

An Introduction to State Space Models

Robert A. Yaffee, Ph.D. Silver School of Social Work New York University Short course Day 2 Norwegian University of Science and Technology Trondheim, Norway November 26, 2009

- Day 2: Early AM
 - Motivation
 - Definition of the classical state space form
 - Brief History
 - The Kalman Filter and how it works
 - Initial values
 - Prediction
 - Updating correction
 - Reiteration
 - Optimization: ML, QML, GLS
 - Smoothing and signal extraction
 - Forecasting
 - Classical assumptions
 - Local level model
 - Local linear trend model

- Use of dfactor in Stata
- Sargent and Sims, Geweke's dissertation
 - Andrew Harvey 1989 envisions this as part of State space models
 - Forni, Lippi, Hallin, and Richlin
 - Stock and Watson develop a coincident indicator
 - Kim and Nelson, 1999
 - Ben Bernanke (2003) looks for the driving forces of the economy from output of a structural VAR with factor augmented VAR.

- Day 2: Late PM
 - Seasonality and the Basic structural model
 - Cyclicity
 - Interventions
 - Exogenous series
 - autocorrelation
 - The general state space model

- Day 2: Early PM
 - SsfPack system file generation
 - The Kalman filter
 - Missing observations
 - The augmented Kalman filter
 - Nonstationary processes
 - The extended Kalman filter
 - Nonlinear processes
- Day 2: Late PM
 - Filtering and Forecasting
 - Smoothing
 - Diagnostics
 - Introduction to multivariate models
 - Common features
 - Cointegration
 - Adjusting the variance matrix structure

Acknowledgment

 I am very grateful to Andrew C. Harvey, Siem Jan Koopman, Neil Shephard, along with Eric Zivot, Jiahui Wang, and Ruey Tsay for their written contributions to this field. Ralph Snyder from Monash University was very helpful as well. This presentation follows their writings although I do not go into all of the detail they do owing to time and space constraints. Nevertheless, they have made great contributions to time series analysis for which many of us remain grateful. Not to be forgotten in this area are the works of Jim West and Jeff Harrison, along with Giovanni Petris.

SsfAbout()

SsfPack Extended version 3.00 (September 2008)(c) 1997-2008 Siem Jan Koopman --- www.ssfpack.com Please quote: Koopman, S.J., N. Shephard and J.A. Doornik (1999) Statistical algorithms for models in state space using SsfPack 2.2 Econometrics Journal, 1999, Volume 2, p.113-166. Further details: Koopman, S.J., N. Shephard and J.A. Doornik (2008) SsfPack 3.0: Statistical algorithms for models in state space London: Timberlake Consultants Ltd, 2008.

Why are state space models so important?

- State space models comprise a new paradigm in time series analysis and control.
- They can be used to any type of ARIMA analysis.
- ARIMA analysis is a subset of the state space paradigm.
- State space models can model nonstationary series, which ARIMA models cannot.
- State space models can handle missing values, which ARIMA models cannot.
- State space models with proper feedback systems can be self-correcting.
- Advanced state space models can handle nonlinear systems, which ARIMA models cannot.
- Advanced state space models can accommodate nonGaussian processes, which ARIMA models cannot.
- In short, state space models comprise a new paradigm in time series analysis and control.

Why is the Kalman Filter so Important?

- The Kalman filter is one of the major contributions to modern operations research.
- It is a crucial supplement to modern econometric methods.
- The Kalman filter is a vector system of difference equations explaining state dynamics (Athens, M. 1974, 2).

What is the state space model based on the Kalman filter?

- This system is comprised of **two basic equations**: the measurement equation and the state (transition) equation.
- The starting values for the system are important.
- Filtering entails the use of updating equations as well. These equations sequentially update the mean and variance by a weighted average, corrected by a factor analysis. As it updates the mean and the variance, the Kalman filter proceeds according to a Markov evolutionary process (a first-order autoregressive process) plus a regression on the innovation. This Kalman filter is the predictive basis of the forecasts generated by the system. In this step, the objective is to estimate the moments of the predictive step (Hyndman et al.,2008, 197). This is the predictive step.

What is a state space model based on the Kalman filter?

- The predictive step is followed by a corrective measurement step. A factor analysis of the unobserved components corrects for inaccurate measurement error conjoined with the transition error. The objective of this step is to find the moments of the response variable.
- This completes the cycle and reiteration takes place until all of the data are filtered.
- When all of the data are filtered, *the Kalman smoother* can be used for signal extraction to smooth and extract the signal as well. Once the model has been specified, fit, and optimized, and diagnosed as well behaved, we can then proceed to forecast with it and evaluate those forecasts.
- **Estimation** can be accomplished by maximum likelihood (BFGS), the EM algorithm, or MCMC. We shall explain all of these things in more satisfying detail soon.

Local level model

provides an introductory example

- In other words,
- Initial values of the mean and variance of the state vector are found.
- The model filter provides for an AR(1) evolution of a random walk plus noise. Filtering means recovering the state variable from the noise, given the previous information. It does this by an efficient one-step ahead forecast plus a regression on the error.
- The measurement model provides for the correction after the prediction step.
- Maximum likelihood estimation provides the means of minimizing the predictive error variance during the estimation of the parameters.
- The process reiterates until a steady-state solution is attained.

