useful	model	
diagnosAcs.	
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Diffuse	Smoothing	

113	

Smoothing	algorithms	depend	on	iniAal	values	of	the	mean	and	variance	
of	the	state	vector.				If	it	is	assumed	that	nothing	is	known	about	the	
first	state,	a	noninformaAve	prior	distribuAon	may	be	used	from	which	
to	obtain	these	values.				NoninformaAve	or	diffuse	prior	distribuAons	
are	combined	by	a	weighted	average	with	current	data	to	arrive	at	an	
esAmate.			The	noninformaAve	prior	has	a	variance	that	is	approximately	
infinite	or	extremely	large.			The	precision	(the	inverse	of	the	variance)	is	
used	as	the	weight	given	to	this	part	of	the	weighted	average.		However,		
nothing	can	be	divided	by	zero	and	remain	finite.			Therefore,	an	
approximaAon	can	be	because	the	convergence	properAes	of	the	
Kalman	filter	can	handle	such	quanAAes.	
	
Aler	enough	iteraAons	to	overcome	the	impact	of	the	nonstaAonary	
elements,	the	diffuse	Kalman	filter	will	collapse	to	the	classical	Kalman	
filter	and	the	filter,	if	there	is	a	steady-state	soluAon,	will	then	converge	
toward	it.		
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A	diffuse		Kalman		filter		can	generate	
the	diffuse	smoothing	

114	

,

t t

B b
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that has a nonsingular covariance

as as the statevariance
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Preliminary	State	Space		
Model	Analysis	
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Download	the	data	and	record	the	source,	Ame,	date,	and	study	descripAon	
Of	the	dataset.		
	
Be	sure	the	dates	are	correct	for	Ame	series	data.	
	
Check	for	missing	values.	
	
Time	plot	of	the	data	
	
Look	for	abnormaliAes	in	the	data	
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UK	cars	downloaded	from	hgp://
www.exponenAal	smoothing.net	11/13/2009	
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Click	here	to	graph	
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Time	series	plot	
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What’s	potenAally		
problemaAc	in	this	graph	

•  There	is	a	regime	shil	in	1980-1982	
•  							the	number	of	cars	stops	falling	and		 		

		begins	to	rise.	
•  This	would	be	a	problem	for	an	ARIMA	model	

	but	not	for	a	state	space	model.	
•  							Why?	
•  	There	is	another	level	shil	in	2000-2001.	
•  							Is	this	a	problem?			It	would	be	for	an	ARIMA				

	model?			Is	it	for	a	state	space	model?			If	so,	
•  							why?			If	not,	why	not?									
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	Basic	Structural	Model	

•  The	basic	structural	model	contains	a	local	
level,		a	local	slope,	and	a	local	seasonal.	

•  We	begin	by	allowing	all	of	these	components	
to	be	stochasAc.	
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Click	on	the	model	icon	
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Dialog	box	comes	down	
click	on	formulate	

121	R.	Yaffee	state	space	lecture	2009-Nov-26	



Add	the	Ukcars	variable	to	the	selecAon	box	by	clicking	
on	the	move	arrow	in	the	middle,		then	click	OK	
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Select	the	level,	slope,	seasonal	as	stochasAc	
(random),	and	intervenAons	as	automaAc	

123	

Then	click	
OK	
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An	esAmaAon	dialog	box	appears.	
We	don’t	shorten	the	esAmaAon	horizon	at	first—leave	

this	the	full	sample	for	the	first	pass	

124	

Use	Exact	score	ML	(the	
default)	at	first	pass	
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Omnibus	EsAmaAon	review	
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Strong	convergence	and	steady	state	found	are	good	indicators	

EsAmaAon	
completed	
	
	
Model	descripAon	
PredicAve	error	
variance		
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Omnibus	staAsAcal	review	
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All	components	are	
stochasAc	(each	>	0)	

Box-Ljung	Q	stat	(12,9)	
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To	test	the	chi-square	at	9	df,	click	on	model	in	
the	menu	bar	and	then	on	Tail	Probability	
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Enter	9df	in	n1	and	insert	the	criAcal	
value	given	in	the	output	
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At	the	bogom	of	your	output,	the	
significance	test	will	be	recorded	
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A	significant	result	indicates	that	there	remains	serial	correlaAon	in	the	
residuals.	
	
	
This	result	will	bias	your	t-tests	,	F-tests,	and	R^2	upward.	
	
To	be	able	to	trust	those	tests,	you	will	need	to	neutralize	the	serial	
correlaAon	in	the	residuals	R.	Yaffee	state	space	lecture	2009-Nov-26	



Click	on	the	test	cube	on	the	right,	and	select	
component	graphics	from	the	test	menu,	and	click	ok	
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A	first	pass,	just	consider	the	main	
components	
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Component	graphics	are	generated	from	the	smoothed	
components	of	the	state	vector	(signal	extracAon)	
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Diagnosing	outliers	and	level	shils	

133	

Place	cursor	on	outlier	and	
the	proper	date	will	appear	
to	the	lel	
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A	more	detailed	examinaAon	requires	
more	output		

	(click	on	the	test	icon	and	then	in	the	test	menu,	on	“More	wrigen	output”.		Then	click	ok.	
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The	More	Wrigen	Output	menu	
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Select	these	opAons	and	click	ok.	

R.	Yaffee	state	space	lecture	2009-Nov-26	



Full	parameter	report	shows	no	problem	compuAng	
first	and	2nd	derivaAves			

(or	asymptoAc	standard	errors)	
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All	components	are	significant	except	the	slope			
	we	could	trim	the	model	and	gain	power	with	more	df	for	a	test	by	pruning	out	the	

slope	
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To	test	the	removal	of	the	slope	against	a	significant	change	in	
the	LL,	click	on	formulate	icon,	(the	lel	hand	cube)	and	then	on	

progress	bugon	in	the	dialog	box	
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Click	on	“mark	general	to	specific”	and	
then	ok.	
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This	leaves	a	record	in	memory	as	to	the	
goodness	of	fit	of	that	model	as	indicated	

by	LL	or	IC	
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When	the	select	components	menu	appears,	deselect	the	
slope	and	leave	intervenAon	selecAon	on	manual	

then	click	ok.	
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When	the	select	intervenAons	menu	appears,	we	do	not	
change	it,	and	click	ok.			We	are	only	tesAng	the	significance	of	

the	slope.	
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The	esAmaAon	menu,	we	also	leave	
the	same,	and	proceed	to	click	ok.	
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The	New	Model	appears	with	all	
components	significant.	

•  We	go	back	to	the	formulate	icon	(the	lel	hand	
cube)	and	click	on	it.	