The Measurement (Observation) Equation

$$y_t = Z_t \alpha_t + \varepsilon_t \qquad \varepsilon_t \sim NID(0, \sigma_{\varepsilon}^2)$$

where

$$\begin{split} &Z_t = selection \ matrix \ of \ factor \ loadings \\ &\alpha_t = state \ vector \ (contains \ all \ elements \ needed \ to \ describe \\ & the \ current \ and \ past \ dynamic \ nature \ of \ itself \). \\ & \varepsilon_t = observation \ error \ (irregular \ component) \ matrix \\ & \varepsilon_t \sim NID(0, H_t) \\ & H_t = observation \ error \ variance \ matrix \end{split}$$

Aspects of the measurement model

- Z_t can be construed as a matrix of factor loadings from observed variables on an underlying factor.
- α_t can include lower order (r < k) levels, trends, seasonality, cycles, interventions, where r represents the number of these components to define the elements of the latent factor and k represents the number of observations. It contains the past and current states.
- ε_t can be thought of as measurement error.

The Transition equation

- The transition equation formulates the evolution of the state vector. The state vector α is unobserved; it is a latent variable or underlying factor.
- The transition equation formulates an AR(1) process plus a regression on the innovation.
- That is why this Markov process is sometimes called a Hidden Markov process. T is a transition matrix. ξ_t is an evolutionary innovation.

$$\alpha_{t+1} = T\alpha_t + \xi_t \qquad \xi_t : NID(\theta, \sigma_{\xi}^2)$$

A note on notation

- Many authors use S_t to refer to the state vector instead of α_t. Mark Watson used this at his NBER lectures . Ruey Tsay uses it. Mike West and Jeff Harrison use θ.
- We will use the Koopman syntax formulae to avoid confusion and to be consist.

There are other forms of state space models

- This configuration of the state space model is a multiple source of error model. Each equation has its own error term.
- There is also a single source of error model developed by Keith Ord, Rob Hyndman, Anne Koehler, and Ralph Snyder. They call their models innovations models, but are merely single source of error state space models.
- I show both models (in the form of a local level model) on the next page.

SSOE v. MSOE state space models

Multiple source of error:

transition eq.: $\alpha_{t+1} = T\alpha_t + \xi_t$ $\xi_t : NID(\theta, \sigma_{\xi}^2)$ measurement eq.: $y_t = Z\alpha_t + \varepsilon_t$ $\varepsilon_t : NID(\theta, \sigma_{\varepsilon}^2)$ $Cov \begin{pmatrix} Q \\ R \end{pmatrix} = \begin{pmatrix} Q & S \\ S' & R \end{pmatrix}$ $Q = \sigma_{\xi}^2, R = \sigma_{\varepsilon}^2$

Single source of error:

transition eq.:
$$\alpha_{t+1} = T\alpha_t + g\varepsilon_t$$
 ε_t : $NID(\theta, \sigma_{\varepsilon}^2)$
 $g = scalar \ factor$
measurement eq.: $y_t = Z\alpha_t + \varepsilon_t$ ε_t : $NID(\theta, \sigma_{\varepsilon}^2)$

Other state space models use different estimation algorithms

- The extended Kalman filter: This uses nonlinear functions in lieu of the system matrices.
- The unscented Kalman filter: This checks for higher order moments as well.
- Efficient Bayesian estimation: Uses an simple exponential smoother as a transition equation and a factor analysis as a measurement equation.
- Wavelet based estimation (which I won't cover here)
- The MCMC estimation: Bayesian simulation with Gibbs sampling, Metropolis-Hastings sampling.
- The particle filter: Uses importance sampling resampling for MCMC.

Historical development of DKF:

Other types of state space models use different algorithms to obtain initial values (c=covariance matrix of the state vector, d=that of the innovation)

- Schweppe (1965) developed the Kalman filter approach to evaluating the likelihood(DeJong, 1988,2).
- Rosenberg's (1973) showed that if C=0, the ml estimator of mu can be explicitly displayed and concentrated out of the likelihood(Ibid.)
- Schweppe (1973) recommends using the precision rather than the variance as the criterion.
- Harvey and Phillips(1979) propose initiating the Kalman filter with a very large covariance matrix.
- Ansley and Kohn (1985) show that the information filter is fragile and numerically inefficient.

Historical development of DKF

- DeJong's advocates the basis for the diffuse prior (1988) for nonstationary series with a method easy to evaluate with the Kalman filter by using the innovations and the covariance matrix of the innovations obtained from the fixed point smoothing algorithm (Ibid,166). Yet one has to assume that C=nonsingular.
- DeJong(1991) advocates use of the diffuse Kalman filter mentions using the Generalized inverse when inversion of C becomes difficult. He shows that the DKF can be collapsed to the regular KF after a few iterations using an augmented state vector. Shows the DKF can be used for Dsmoothing too.
- Koopmans's methods: employ splines and random walks.
- Other approaches: Extended Kalman filter: nonlinear processes by using nonlinear functions.
- MCMC approaches: Gibbs sampler and MH method.
- Importance sampling. Importance resampling.
- Particle filter: nonlinear and nonGaussian

Other forms of state space models may use different types of variable processing

- Centering: if we center we gain a df but lose our sense of location. We reduce probability of multicollinearity.
- Standardizing: loses scale as well as location but renders variables with different metrics comparable.
- Normalizing seasonal components: Should we or should we not? Why not just use s-1 dummy variables? Hyndman et al. recommend normalization with multiplicative models (
- Partial normalization

We focus on the Harvey MSOE and the later MCMC models

- MSOE model is the model used in Stamp, in SAS
- SSOE model is used in R
- MCMC is used in R.
- In order to delve into this matter in sufficient depth, given the time provided, we have to focus on one primary method.