•  We	click	on	the	progress	bugon	on	the	drop	down	
formulate	dialog	box.	

•  We	then	click	on	General	to	specific.	
•  What	appears	at	the	bogom	of	our	output	is:	
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Removal	of	the	slope	component	
significantly	reduced	the	log-likelihood	
•  Therefore,	we	will	restore	the	stochasAc	slope	
component	to	our	state	vector,	even	though	it	
did	not	appear	to	be	important	by	comparison	
to	the	other	components.	

•  The	signal	to	noise	raAo	was	not	very	high	for	
that	component.		However,	there	was	a	
percepAble	bend	in	the	curve	that	matched	
the	trend.		
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2nd	pass—select	all	components	as	
stochasAc	and	reiterate	

146	R.	Yaffee	state	space	lecture	2009-Nov-26	



If	this	menu	appears	regardless	of	your	having	
opted	for	automaAc	selecAon,	select	all	

suggested	and	then	ok.	
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State	Space	Model	Diagnosis	
•  Omnibus	model	diagnosAcs	
•  Component	diagnosAcs	
•  Residual	analysis	

–  Auxiliary	residuals	
–  Residuals	
–  Graphical	diagnosAcs	

•  IntervenAon	diagnosAcs	
•  Explanatory	variable	diagnosAcs	
•  ForecasAng		
•  ForecasAng	evaluaAon	
•  Model	fixng	strategies	
•  Model	adequacy	
•  Model	opAmality	and	the	progress	opAon	
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This	model	did	not	fully	converge	to	a	
steady	state.			
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What	are	our	opAons?	

•  We	may	fine-tune	the	model,	by	
•  Trying	different	starAng	values	for	parameters		
•  We	may	fit	other	intervenAons	to	improve	
convergence	to	a	steady-state.	

•  We	begin	by	looking	at	the	component	
graphics	and	then	asking	for	more	wrigen	
output.	
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Omnibus	Diagnosis	

•  We	test	our	Box-Ljung	Q	for	residual	serial	
autocorrelaAon	with	9	df.			It	is	sAll	significant	
so	we	have	autocorrelaAon	in	the	residuals.	

•  We	will	have	to	deal	with	that	to	avoid	biasing	
our	significance	tests	.	

•  We	opt	for	component	graphics	first,	and	also	
select	individual	seasonals	from	further	plots.	
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Omnibus	model	diagnosAcs	

•  These	diagnosAcs	assess	overall	model	
goodness	of	fit	

•  They	may	provide	hints	wrt	problems	
•  They	are	helpful	in	iniAal	comparison	of	
models	
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SelecAng	component	graphics	for	the	
2nd	pass	
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The	slope	is	very	different	this	Ame.	
We	need	to	ascertain	why.	
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The	Full	parameter	report	reveals	that	inversion	
of	the	vcv	matrix	failed	and	a	generalized	

inverse	was	used	to	proceed.	
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Lack	of	variance	in	the	slope	may	have	
caused	it	to	be	modeled	as	fixed	
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Omnibus	staAsAcs	
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R2	is	probably	inflated	owing	to	the	
residual	serial	autocorrelaAon	

•  The	R	square	=	.92	but	this	is	quesAonable		
•  Serial	correlaAon	in	the	residuals	could	inflate	
this,	F	and	t	values.	

•  Yet	all	residuals	appear	to	be	normal:	
–  Irregular	
– Level	
– Slope	
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Residuals	appear	normally	distributed	
for	all	components	
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We	need	to	examine	the	graphics	of	the	
irregular	to	look	for	other	intervenAons	
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2	candidate	outliers	in	the	irregular	
and	one	in	the	level	
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Candidate	outliers	

•  For	the	irregular,			Aug	1984	and	Sept	1990.	
•  For	the	level,	Jan	1985.	
•  If	these	do	not	eliminate	residual	serial	
autocorrelaAon,		when	implemented,	then	we	
introduce	an	ar1	lag	into	the	model.	

•  I	found	that	the	slope	had	been	changed	by	
the	system	to	fixed	so	I	reset	that	to	
stochasAc,	selected	the	those	2	outliers	and	1	
level	shil,	and	then	re-esAmated.	
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Pass	4	(changed	the	slope	to	random)	
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Omnibus	review	
•  Steady	state	was	found,	model	converged.	
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We	ask	for	more	wrigen		
output	from	the	test	menu	
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The	dependent	variable	is	normally	distributed,	residual	serial	
correlaAon		persists,	and	this	could	inflate	the		R2		and	t-tests.	
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Residuals	are	otherwise	well-behaved.	The	slope	
(not	shown	here)	residuals	are	also	normally	

distributed.	
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As	a	last	resort,	we	click	on	select	
components	and	add	the	ar(1)	component	

and	re-esAmate	

168	R.	Yaffee	state	space	lecture	2009-Nov-26	



Steady	state	is	found	again	on	this	
pass	
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Some	residual	ar	is	agenuated,	but	not	
all.		We	enter	the	ar2	and	re-esAmate	
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We	try	an	ar(1)	and	ar(2)	and	re-
esAmate.	
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Component	graphics	
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AR1	
does	
not	
seem	
funcAo
nal	
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The	variance-covariance	matrix	did	not	invert	and	a	
generalized	inverse	was	used.					This	may	be	associate	with	

the	failure	of	AR(1)	component.	
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We	can	see	that	the	AR(1)	component	
did	not	work	
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Irregular	and	slope	residuals	are	good	
but	slope	residuals	are	not.	
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Residual	serial	correlaAon	and	misbehaved	slope	
residuals	plague	this	model	(failure	of	AR(1))	

component	

176	R.	Yaffee	state	space	lecture	2009-Nov-26	



We	try	again	with	and	hope	that	a	different	
starAng	value	will	lead	to	a	more	propiAous	

result.	
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This	Ame	a	stead	state	is	found,	and	although	there	were	5	bad	iteraAons	the	
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This	Ame	the	Box-Ljung	Q	is	smaller	
and	the	ar(1)	and	ar(2)	worked.	
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A	Box-Ljung	Q	test	with	8	df	shows	that	the	
autocorrelaAon	of	the	residuals	is	not	

significant.	
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The	residuals	are	no	longer	signficantly	
autocorrelated.	
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Irregular	and	level	residuals	remain	
well-behaved.	
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Only	the	slope	residual	is	potenAally	
problemaAc	
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However,	the	auxiliary	residuals	indicate	
that	the	problem	area	for	the	slope	is	

before	2000.	
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We	decide	to	use	this	model	for	
forecasAng	

•  Modeling	residuals	before	2000	would	not	help	
solve	the	problem	with	the	slope	residuals.	

•  We	therefore	suspect	that	this	is	about	the	best	
model	that	we	can	get	with	these	data.	

•  This	is	confirmed	by	a	likelihood	raAo	test	of	the	
LL	for	the	last	model	and	this	model.	

•  Hence,	our	decision	to	use	it	as	a	basis	for	out-of-
sample	(1	year)	forecast.	

•  We	set	the	date	of	forecast	origin	to	
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We	find	a	significant	improvement	between	the	
last	and	the	current	model.	
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Out-of-sample	forecasAng	

•  We	decide	to	forecast	over	a	horizon	of	one	
year,	with	the	forecast	origin	set	at	2002(1).	

•  To	do	so,	we	have	to	reset	the	esAmaAon	
period.	

•  The	remainder	of	Ame	the	data	span	will	be	
called	the	validaAon	segment	of	the	data	and	
will	be	used	to	test	the	accuracy	of	the	
forecast.	
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We	reformulate	and	when	we	come	to	
the	esAmaAon	period,	we	set	the	

forecast	origin	to	2002(1)	
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Then	we	go	to	the	test	menu	and	
select	forecasAng	
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We	are	then	presented	with	the	
forecast	menu	and	select:	
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Stamp	provides	forecasts	and		
evaluaAons	over	their	forecast	horizon	
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Criteria	of	forecast	evaluaAon	

•  Criteria:	
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Stamp	will	also	provide	forecasts	and	confidence	
intervals	of	those	forecasts	for	each	component	as	

well(including	AR(1)	and	AR(2)).	
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Forecasts	can	be	graphed	as	well	
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Forecast	Profiles	may	be	edited	and	changed	
into	forecast	fan	charts	or	error	bar	charts		
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Other	predicAon	graphics	are	available,	including	
coverage,	cumsum,	and	cumsum	squared	plots.	
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Diagnosing	the	State	Space	model	

196	

Residuals	are	used	for	diagnosis.			These	are	the	innovaAons.			But	the	
auxiliary	residuals	are	esAmators	of	the	disturbances	associated	with	the	
unobserved	components.		Although	they	are	related	to	the	residuals,	
they	may	display	the	informaAon	somewhat	differently.			
	
Residuals	are	useful	for	diagnosAcs	in	large	samples.		However,	in	finite	
samples,	auxiliary	residuals	may	be	more	helpful.			They	may	be	
regarded	as	minimum	mean	square	esAmators	under	condiAons	of	
Gaussianity,	according	to		Harvey	and	Koopman	1992,	in	Harvey	and	
Proiex	(2005),	84.		
	
Auxiliary	residuals	are	serially	correlated.		However,	they	are	useful	in	
detecAng	outliers	and	level	shils.		The	Bowman-Shenton	test	,		which	is	
distributed	as	a	χ2			test	with	2	df,	is	modified	to	account	for	this	
autocorrelaAon,	they	can	be	used	to	disAnguish	between	them	as	well.	
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ComputaAon	of	Auxiliary	Residuals	

197	

Just	run	the	Kalman	filter	and	then	the	smoother.				When	compuAng	
the	variances	at	the	beginning	or	end	of	the	series,	they	will	seem	very	
large	compared	to	the	others.		
	
For	test	staAsAcs,			only	the	observaAons	in	the	middle	of	the	series	
should	be	used.			The	variances	at	either	end	are	much	larger.	
	
Auxiliary	residuals	are	standardized	for	presentaAon.	
By	dividing	the	residual	by	the	square	root	of	the	variance	t-tests	for	
significance	are	obtained.			Using	all	of	the	data	as	a	basis	for	the	
significance	test,	these	auxiliary	residuals	are	usually	preferred	for	the	
first	pass	of	the	diagnosAcs	of	model	adequacy.	
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ApplicaAons	of	the	Auxiliary	Residuals	

198	

TesAng	for	a	level	shil	is	best	done	with	the	use	of	the	auxiliary	
residuals.	
	
TesAng	for	seasonal	change	would	be	beger	done	with	
auxiliary	residuals.	
	
TesAng	for	an	individual	outlier	is	perhaps	beger	done	with	
residuals	that	are	not	autocorrelated.		Harvey	and	Koopman	
argue	that	auxiliary	residuals	combine	in	the	best	way	to	use	
them	for	tesAng	in	this	kind	of	case	(Ibid,	86)	
	
Tests	based	on	skewness	and	kurtosis:	
	
	

R.	Yaffee	state	space	lecture	2009-Nov-26	



ForecasAng	with	State	Space	Models	

199	

Three	methods	are	provided	with	Stata’s	
space.	
	
One-step-ahead	forecasAng	is	performed	
by	the	Kalman	filter	in	its	filtering	
process.	
	
IteraAve	projecAon	results	from	repeated	
applicaAon	of	this	process.	
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Forecast	evaluaAon	

200	

Forecast	evaluaAon	is	performed	by	out-of-sample	comparison	of	
the	forecasts	to	the	actual	data.	
	
Aside	from	the	predicAve	error	variance	computed	from	the	
predicAve	error	decomposiAon,		error,	Root	mean	square	error,	root	
mean	square	percentage	error,		mean	absolute	error,	and	mean	
absolute	percentage	error	are	criteria	employed	to	evaluate	the	
forecast	accuracy.	
	
Other		predicAve	graphics	tests		can	also	be	applied	to	the	forecasts	
for	evaluaAon:		PredicAve	error	variance,	cumsum,	and	cumsum	
squares,	and	Chow’s	predicAve	failure	test	are	among	them.		
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RelaAonship	of	State	Space		
to	ARIMA	models	

	(	Ruey	Tsay,	class	notes)	

201	

Cayley-Hamilton	Theorem:	
			for	any	m	x	m	matrix		F,	with	characterisAc	equaAon,		such	a	matrix	is	
reduce	able	to	an	ARIMA	model.		(Details	are	not	presented	here).	
	