Initial values

- The starting values may be taken as parameters of a prior distribution. A prior mean and variance are necessary to define a Gaussian distribution.
- The Kalman filter needs a prior mean and variance to begin the analysis..
- These values must be tractable for the system to function adequately. They must not be unrealistic. If they are unrealistic, the system may fail to converge upon a solution.
- When the initial situation is essentially unknown, we say that our knowledge of it is diffuse or vague.
 While Harvey and Koopman tend to use this approach, others may attempt to use a random seed.

Bayesian sequential updating

- A weighted average of the previous or prior values and the current data are used to obtain a posterior predictive estimation—that is, to obtain a one-step ahead forecast.
- This will be elaborated soon.

Locally weighted averaging

- The weights used are precisions. Precisions are inverses of variances. The less a person knows, the larger the variance by which his estimates of the prior state are divided (and thereby weighted). The less he knows, the lower the weight accorded his estimate. Hence, the larger the variance divided into his estimate to weight it.
- The more knowledge a person has, the less the variance in his estimates. When his variance is inverted to obtain the precision weight of his estimates, we observe that the greater the precision of his estimates, the smaller his variance. The smaller the variance and the greater the precision, the more weight is accorded to his estimates.
- The weights reflect the amount of ignorance or assurance about a condition when the averaging is performed in order to compute the new position.
- Weights in the Kalman filter are like weights in a locally weighted average within a lowess estimation. Such weighting is used in the computation of a local level or a local linear trend, etc.

Bayesian sequential updating

- According to Bayes' theorem, when the conditional likelihood, represented by the sample, is multiplied by the prior probability distribution (which is sometimes assumed to be known by the scientist familiar with the literature) yields a joint posterior probability distribution.
- From the posterior distribution, the moments can be computed.

The *weighted average of the mean* of the DGP is the formula for a simple exponential smoother

• We call the parameter of interest, theta, Θ $E(\hat{\theta} | Y) = \delta \mu_{prior} + (1 - \delta)Y$ a simple exponential smoother where controls the evoluntionary process ARIMA(0,1,1) $E(\hat{\theta} | Y) = estimate of the posterior mean, given the data$ Y = sample data

 μ_{prior} $0 \le |\delta| \le 1$

 $\delta = \frac{\sigma^2}{\sigma^2 + \tau^2}$

an intraclass correlation coefficient

where

 τ^2 = variance of prior distribution σ^2 = variance of sample distribution_{Nov-26} This provides the basis upon which Hyndman, Ord, Koehler, and Snyder develop their approach.

 They attempt to base Kalman smoothing on exponential smoothing. They treat the Kalman filter as though it is a more sophisticated form of the exponential smoother.

Bayesian shrinkage

Because
$$\delta = \frac{\sigma^2}{\sigma^2 + \tau^2}$$

where

 τ^2 = variance of prior distribution σ^2 = variance of sample distribution $\delta \propto$ relative precision of the sample and the prior precision is the reciprocal of the variance, whereas σ^2 = measure of scale, the baseline against which the precision is compared.

Bayesian Shrinkage-ctd.

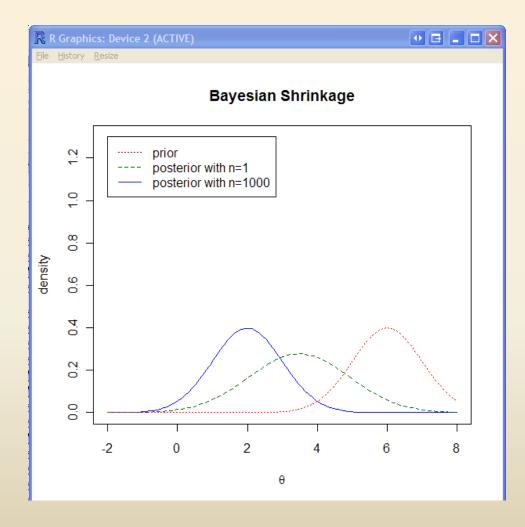
- As $\tau \uparrow$ wrt σ , the weight given the prior distributional assumption declines and the sample is given more weight.
- Conversely, as σ^{\uparrow} wrt τ , the weight given the prior distributional assumption increases and the sample is given less weight.
- In general, there is some shrinkage of the posterior sample mean toward the prior.
- δ = Bayesian shrinkage factor, measuring the proportion by which the sample mean is shrunk back toward the prior mean.

bias and variance s.t. the MSE is minimized.

If we assume Gaussianity

(Carlin and Lewis, 2009, 3rd edition, 17ff):

We know that $f(x|\theta) = N(y|\theta, \sigma^2)$, so we can take our hyperparameters (the mean μ) and (variance τ^2) of our prior and plug them into the formula for the weighted average and obtain:


The updating would be performed with a simple weighted average of our sample with our prior distributional mean and variance assumptions:

$$p(\theta \mid y) = N\left(\theta \mid \frac{\left(\frac{\sigma^2}{n}\right)\mu + \tau^2 y}{\left(\frac{\sigma^2}{n}\right) + \tau^2}, \frac{\left(\frac{\sigma^2}{n}\right)\tau^2}{\left(\frac{\sigma^2}{n}\right) + \tau^2}\right)$$

which simply reduces to:

 $p(\theta \mid y) = N\left(\theta \mid \frac{\sigma^2 \mu + \tau^2 y}{\sigma^2 + \tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}\right)$

Shrinkage in accordance with relative ample size (Carlin and Lewis, 2009, 17-18)

Classical state space assumptions

- Gaussianity
- Independence of observations in the residual distributions
- Homoskedasticity
- Stationarity
- Serially uncorrelated disturbances of components
- System matrices were time-invariant
- Large sample for asymptotic consistent estimation
- With minimum mean square estimator
- Information available from past observations
- Reasonable initial values
- Performs best linear prediction

What are the implications of these assumptions on the working of the Kalman filter?