What	do	ARIMA	models	look	like	when	presented	as	State	Space	
System	form?	
We	consider	just	a	few	cases.	
								The	AR(1)	case	
								The	AR(2)	case	
									The	MA(1)	case	
									The	MA(2)	case	
									The	ARMA(1,1)	case	
									The	ARMA(2,2)	case	
									The	ARIMA(0,1,1)	case	
									The	ARIMA(0,2,2)	case	
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The	equaAons	are	stacked	within	System	matrices	(α,	

Ф,	Ω,	and	Σ,	T,	Z,	R	and	H(=1	and	in	front	of	epsilon)	
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SsfPack	program	to	generate	AR(1)		
and	AR(2)	

system	matrices	
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ARIMA(1,0,0)	and	ARIMA(2,0,0)		
state	space	system	matrices	

AR(1)	model:			φ1=0.6,	σ2=.4;	AR(2)	model:			φ1=0.5,	φ2=-.4,	σ2=.9	

204	

φ(1)		coef	

σ(2)	coef	

unconditional variance
of initial state
is in Sigma

σ 2
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ARIMA(0,0,1)	and	ARIMA(0,0,2)	
state	space	system	matrices	

SsfPack	code		
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State	Space	System	matrices		
for	MA(1)	model				θ1=.4		σ2=.6	

206	

.4*.6	
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State	Space	System	Matrices	for	MA(2)	
model		θ1=-0.3			θ2	=-0.4		σ2=5	

207	

-0.3	x	.5		

-0.4	x	.5	
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SsfPack	code	snippet	
	for	system	matrices	

for	ARMA(1,1)	and	ARMA(2,2)	models	
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System	matrices	for	ARMA(1,1)	models	
Can	you	tell	from	output	what	the	parameters	are?	
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ARMA(2,2)	system	matrices	

210	

Can	you	tell	what	the	parameters	are	from	this	output	(ignoring	the	lisAng	of	
Them	on	the	top?	
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SsfPack	code	snippet:	
System	matrices	for		

an	ARIMA(1,1,1)	model	
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State	space	system	matrices	for	
ARIMA(1,1,1)	model	
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ARIMA(0,1,1)	aka		
simple	exponenAal	smoothing	
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System	matrices	for		
ARIMA(0,1,1)	model	
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ARIMA(0,2,2)	system	matrices	
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ARMA(2,2)	system	matrices	
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System	matrices		
for	ARIMA(0,2,2)	model	
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Structural	Ame	series	model	(Stsm)	
Koopman	et	al.(2008)	

218	
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Structural	Ame	series	models	
Koopman,	S.J.,	Shephard,	N.	and	Doornik,	J.	(2008)	
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NonstaAonary	trend	component	

220	

When	the	trend	contains	dril	or	determinisAc	slope,	it	is	not	
staAonary.	
	
Hence,	the	slope	component	is	added	to	the	trend	in	order	to	handle		
	
Such	nonstaAonarity.			All	of	these	components	are	random	effects.				
	
They	are	characterized	by	their	own	measurement	error,	sampling	
	
error,		or	other	error		in	variables.			Consequently,	each	unobserved		
	
component	has	its	own	error	term.	
	

(Zivot	and	Wang,	530.)	
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Is	the	level	fixed	or	random	

221	

Usually,		the	level	will	be	Ame-varying	and	possess	an	
evoluAonary	error	,eta	,	(η	t).			Moreover,	unless	measured	
without	error,	the		measurement	error	,	epsilon(	ε	t	)	will	be	
nonzero	as	well.		Hence,	their	standard	deviaAons,	apparent	in	
the	sigma	matrix,	will	also	be	nonzero.	
	
	
	
	

If	there	is	no	error	of	measurement,		then	the	epsilon	would	be	
fixed	at	zero.	In	the	measurement	equaAon.		The	error	term	for	
the	transiAon	(evoluAonary)	process	then	can	be	set	to	zero		by	
equaAng	eta		to		0.	and	lexng	its	standard		deviaAon	in	the	
sigma	matrix	=	0	as	well.	This	can	be	done	in	the	transiAon	
equaAon	while	any	representaAon	of	that	variaAon		in	the	
sigma	matrix	can	be	set	to	zero.				
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The	local	linear	trend	model	

222	

Contains	dril		or	stochasAc	trend	(random	walk)		(error	allowed	to	vary)	
or	
Contains	determinisAc	trend	(error=0)		someAmes	called	smooth	trend	
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IniAal	values	of	trend	

223	
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converges to a solution.
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This	is	a	local	trend	

224	

The	trend	is	a	local	rather	than	global	trend.			The	trend	is	
allowed	to	varying	over	Ame.			
	
It	can	be	Ame	varying	or	fixed,			depending	upon	whether	
the	errors	posiAve	or	equal	to	zero.	
	
Trends	are	evident	in	changes	in	the	level	and/or	slope,		
someAmes	apparent	in	a	graph	of	the	series.	
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IdenAfying	the	nature	of	the	trend	

225	

When	we	test	the	signal	to	noise	raAo	of	the	trend	and	find	that	it	is	zero,	
	
We	infer	that	the	trend	is	not	stochasAc	but	fixed	(determinisAc).	
	
There	are	also	higher	order	trends		such	as			u	m-1,	u	m-2,	…		that	can	be	
interpreted	as	first,	second,	or		higher	order	(m)	derivaAves.	
	
	

, , ,

, ,...,

i t i t i t
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Local	Linear	Trend	model	
with	Ox	(Koopman,	Shephard,	and	Doornik,	2008,	8)	
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Local	Linear	Trend		
Model	system	matrices	
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Seasonal	component	

228	

Seasonality,	like	all		unobserved	
components,	can	be	stochasAc	(random)	
or	fixed	or	nonexistent.					
	
Seasonality,		an	annual	variaAon,		may	
render	a	series	nonstaAonary	and	
difficult	to	use	for	forecasAng.	
	
Seasonality	may	be	defined	by	dummy	
variables	or	trigonometric	funcAons.	
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Defining	seasonality	

229	

, , , , ~ ( , )t t t t t t NID ωγ γ γ γ ω ω σ+ = − − − + 2
1 1 1 2 3 0

	
	
	
	
If	omega	is	non-zero,			the	series	is	random	(stochasAc).	
	
If	omega	is	zero,	the	series	can	be	seasonal	yet	have	a	fixed	
seasonality.	
	
	

( ) s
t

t

Another formulation is

L L L L
where
s seasonal periodicity

random error of seasonal component

γ ω

ω

−= + + + + +

=
=

2 11 L
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IdenAfying	and	assessing	seasonality	
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Is	it	fixed	or	random?					Is	it	conAnuous	or	discrete?				Should	we	
select	
Dummy	variables	or	trigonometric	variables	to	represent	the	
seasonality?	
	
All	these	quesAons	need	to	be	answered	for	us	to	decide	how	to	
define	the	variable.	
	
Koopman	et	al.	generally	suggest	beginning	with		a	stochasAc	model	
And	looking	at	the	signal	to	noise	raAo	(q)	for	evidence	of	a	random	
effect.		If	the	coefficient	=	0	,	it	may	be	fixed	or	non-existent.			We	
try		it	as	fixed	and	test	for	the	model	fit.			We	select	the	beger	fit.	
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Seasonal	adjustment	

231	

For	this	reason,		the	series	may	be	seasonally	adjusted	to	
facilitate	forecasAng	by	the	removal	of	the	seasonal	
component	or	not	seasonally	adjusted.	
	