- Why is Gaussianity presumed? Normal distributions of the innovations may be necessary for the proper operation of the maximum likelihood estimation. The formula for such estimation comes from the knowledge of the normal distribution parameters. They permit the construction of conventional prediction intervals.
- Independence of observations in the distributions precludes the estimation of one equation from improperly influencing that of the other equation.
- Homoskedasticity may be necessary to define the variance of the processes and confidence intervals around the estimate of the mean. However, GLS can be applied to handle possible deviations from homoskedasticity.

Implications of the assumptions for model estimation and fitting

 Stationarity: Before the development of the diffuse prior or the information filter, this used to be necessary in order to keep the eigenvalues from residing on the unit circle where variances become infinite and distributions become undefined, as some matrices fail to invert. If variances approach infinity, confidence interval construction becomes impossible. Models could then become unstable and forecasting can become impossible.

Assumption implications

- Serially uncorrelated errors of the components prevent bias in the significance testing creeping in from correlated components.
- Matrices were time-invariant: this permitted arrival at a steady-state where moment estimates could be generated.

State Space extensions

- Use of the information filter instead of the Kalman filter.
- Enhancement of basic concepts: from 2 moments to higher moments.
- Incorporation of the regression effects
- Incorporation of time-varying parameters
- Augmentation of the filter to overcome nonstationarity
- Use of QML and MCMC to overcome the requirement of Gaussianity
- Development of extended Kalman filter to handle nonlinearity

Smoothing Harvey, A.C. and Priotti, T. (2005,10)

- Disturbance smoothing provides estimation of errors, particularly those in the measurement model.
- The main purpose of this smoothing is signal extraction.
- Standardized smoothed estimates of those errors are called auxiliary residuals

Smoothing algorithms

- Fixed interval smoothing
- Fixed point smoothing
- Smoothing splines and nonparametric regression
 - Koopman quotes Green and Silver who say that smoothing splines are equivalent to signal extraction(Harvey and Priotti, 2005, 11).

Some Historical Background

- The development of a new paradigm in time series has taken place since the early 1970s.
- This approach can handle nonstationary series and missing values, unlike the classical Box Jenkins model developed in the 1970s. The new paradigm is called a state space model.
- Rosenberg (1973) and DeJong(1988,1991) had developed a procedure for diffuse initialization by augmenting the observed vector.
- State Space Models were developed by Rudolf Kalman in 1960 as well as by Rudolf Kalman and Bucy in 1961.

Historical background continued

- Andrew C. Harvey (1983) introduced them to econometrics.
- They have since evolved into different forms. There is the multiple source of error model that was developed.
- The method by which estimation could be done at first seemed to depend on stationary series.
- Since then DeJong and others have developed the Augmented Kalman filter that can handle nonstationary series.
- Recently a single source of error model was formulated by Keith Ord, Ralph Snyder, Rob Hyndman and Ann Koehler out of the exponential smoothing literature.
- More recent developments (Kitagawa, 1996) have included estimation with importance sampling and MCMC simulation. We will explore this type of model tomorrow.

The state space models are based on a nonstationary random walk

- Because this integrated system comprises the basis of the dynamic framework, this system is theoretically capable of handling an integrated or nonstationary system.
- This represents an important shift in the time series paradigm from an ARIMA model that can only analyze stationary series to a state space model that can incorporate nonstationary in its dynamics.

Dynamic Factor Analysis

- If the state vector is considered a dynamic factor, then this approach can incorporate dynamic factors that have been interpreted by Stock and Watson (1991) has coincident economic indictors.
- Whereas early attempts to deal with dynamic factor models required stationary processes, the use of the state space form to model them permits "empirical model building" and nonstationary evolution (Reinsel quoting Aoki, p. 227).

Dynamic factor analysis

 A case of a single common factor configured as part of a state space analysis

$$f_{t+1} = T_t f_t + \eta_t$$

$$y_{t+1} = Z_t f_t + \mathcal{E}_t$$

where

$$f_t = \alpha_t$$

Local level model

 This model is basically a random walk plus noise model

measurement model : $y_t = \mu_t + \varepsilon_t$ $\varepsilon_t \sim NID(0, \sigma_{\varepsilon}^2)$ transition model : $\mu_{t+1} = \mu_t + \eta_t$ $\eta_t \sim NID(0, \sigma_{\eta}^2)$

Epsilon and eta are two white noise series that are not correlated with one another.

Tsay maintains that the initial values of eta and epsilon are known or given. They are not correlated with either of the two error terms.

Although y_t is observed, mu is not. It is a latent or hidden construct, sometimes referred to as a factor. Epsilon is observable but uncorrelated noise.