If	seasonality	is	addiAve,	the	seasonal	component	may	be	
subtracted	from	the	series	to	seasonally	adjust	it.	
	
If	the	seasonality	is	mulAplicaAve,	the	seasonal	component	
may	be	divided	into	the	series	to	seasonally	adjust	it.	
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Co2	measurement	at	NOAA	
observatory	at	Mauna	Loa	
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Click	on	formulate	
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Move	the	dependent	variable	over	
into	the	selecAon	box	
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Then	click	
On	OK.	
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Begin	by	tesAng	a	basic	structural	
model	(level,	slope,	and	seasonal)	
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Allow	the	
StochasAc	
OpAons	
to	be	
checked	
at	the	
first	pass.	

Then	click	
On	OK.	
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Leave	the	default	esAmaAon	checked	
and	first	test	on	the	full	sample	
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Then	click	on	OK.	
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Examine	the	errors.		Each	component	
reveals	a	nonzero	error	variance.	

236	

This	means	that	all	components	
are	random	and	have	an	error	
term.	

The	model	
converged	as	is	
indicated	by	
the	steady	state	
having	been	
found.	
	
We	do	observe		
some	normality	
of	the	residuals.	
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All	components	of	the	state	vector	are	
significant.		We	retain	all	of	them.	
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We	then	
proceed.	
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We	click	on	the	test	icon	to	obtain	a	
test	dialog	box	
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We	click	on	
more	test	
output	and	
then	ok	at	the	
bogom	
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Another	dialog	box	appear	and	we	
check	the	boxes	accordingly	
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Then	click	ok	
at	the	bogom	
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The	full	parameter	report	shows	actual	
and	transformed	stochasAc	parameter	
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We	observe	that	all	derivaAves	were	successfully	
computed.		Then	we	look	below	
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We	note	that	all	components	are	
significant	and	look	below	
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We	observe	the	coefficients	for	the	components		
and	note	their	sign,	magnitude	and	significance.	
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We	begin	to	diagnose	the	model	
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We	look	for	violaAon	of	the	
assumpAons	of	normality,	
independence	of	observaAons,	
and	white	noise	residuals.	

The	residuals	appear	to	be	
normally	distributed	but	
there	is	evidence	of	
spurious	correlaAon	and	
consequent	bias	in	our	
esAmates	upward.	
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We	examine	the	goodness	of	fit	test	
and	find	the	R^2	to	be	too	high	
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AutocorrelaAon	
In	the	residuals	
And		unmodeled	
outliers	seem	to	
be	evident.				
	
The	model	fit	
could		be	
improved	by	
adding	an	ar(1)	
Component	and	
modeling	the	
outliers.		
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There	remain	problems	in	the	level	
and	slope	residuals	as	well	
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There	is	an	
unmodeled	level	
residual	and	the	
slope	residuals	
are	not	quite	
normal.	
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Click	on	the	model	icon	and	then	on	
formulate.	
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Click	on	ok	again	
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In	the	Select	components	box,	click	on	
Cycles(s),	on	ar(1),	and	then	Ok.		
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When	the	esAmate	box	appears,	leave	
the	defaults	checked	and	click	ok.	
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All	components	remain	significant—
including	the	AR(1)	component	
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All	state	vector	components		appear	
significant	as	we	scroll	down	
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We	click	on	the	test	icon	and	the	more	
wrigen	output	box	and	then	OK.	
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In	the	More	Wrigen	output,	we	check	
the	boxes	below	and	then	click	on	ok.	
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Observe	a	decline	in	the	BIC,	a	high	R^2	
but	no	more	residual	autocorrelaAon.	
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Our	model,	
however,	is	not	
Yet	opAmized	
because	we	sAll	
have	unmodeled	
outliers.	
	
We	will	begin	to	
model	those	
next.	
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We	examine	the	residuals	of	the	other	
components	too.	
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Normality	is	no	
longer	a	problem	for	
irregular	or	level	
residuals,	although	
both	components	
have	unmodeled	
outliers.	
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Yet	the	slope	residual	is	sAll	not	
normal.	
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Diagnosis	of	residual	problems	begins	
with	the	Auxiliary	residuals	

•  The	auxiliary	residuals	are	smoothed	residuals	
divided	by	the	square	root	of	the	F,	the	
measurement	variance.			So	they	in	effect	are	
t-tests.	

•  We	can	look	at	graphical	analysis	of	them	for	
quick	
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In	the	test	menu,	we	select	Auxiliary	
residuals	graphics	and	then	click	OK.	
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In	the	drop-down	menu,	we	make	the	
selecAons	shown	below:	
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Time	index	plots	and	histograms	of	our	
auxiliary	residuals	
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We	examine	the	outliers	and	find	that	during	
the	oil	embargo	of	1973	there	was	a	huge	drop	

in	co2		level	and	irregular	
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We	go	to	our	select	components	menu	again	
and	in	the	select	intervenAons	choose	manual	

inserAon	
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We	then	click	
on	OK.	
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In	the	select	menu,	click	on	add	to	
open	up	two	intervenAon	boxes	
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Now	we	will	
proceed	to	
define	the	
intervenAons
.	
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We	click	on	type	in	the	lower	box	and	
choose	level	
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We	change	the	date	to	the	proper	
date	and	then	click	the	box	on	the	lel	
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We	configure	the	other	outlier	and	
then	click	ok	at	the	bogom	
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Leave	the	defaults	in	the	EsAmate	
menu	and	click	ok.	
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Our	new	model	appears.		Steady	state	
strong	convergence	is	found.		
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We	see	that	all	components	remain	
stochasAc	(with	a	random	error)	
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Observe	that	the	level	shil	at	1974	is	
not	quite	significant	(n=468)	
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There	is	plenty	of	
reason	to	believe	
that	other	
outliers	have	not	
yet	been	
modeled	and	
that	our	model	is	
afflicted	by	
specificaAon	
error.	
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We	therefore	request	more	wrigen	
output	
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We	ask	for	a	rerun	of	the	residual	
diagnosAcs	and	click	on	OK	
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We	observe	more	unmodeled	outliers.	
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We	select	automaAc	intervenAon	
modeling	this	Ame	around.	
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This	Ame	we	have	a	good	model	with	
strong	convergence.	
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We	proceed	to	residual	diagnosis	
looking	for	white	noise	residuals	
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The	level	residuals	are	good,	but	there	
remains	a	slope	shil	at	1997(9)	
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We	add	that	intervenAon	and	then	run	
the	model	
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The	new	model	is	interesAng	for	the	
intervenAons	found	
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Although	the	AR(1)	term	is	no	longer	significant,	
we	leave	it	in	to	avoid	biased	esAmaAon	

•  This	is	a	judgment	call.		It	we	should	try	it	both	
ways	and	see	what	happens.			As	long	as	we	
have	well	behaved	residuals	with	the	slight	
excepAon	of	the	slope	residual	which	appears	
to	be	significantly	skewed	and	hence	
nonnormal,	we	know	from	quasi-Maximum	
likelihood	that	this	may	not	be	a	real	problem.	
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Further	diagnosis	

•  There	is	no	evidence	of	specificaAon	error	
since	we	modeled	all	of	the	outliers	and	level	
shils	we	could.	