A dynamic local level model

- μ is a latent variable or factor that is not directly observable. Its condition at time t is called the state. η is the unobserved error of this random latent variable. We assume it to be normally and independently distributed. For this reason, this process is sometimes called the state or transition equation. This μ is called a trend even though it has no slope.
- The measurement equation related the observed indicator, y_t, to it. The noise gives rise to random variation in the indicator and is presumed to be normally distributed.

The local level model and the Kalman filter

Ruey Tsay (2005) Analysis of Financial Time Series 2nd ed., chapter 11.

- We need to know the conditional mean and the conditional variance of a process that is normally distributed over time.
- What we mean is that if our process is Gaussian or normally distributed, the mean and the variance are sufficient to define the normal distribution: hence, they are called sufficient statistics.

Conditional probability and its implications

- The conditional mean is the $\mu_{t|j}$, conditional on the values of y_t in information set Ψ_j from times $_{t-1}$ to $_{t0}$.
- The conditional variance is $\Sigma_{t|j} = Var(\mu_t | \Psi_j)$.
- $y_{t|j}$ = the conditional mean of y_t , given Ψ_j .
- Suppose the $v_t = y_t y_{t|t-1}$ and $V_t = Var(v_t | \Psi_{t-1})$.
- These are respectively, the one-step-ahead forecast error and the forecast error variance, given the information set.
- The forecast error is independent each time it occurs and the conditional variance is also the unconditional variance so $Var(v_t) = Var(v_t | \Psi_j)$

How is the observed variable related to the latent state?

• Tsay (2005, 494) explains the link between the latent and the observed variable in the local level model:

$$y_{t|t-1} = E(y_t | \boldsymbol{\psi}_j) = E(\boldsymbol{\mu}_t + \boldsymbol{e}_t | \boldsymbol{\psi}_j) = E(\boldsymbol{\mu}_t | \boldsymbol{\psi}_{t-1}) = \boldsymbol{\mu}_t$$

Kalman filtering

• recursions for the principle steps of the Kalman filter (Lutkepohl, H. 2005, 627):

- Initialization
- Prediction
- Correction or revision
- Reiteration to a steady state
- Forecasting

Initialization step

- In this case starting values have to be provided for both the mean of the state vector and its variance.
- If little is known about the prior distribution or its mean, the mean is customarily set to zero and a diffuse prior is assumed. In order to designate a parameter as diffuse, most programs (particularly, dlm in R, SsfPack in Ox, SsfPack in S-Plus use a -1) in the computer code to designate the parameter as having a diffuse prior distribution.
- There a multiple algorithms for the diffuse prior.

Kalman Filtering

We begin our introduction with a local level model as an example.

When the local level is forecast then the difference between the forecast and the actual can be observed and the forecast error computed:

 $v_t = y_t - y_{t|t-1} = y_t - \mu_{t|t-1}$

from the forecast error, v_t , the forecast error variance, V_t , can be computed. $V_t = Var(y_t - \mu_{t|t-1} | \psi_{t-1}) = Var(\mu_t + e_t - \mu_{t|t-1} | \psi_{t-1})$ $= Var(\mu_t - \mu_{t|t-1} | \psi_{t-1}) + Var(e_t | \psi_{t-1}) = \sum_{t|t-1} + \sigma_e^2$

The Prediction step

 Predicting (one-step-ahead) the mean and the variance of the state vector. These are standard formula for obtaining moments.

 $\begin{aligned} a_{t+1} &= E(\alpha_{t+1} \mid Y_t) = T_t a_t \text{ conditional mean of state vector } \alpha_{t+1} \\ P_{t+1} &= \operatorname{cov}(\alpha_{t+1} \mid Y_t) = \text{ conditional variance of state vector} \\ &= \operatorname{risk} or \text{ peril associated with it.} \end{aligned}$

$$a_{t+1} = T_t a_{t|t} + R_t \eta_t \qquad \eta_t \sim (\theta, Q_t)$$

$$P_{t+1} = T_t P_{t|t} T_t ' + R_t Q R_t '$$
where
$$T_t = transition \ matrix$$

 R_t = the selection matrix of η_t Q_t = a diagonal matrix of variances of the component(s)

Revision or Correction step

Using the measurement equation

From
$$y_t = Z\alpha_t + \varepsilon_t$$
 $\varepsilon_t \sim NID(0, H_t)$
 $v_t = y_t - E[Z_t a_t | Y_t + \varepsilon_t] = y_t - Z \alpha_t$ with $v_t = innovation$
we can obtain its variance, F :
 $F_t = var(v_t)$
If $M = cov(\alpha_t v_t)$, then $K = M_t / F_t$
 $\alpha_{t+1} = T\alpha_t + Kv_t$
 $P_{t+1} = P_t - M_t F_t^{-1} M_t$

corollary

• Durbin and Koopman (2001,67) show:

Because
$$M_t = Cov(\alpha_t v_t)$$

 $= E(\alpha_t(Z_t\alpha_t + \varepsilon_t)')$
 $= P_t Z'_t$
and because $F_t = var(v_t) = E[(Z_t\alpha_t + \varepsilon_t)(Z_t\alpha_t + \varepsilon_t)']$
 $= Z_t P_t Z_t '+ H_t$
 $K = T_t M_t F_t^{-1} = T_t P_t Z'_t F_t^{-1}$.
From the page before last, we obtained :
 $P_{t+1} = P_t - M_t F_t^{-1} M_t = P_t - P_t Z'_t F_t^{-1} Z_t P_t$

The correction (revision) step contd.