•  Now	we	review	our	residual	graphics	to	see	
how	well	our	model	fits.	
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Residual	graphics	show	residuals	to	be	well	
behaved	

—not	too	noisy	and	they	stay	in	line.	
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Click	on	formulate	icon	and	then	the	
progress	bugon	
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Of	all	the	models	run,	the	most	recent	
has	the	maximum	likelihood.	
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The	end	effect	on	the	slope	may	bias	a	forecast	but	
not	the	fit.		Be	wary	of	using	this	model	for	

forecasAng.	
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Suppose	we	had	to	forecast,	we	would	
then	select	forecast	in	the	test	menu	
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We	could	select	these	opAons	and	
click	on	OK.	
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We	can	obtain	ex	ante	forecasts	for	the	whole	
series	as	well	as	for	the	separate	components	
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Stamp	warns	us	about	the	slope	being	an	
unreliable	part	of	the	signal	(the	end	effect)	
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Ex	ante	forecast	
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Forecast	evaluaAon	
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We	can	shorten	the	forecast	horizon	
to	improve	our	forecast	accuracy	
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Aler	requesAng	PredicAon	Graphics	select	
the	boxes	below	for	forecast	evaluaAon	
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Some	of	the	PredicAon	graphics	
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Out-of-sample	forecast	evaluaAon	
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The	cyclical	component	

296	
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The	cyclic	distribuAon	
Koopman	et	al.	(2008,	22-23).	
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What	are	the	system	matrices?	
Koopman,	Shephard,	and	Doornik	(2008,	9)	
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We	can	define,	constrain,	or	limit	
parameters	in	these	matrices	

299	

We	can	define	whether	these	elements	are	known	or	unknown,	to	
be	iniAalized	as	diffuse	or	not.	
	
We	can	insert			-	1		to	indicate	that	the	element	will	receive	diffuse	
iniAalizaAon	or	not.	
	
	

Most	matrices	start	with	an	m	before	their	name.		This	is	a	
notaAonal	convenAon	of	SsfPack.	
	
We	can	decide	whether	these	matrices	will	be	Ame-varying	or	
constant.			We	index	these	Phi,	Omega,	and	sigma	matrices	by		
J.			All	elements	within	are	=	-1	except	those	that	vary	with	
Ame.	

R.	Yaffee	state	space	lecture	2009-Nov-26	



Input	to	Stsm	matrix	
Ibid,	24	
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mStsm	
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Missing	Values	

301	

Missing	data	can	be	esAmated	by	data	augmentaAon	or	filtering	if		
	
they	exist	in	the	measurement	model	or	the	data	matrix.	
	
Periods		signify	missing	values	in	Ox.			In	SPlus,	the	missing	value	is		
	
NA.			Vectors	with	missing	values	are	automaAcally	reduced	to		
	
Vectors	without	missing	values	for	analysis.			
	
The	system	matrices	are	presumed	known	and	given	and	cannot		
	
have	missing	values	within	them.				When	some	matrices	are	not		
	
Relevant	for	the	formulaAon	of	a	state	space,	they	can	be	lel	blank.	
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Data	matrix		mXt	
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The	number	of	columns	=	sample	
size	
The	number	of	rows=		number	of	
Ame-varying	elements	in	the	
matrix.	
	
	
If	this	is	a	Ame	series,	it	is	usually	
called	mYt	
	
	

mXt	is	a	k	by	n	matrix	of	exogenous	variables.			
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A	side	note.			
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When	regressors	are	added	to	a	local	level	model,	the	Ame-varying	level	
serves	as	a	constant.			Therefore,		we	do	not	add	a	column	of	ones	to	them	
to	avoid	unnecessary	mulAcollinearity		Ibid,	28.	
	
If	you	are	adding	a	determinisAc	Ame	trend	and	do	not	already	have	a	local	
level,	a	constant	would	be	acceptable	so	long	as	you	did	not	previously	
center	your	data.	
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Adding	Regressors	to	the	State	Space	
Model	
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GetSsfReg	is	the	funcAon	that	is	used	for	this	purpose.	
	
When	it	does	so,		it	esAmates	the	model	by	recursive	least		
	
squares.		This	is	an	OLS	algorithm	applied	to	a	widening		
	
window	expanding	one	step	ahead	each	cycle	of	window		
	
extension.				Koopman	et	al(2008,27)	suggest	that	the	mulAple	
linear	regression	analysis	can	be	specified	in	state	space	form	
as		
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t t

t t t t t ty X G NID t nε

α α
α ε ε σ
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To	add	regressors	to	a	model	in	
SsfPack	
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Adding	the	random		
Regression	data	to		
System	matrices	that	
have	just	been	
specified.	
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System	matrices	for	adding	regressors	
as	Ame-varying	parameters.	
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The	Jphi	matrix	
contains	-1	
except	where	
Ame	varying	
parameters	are	
specified.	
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Trend-cycle	models	
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Order	of	trend	
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Trend-cycle	system	matrices	
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IntervenAons	

309	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Just	as	regressors	can	be	added	to	the	
model,	so	can	dummy	variable	idenAfying	
addiAve	outliers	or	level	shils.		Several	
adjacent	outliers	can	define	outlier	
patches.	
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Adding	Regressors		
				code	from	Zivot	and	Wang,(2005),	pp.	526ff	

310	

When	regressors	are	added	to	a	local	level	model,	the	Ame-varying	level	
serves	as	a	constant.			Therefore,		we	do	not	add	a	column	of	ones	to	them	
to	avoid	unnecessary	mulAcollinearity		Ibid,	28.				
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Non-parametric	cubic	splines	
for	smoothing	

311	

Nonparametric	cubic	splines	are	smoothers	used	to	extract	
signal	from	noise.		They	are	designed	to	capture	the	
nonlinearity	of	a	funcAon.			These	may	be	added	as	regressors	
to	define	a	funcAon	or	process	that	serves	as	an	explanatory	
variable	in	a	model.	
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Basic	structural	model	

312	

It	has	a	level,	a	slope,	and	a	seasonal	component	

( )

t t t t t

t

t
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y
where

unobserved trend level component
unobserved slope component
unobserved seasonal component
unobserved irregular component
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µ
β
γ
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=
=
=
=
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The	GetSsfStsm	funcAon	

313	

If	we	provide	the	input	of	what	components	we	wish	to	have	in	our	
model	this	funcAon	in		SsfPack		(in		Ox		or	in	S-Plus)		will	construct	our	
system	matrices	for	us.	
	