- It is assumed that the prediction errors are not only not serially correlated, they are not correlated with the state either.
- The error multiplied by the Kalman gain corrects the mean and variance of the state vector from the prediction variance to obtain the proper estimate of the state variance (Durbin and Koopman (2001, 66-67); Hyndman et al. (2009,189); Lutekepohl, 2005, 627).

The forecasting step

- Forecasting is merely an extension of the filtering. It is done after the optimum model has been attained and diagnosed as acceptable.
- We will delve into different methods of forecasting later.

What are the system matrices?

Koopman, Shephard, and Doornik (2008, 9)

$$\begin{pmatrix} \boldsymbol{\alpha}_{t+1} \\ \boldsymbol{y}_t \\ m+N \times \boldsymbol{I} \end{pmatrix} = \begin{pmatrix} \boldsymbol{d}_t \\ \boldsymbol{c}_t \\ m+N \times \boldsymbol{I} \end{pmatrix} + \begin{pmatrix} \boldsymbol{T}_t \\ \boldsymbol{Z}_t \\ m+N \times \boldsymbol{m} \end{pmatrix} \boldsymbol{\alpha}_t + \begin{pmatrix} \boldsymbol{H}_t \\ \boldsymbol{G}_t \\ m+N \times \boldsymbol{r} \end{pmatrix} \boldsymbol{\varepsilon}_t$$

m = dimension of the transition equationN = dimension of the measurement model

$$\begin{pmatrix} \alpha_{t+1} \\ y_t \end{pmatrix} = state \ vector \qquad \delta = \begin{pmatrix} d_t \\ c_t \\ (m+N) \ge 1 \end{pmatrix} = constant \ vector$$

$$\Phi_{t} = \begin{pmatrix} T_{t} \\ Z_{t} \end{pmatrix}_{(m+N)x m} = transition \ matrix$$
$$u_{t} = \begin{pmatrix} H_{t} \\ G_{t} \\ (m+N)xr \end{pmatrix} \varepsilon_{t} \sim NID(\theta, \Omega_{t}) \qquad \Omega_{t} = \begin{pmatrix} HH' & HG' \\ GH' & HH' \\ (m+N)x(m+N) \end{pmatrix}$$

where n = number of observations $r = \dim ension \ of \ the \ disturbance \ vector$ R. Yaffee state space lecture 2009-Nov-26

We can define, constrain, or limit parameters in these matrices

Most matrices start with an m before their name. This is a notational convention of SsfPack.

We can decide whether these matrices will be time-varying or constant. We index these Phi, Omega, and sigma matrices by J. All elements within are = -1 except those that vary with time.

We can define whether these elements are known or unknown, to be initialized as diffuse or not.

We can insert - 1 to indicate that the element will receive diffuse initialization or not.

Input to Stsm matrix

<u>Ibid,</u> 24

mStsm				
Cmp	Col 1	Col 2	Col 3	Col 4
Level	σ_{η}	0	0	0
Slope	$\sigma_{_{\zeta}}$	0	0	0
Trend	$\sigma_{_{\zeta}}$	т	0	0
Seas _dummy	$\sigma_{_{\!$	S	0	0
Cycle0	$\sigma_{_{\!arpsilon\!$	λ_{c}	ρ	0
:	М	М	М	М
Cycle9	$\sigma_{\!\scriptscriptstyle \psi}$	λ_c	ho	0
BWCYC	$\sigma_{\!\scriptscriptstyle \psi}$	λ_{c}	ρ	т
Irregular	$\sigma_{_{\xi}}$	0	0	0

The local level model

and its components

 $\mu_{t+1} = \mu_t + \eta_t \qquad \eta_t \sim NID(\theta, \sigma_\eta^2)$ $y_t = \mu_t + \varepsilon_t \qquad \varepsilon_t \sim NID(\theta, \sigma_\varepsilon^2)$ where

 $\mu_{t} = unobserved \ local \ level$ $y_{t} = observed \ response$ $\eta_{t} = error \ of \ evolution \ or \ transition$ $\varepsilon_{t} = the \ irregular \ component$ (error of measurement)

Formulating the state space local level model with SsfPack

The most elementary models only require specification of the mPhi and mOmega .

```
#include <oxstd.h>
#include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>
   Local level Model
11
main()
£
   decl mPhi, mSigma, mOmega;
   GetSsfStsm
   (<CMP IRREG, 1.0, 0, 0;
   CMP LEVEL, .5, 0, 0, 0 >,
   &mPhi, &mOmega, &mSigma);
   format ("%#6.2g");
   println("Local Level Model ");
   println("
                                          ");
   print("Phi = ",mPhi, " Omega = ",mOmega, " Sigma = ",mSigma);
```

Local Level configuration of system matrices in Ox

----- Ox at 21:20:48 on 09-Nov-2009 -----

Dx Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009 Local Level Model

Phi =
 1.0
 1.0
 0.00
Omega =
 0.25 0.00
 0.00 1.0
Sigma =
 -1.0
 0.00
------ Ox at 21:25:01 on 09-Nov-2009 ------

Is the level fixed or random?

If the level is fixed, it has no error term. If a mathematical formula determines the level without measurement error, this might be possible.

If the level is fixed, there will be no variation in the error term. In that case, the variation of the error (σ_{η}^2 located in the Ω matrix) term for the level can be set to zero.

This condition is called that of a smooth trend.

In any case, this is a very flexible model.