The	system	matrices	are	the	model	matrices	which	stack	the	state	
equaAon	atop	the	measurement	equaAon.			They	are	the	Phi,	the	Omega,	
and	the	Sigma	matrices.		
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GetSsfStsm	in	S-Plus	
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System	matrices	for	local	level	model	
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Local	level	model	with	stochasAc	regressors		
(Ame-varying	parameters)		

we	could	treat	the	parameters	as	random	walks		
(Zivot	and	Wang,	2005,	533)	

316	
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SsfPack	code	for	reading	the	
Norwegian	traffic	fataliAes	data	
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Ox	code	for	sexng	up	a	stochasAc	
local	level	model		
Commandeur	and	Koopman	code	snippet	
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Ox	code	for	Local	level	model	

319	R.	Yaffee	state	space	lecture	2009-Nov-26	



Code	snippet	
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Output	of	local	level	model	for	Norwegian	traffic	
fataliAes	

		(data	from	Commandeur	and	Koopman	(2007)		
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System	Matrices	
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IniAal	condiAons	
depend	on	prior	distribuAon	

323	

To	indicate	a	diffuse	distribuAon	and	or	a	noninformaAve	prior,	the	
variance	of	the	prior	is	flat	and	almost	infinite.				This	means	that	the	
precision	of	such	knowledge	is	the	inverse	or	reciprocal	of	the	
variance.				The	precision	->	0	as	the	variance->	infinity.				
	
Problems	of	esAmaAon	arise	when	you	approach	the	perilous	
precipice	(boundary)	of	the	parameter	space.			EsAmates	tend	to	break	
down	at	such	extremes.	
	
Therefore,	we	use	in	our	computers	approximaAons.		Infinity	is	
therefore	represented	by	a	very	large	number,	such	as		
107	.			We	suggest	such	a	condiAon	by	assigning	a	value	of	-1	to	a	
parameter	for	an	iniAal	condiAon.				If	parameters	are	mean-centered,	
the	iniAal	value	of	their	means	can	easily	be	zero.	
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Time-varying	parameters	

324	

Many	simple	models	can	be	defined	by	specifying	the	mPhi,	mOmega,	and	
mSigma	matrices.	
	
However,	someAmes	parameters	vary	over	Ame.		They	may	be	random	
coefficients.				
	
To	indicate	such	parameters,		we	use	J	matrices.			Instead	of	mPhi,	the	
matrix	would	be	called,	mJ_Phi.			This	would	indicate	the	presence	of	a	
non-constant		system	matrix	for		mPhi.	
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Graphical	output	of	Model	of	
Norwegian	traffic	fataliAes	
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Local	linear	Trend	Model	

326	
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Local	linear	Trend	model	
System	matrices	

327	
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Ox	Code	for	local	linear	trend	model	
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Ox	Output	
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Ox	graphical	output	for		
local	linear	trend	model	
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Defining	the	system	matrices	and		
specifying	the	model	

331	

	
It	can	be	done	without	reference	to	ARIMA	
models,	as	we	have	already	shown.	
	
We	will	now	provide	examples	of	how	these	
models	may	be	formulated	in	an	ARIMA	
framework	as	well.	
	
We	shall	give	examples	of	both,			with	Ox	and	S-
Plus.	
	
	 R.	Yaffee	state	space	lecture	2009-Nov-26	



Ox	code	specifying		
an	AR(1)	model	
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AR(1)	system	matrix	output	
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Local	Level	model	with	stochasAc	
regressors		with	AR(2)	errors	

334	

( )

*
*

*

*

* '

t t

t t

k

t t

T H
y Z

T
T

I

Z x

α η
α+ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=

1

0

0
0

1 0 L

R.	Yaffee	state	space	lecture	2009-Nov-26	



AR(2)	Ox	code	
Koopman,	Shephard,	and	Doornik	(2008,	16)		
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AR(2)	system	matrix	output	
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Ox	Code	specifying		
an	MA1	model	
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MA	1	system	matrix	output	
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MA(2)	system	matrix	output	
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MA2	system	matrix	output	
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An	ARMA(2,1)	model	

341	

Ox	code	from	Koopman,	Shephard,	and	Doornik		
(2008,	16)			
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ARMA(2,1)	model	output	
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	ARIMA(2,1,1)	model	specificaAon	
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Koopman,	Shephard,	and	Doornik(2008,	18)	.	
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System	matrices	for		
an	ARIMA(2,1,1)	model	
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Adding	data	containing		
exogenous	series		

	to	the	model	using	SsfPack	
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How	the	Kalman	filter	funcAons	

•  The	Kalman	filter	evaluates	moments	of	the	
state	vector	over	Ame.	

•  Filtering	is	a	one-step-ahead	forecast	of	the	
mean	and	variance	plus	a	regression	on	the	
innovaAon	to	provide	a	correcAon	at	one-lag	
of	this	process.		Hence,	there	is	iteraAve	
correcAon	over	Ame.	
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To	esAmate	the	mean	and	variance	of	
the	state	vector	

347	

The Kalman filter adds the data to the structure
specified by the system matrices and uses the data
to recursively computethe innovations that will be
used to correct the one - step - ahead expectation
of the state first and second moments : t
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Kalman filter  ALgorithm 

•  A recursive algorithm proceeding	1	step	at	a	$me.: 

348	
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Convergence	problems	

•  If	|F|=0,			or	when	there	is	not	enough	
computer	memory,		this	procedure	may	not	
converge.			

•  It	has	to	be	able	to	invert	F.			If	F	->	large,		the	
speed	will	degrade.	
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Kalman	filter	without	diffuse	iniAalizaAon	
Md->md->	Recursion	
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Data	matrix	and	Kalman	Filter	output	
at	t=10	
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ConvenAonal	Kalman	filter	output	
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Steady	state	is	
achieved	
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Kalman	filter		
with	diffuse	ini8aliza8on	
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Output	from	diffuse	iniAalizaAon	
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Graphical	output	from	diffuse	iniAalizaAon	
applied	to	nonstaAonary	data	
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Displaying the state vector 

356	

A	funcAon	called	mstate	will	generate	
the	state	vector	aler	
	
Aler	the	data	and	mpred	and	the	
system	matrices	are	combined	in		
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Kalman Smoother 

357	

For	signal	extracAon,		for	residual	analysis,	
and	auxiliary	residual	analysis,				
we	need	to		
1.  smooth	the	moments,			
2.  smooth	the	disturbances,		
3.  and	smooth	the	states.	
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Moment	Smoothing	
ibid,	40;		Durbin	and	Koopman,	2001,15-23	
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Disturbance	smoothing	
Koopman,	Shephard,	and	Doornik,	2008,	43	
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State	Smoothing	
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State	smoothing	output	
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Kalman	smoothing	with	diffuse	
iniAalizaAon	
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Output	of	Kalman	smoothing	with	
diffuse	inAalizaAon	
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Smoothing	with	diffuse	iniAalizaAon	

364	R.	Yaffee	state	space	lecture	2009-Nov-26	



SimulaAon	smoothing	with	MCMC	

365	

Koopman’s		code	snippet	:		
Ssfsimmc4.ox	
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Convergence	of	distribuAon	under	
simulaAon	
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SimulaAon	smoothing	output	
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IntervenAons	

368	

The	data	are	smoothed	with	backward	
recursions	condiAon	not	just	on	the	previous	
observaAon,	but	on	the	whole	dataset.		The	
result	is	a	smoother	signal.	Then	a	residual	
diagnosis	can	reveal	outliers	and	level	shils	
which	can	seriously	bias	esAmaAon	of	a	model.			
Unless	these	structural	breaks	are	modeled,	
their	effects	will	be	in	the	error	term.			
IntervenAon	dummy	variables		can	be	
constructed	to	model	these	outliers	or	level	
shils		to	remove	them	from	the	aggregate	error.	
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IdenAfiability	

•  According	to	Andrew	Harvey,	the	order	condiAon	is	
necessary	and	sufficient	for	idenAficaAon	of	a	
structural	Ame	series	model	(Harvey,	1989,209).	

•  Under	the	condiAon	of	normality	assumpAon,	
idenAfiability	depends	upon	the	nature	of	the	
covariance	matrix(ibid,206).			If	this	is	staAonary,	so	is	
the	autocovariance.			To	again	staAonarity,	It	may	be	
necessary	to	place	restricAons	on	the	structural	model.			

•  Harvey	notes	that	Hoga	(1983)	has	shown	that	an	
order	condiAon	is	both	necessary	and	sufficient	for	
idenAfiability	(Ibid).	
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IdenAfiability-contd.	
•  For	each	of	the	variances	of	the	innovaAons,	we	need	a	separate	

independent	equaAon	to	solve	for	them.			These	elements	
consAtute	the	main	diagonal	of	the	Ωt		system	matrix.	

•  Also,	each	of	the	polynomials	must	be	staAonary	and	of	order	pm.	
•  Each	of	the	parameters	of	Фt	and	of	θt	must	be	inverAble.	
•  Any	nonstaAonary	polynomial	must	have	no	common	factor.	
•  Each	error	must	sum	to	zero.	
•  The	errors	should	be	normally	distributed	and	independent	of	the	

others.	
•  If	the	model	had	an	ARIMA	configuraAon	of	ARIMA(p,d,q),		then	

p+d	>	q	+	1	would	be	sufficient	for	idenAficaAon.		For	example,	an	
ARMA(2,1)	is	idenAfied	if	both	autocorrelaAons	>	0.	

•  For	more	detail,	consult	Harvey	(1989,208).		
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DiagnosAc	tests	
•  DiagnosAc	tests	are	applied	to	idenAfy	the	
components	and	parameters	of	the	model.	

•  DiagnosAc	tests	are	performed	to	test	the	
independence,	normality,	heteroskedasAcity,	and	
serial	correlaAon	of	the	residuals.	

•  These	tests	are	applied	to	the	models	to	
demonstrate	that	the	assumpAons	are	not	
violated.	They	are	tests	of	the	validity	of	the	
model.	

•  These	tests	may	be	applied	to	filtered	or	
smoothed	moments	of	the	model.	
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Kalman	Smoothing	

372	

Smoothing	for	state	space	models	is	used	for	signal	extracAon	and	maximum	
likelihood	esAmaAon.					
	
It	is	used	for	missing	value	interpolaAon	(Ansley	and	Kohn,	1986),	cross-validaAon	
(Ansley	and	Kohn,	1987).	
	
Kitagawa	(1987)	dealt	with	smoothing	for	nonlinear	processes.	
	
	
Moment	smoothing	
	
SimulaAon	smoothing	
	
Disturbance	smoothing	
	
Spline	smoothing	
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MulAvariate	State	Space	Models	

373	

MulAple	Ame	series	analysis	
	
	
Common	trends		
										levels	
										slopes	
	
Common		trends	and	cycles	
	
cointegraAon	
	
Dynamic			factor			analysis	
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PracAcal	Modeling	issues		

374	

Assessment	problems	
	Non-constant	innovaAons	problem	
	Non-constant	variance	problems	

Prior	problems	
	Infinite	variance	problems	
	Convergence	to	zero	problems	

Gaussianity	problems:			CondiAonal	Gaussianity	
Data	irregulariAes	

	Different	sampling	frequencies	
	delayed	observaAons	
	Outlier	problems	
	Level	shil	problems	

Convergence	problems	
	MulA-modal	problems	
	Convergence	to	zero	problems	

Nonlinearity	
Time-varying	parameters	
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DiagnosAc	Checking	of	the	model	

375	

The	auxiliary	residuals	should	be	used	for	diagnosing	the	model.			They	
examine	the	state	residuals	as		by	dividing	them	by	the	square	root	of	
their	variance	to	provide	an	effecAve	t-test	of	the	significance	of	the	
signal.	
	
These	tests	are	performed	on	the	smoothed	residuals	and	dividing	
them	by	their	std	error.	
	
The	auxiliary	residuals	are	funcAons	of	the	innovaAons	and	therefore	
might	be	serially	correlated.			Check	to	be	sure	that	they	are	not	
correlated	with	the	measurement	error,	which	is	not	supposed	to	be	
serially	correlated.			If	there	is	a	cross-correlaAon	here,	it	may	bias	
esAmaAon	in	the	model	(Harvey	and	Koopman	,	2005,	77).	
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Examine	the	residuals	for	nonnormality	,	serial	correlaAon	and		
	
lack	of	independence,	homoskedasAcity,	and	excess	kurtosis	
	
Look	for	outliers	and	level	shils	that	could	render	increase	the		
	
aggregate	error	and	bias	the	significance	test	results			
	
downward.	
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