Component Loading into State Vector

ay have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and ther

 Koopman et al. (2006, p.144) show how components load into the State vector for a model with a local level, trend, and quarterly seasonal component (3 dummy variables):

$$y_t = (10100)\alpha_t + (100)\varepsilon_t$$

where

$$\alpha_{t} = \begin{pmatrix} u_{t} \\ \beta_{t} \\ \gamma_{1,t} \\ \gamma_{2,t} \\ \gamma_{3,t} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \alpha_{t-1} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \varepsilon_{t}$$
$$\varepsilon_{t} = \begin{pmatrix} \eta_{t} \\ \zeta_{t} \\ \omega_{t} \end{pmatrix}$$

Case 3: Local Level Model Measurement Equation

 $y_t = \mu_t + \mathcal{E}_t$ where $y_t = \ln(MNAtotal)$ $\mu_t = level for t = 1, ..., n$ $\mathcal{E}_{t} = error \ or \ disturbance$ if $\mu_t = \alpha_t$, where $\alpha_t = random$ walk where all random variables are normally distributed and \mathcal{E}_{t} has constant variance.

Case 2: Local Level Model + Interventions Measurement Equation

 $y_t = \mu_t + \sum_{i=1}^{\kappa} \sum_{\tau=0}^{q} \Delta_{it} I_{t-\tau} + \mathcal{E}_t$ where $y_t = \ln(MNAtotal)$ $\mu_t = trend$ for t = 1, ..., n $I_{t-\tau} = Intervention (outlier, level shift, slope shift)$ $\tau = time lag$ $\mathcal{E}_{t} = error \ or \ disturbance$ if $\mu_t = \alpha_t$ where $\alpha_t = random$ walk where all random variables are normally distributed and ε_t has constant variance.

Case 1: Local Level Model + time varying parameters + interventions

$$y_{t} = \mu_{t} + \sum_{i=1}^{k} \sum_{\tau=0}^{q} \Delta_{it} x_{i,t-\tau} + \sum_{j=1}^{h} \lambda_{j} I_{j} + \varepsilon_{t}$$
where $y_{t} = \ln(MNAtotal)$

$$\mu_{t} = \mu_{t-1} + \beta_{t-1} + \eta_{t} = trend \text{ for } t = 1,...,n$$

$$\beta_{t} = \beta_{t-1} + \zeta_{t} = slope$$

$$\sum_{k=1}^{k} \sum_{j=1}^{q} \Delta_{it} x_{i,t-\tau} = time \text{ varying parameter estimates}$$

 $\sum_{j=1}^{h} \lambda_j I_j = Interventions(level shifts, slope shifts, outliers)$

 ε_t = error or disturbance

i=1 τ =0

Stacked Matrix Formulation

 Local level model (random walk plus noise) (and Koopman (2004, 287); Zivot and Wang(2005, 521).

> If $\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$, $\eta_t = iid \ N(0, \sigma_{\eta_t}^2)$ transition equation $y_t = Z_t \alpha_t + \varepsilon_t$, $\varepsilon_t = iid \ N(0, \sigma_{\varepsilon_t}^2)$ measurement equation,

then

$$\begin{pmatrix} \boldsymbol{\alpha}_{t+1} \\ \boldsymbol{y}_t \end{pmatrix} = \begin{pmatrix} T_t \\ Z_t \end{pmatrix} (\boldsymbol{\alpha}_t) + \begin{pmatrix} R_t \boldsymbol{\eta}_t \\ \boldsymbol{\varepsilon}_t \end{pmatrix}$$

where

 $y_{t} = \mu_{t} + \varepsilon_{t}, \quad \varepsilon_{t} = iid \ N(0, \sigma_{\varepsilon_{t}}^{2})$ $\alpha_{1} \sim N(\alpha_{1}, P_{1})$ $NB : In \ a \ local \ level \ Model : T_{t} = I, \ so$ $\alpha_{t+1} = \alpha_{t} + R_{t}\eta_{t}$

The Kalman filter

The Kalman filter is the process by which the forecasting or filtering is performed.

It takes the starting values and applies its AR(1) filter to predict the next state of the latent factor (the condition of that factor at the next time period).

It corrects its prediction a measurement of that state as soon as the data become available.

The combining of the estimation with the data is performed by a Bayesian or sequential updating that is based on a weighted averaging.

It employs sequential updating of its estimates of the future state with a factor analysis upon the latent variable it encounters.

This updating process prevents the process from going too far awry.

The Kalman filtering process

Initial state: for the mean of the state α_0 and its variance P_0 Updating process:

for the mean: $\hat{\alpha}_{t+1|t} = \hat{\alpha}_{t||t-1} + B_t X_{t|t-1} + Cov(\alpha_t \varepsilon_t)(Var(\varepsilon_t)^{-1})$ $\hat{\alpha}_{t+1|t} = \hat{\alpha}_{t||t-1} + B_t X_{t|t-1} + \kappa_t \varepsilon_t$ where $\kappa_t = Kalman \ gain$ $X_{t|t-1} = exogenous \ control \ series$ for the variance estimator of $\alpha_{t+1|Y}$: $\hat{P}_{t+1||t} = T_t P_{t|t-1} T_t' + RQR_t'$ Estimation is performed by a mean - square error minimization process (Reinsel, 2008, 229)

Kalman filtering process

$$P_{t+h|t} = E\left[(\alpha_{t+h} - \hat{\alpha}_{t+h|t})(\alpha_{t+h} - \hat{\alpha}_{t+h|t})'\right]$$

The predictive error variance is minimized
in the process of filtering.

Andrew Harvey (1989,106)

presents the Prediction Equations

- Given P_t and α_t ,
- α_t is optimally estimated as
- $\alpha_{t|t-1} = c_t + T_t \alpha_{t-1}$

where

 T_t = matrix of Markovian transition coefficients c_t = some constant

The Error Covariance Matrix P_{t|t-1} <u>*Ibid.*</u>

 $P_{t|t-1} = T_t P_{t-1} T_t' + R_t Q_t R_t'$ for t = 1,...,Twhich is an asymptotic variance estimator is amenable to an eigenvalue decomposition

These prediction equations have updating equations

if centering renders c_t=0

The innovation $\varepsilon_t = y_t - Z\hat{\alpha}_t$ $\alpha_{t+1} = T_t \alpha_t + \varepsilon_t$ $\alpha_1 \sim N(\alpha_1, P_1)$

 $\boldsymbol{\varepsilon}_t \sim N(\boldsymbol{\theta}, \boldsymbol{H}_t)$ $\boldsymbol{\eta}_t \sim N(\boldsymbol{\theta}, \boldsymbol{Q}_t)$ Kalman Prediction and Updating Equations

$$\hat{\alpha}_{t+1} = T \hat{\alpha}_t + \kappa_t \varepsilon_t = \hat{\alpha}_{t|} + \kappa_t (Y - Z \alpha_t - d_t)$$
 prediction eqs.

where

 $\kappa = Kalman \text{ gain } \&$ $d_t = constant \text{ in measurement model}$ $Because \ \kappa_t = P_{t|t-1}Z_t' \left[Z_t P_{t|t-1}Z_t' + H_t \right]^{-1}$ and

$$P_{t} = P_{t|t-1} - P_{t|t-1} Z_{t}' F_{t}^{-1} Z_{t} P_{t|t-1}$$

where

$$\begin{split} F_{t} &= Z_{t}P_{t|t-1}Z_{t}^{'} + H_{t} \qquad P_{t} + \sigma_{\varepsilon}^{2} \quad and \quad \kappa_{t} = P_{t} / F_{t} \\ s.t. \kappa_{t} &= P_{t} / (P_{t} + \sigma_{\varepsilon}^{2}) \quad (an \ ICC) \\ &= T_{t}P_{t|t-1}Z_{t}^{'}(Var(v_{t}))^{-1} \quad where \ \varepsilon_{t} = \upsilon_{t} \\ &= (T_{t}P_{t}Z_{t}^{'})F^{-1} \quad for \ t = 1,...,T \end{split}$$

The Kalman filter can be expressed in terms of recursive equations

In the Correction step:

 $\alpha_{t+1|t} = (T_{t+1} - K_t Z_t) \alpha_{t|t-1} + K_t y_t + (c_t - K_t d_t)$ where $K_t = Kalman$ gain matrix recall that in the measurement equation $y = d_t + Z\alpha_t + \varepsilon_t$ with $d_t = mean$ vector and that we are subtracting the error $K_t \varepsilon_t$ in updating of the state vector. Hence, $\alpha_{t+1|t}$ can be tracked back to α_t

By substituting

$$P_{t} = P_{t|t-1} - P_{t|t-1}Z_{t}'F_{t}^{-1}Z_{t}P_{t|t-1}$$
for the middle term in the first group
on the right - hand side of

$$P_{t|t-1} = T_{t}P_{t-1}T_{t}' + R_{t}Q_{t}R_{t}' \qquad \text{for } t = 1,...,T$$
we obtain

the Ricatti equation:

$$P_{t+1|t} = T_{t+1} (P_{t|t-1} - P_{t|t-1} Z_{t}' F_{t}^{-1} Z_{t} P_{t|t-1}) T_{t+1}' + R_{t+1} Q_{t+1} R_{t+1}'$$

were

$$F_{t} = Z_{t} P_{t|t-1} Z_{t}' + H_{t}$$

R. Yaffee state space lecture 2009-Nov-26

Stability of the system depends on the existence of a steady-state solution to the Ricatti equation

Andrew C. Harvey writes :

"The steady-state filter is said to be stable if the roots of T are less than one in absolute value. The Kalman filter has a steady-state solution if there exists a time-invariant error covariance matrix which satisfies the Ricatti equation If such a solution exists, we can get

$$P_{t+1|t} = P_{t|t-1} = P$$

Harvey, A.C. (1989), 118.

An algebraic Ricatti equation formulates the steady-state solution

If such a solution exists, $P_{t+I|t} = \overline{P}$, so the transition and gain matrices become $\overline{T} = T - \overline{K}Z$ and $\overline{K} = T\overline{P}Z'(Z\overline{P}Z' + H)^{-1}$ and the Ricatti equation

reduces to an algebraic form :

 $\overline{P} - T\overline{P}T' + T\overline{P}Z'(Z\overline{P}Z' + H)^{-1}Z\overline{P}T' - RQR' = \theta$

In this case $\overline{P} = positive semi - definite$.

If there is a steady state solution

the matrix of innovations $F_t = \Sigma = ZPZ' + H$ $\lim_{lim\to\infty}$

With steady-state convergence recursive filtering generates v(t), F^(-1) and kappa

The General State Space Model

 $\alpha_{t+1} = T_t \alpha_t + R\eta_t \quad \eta_t^2 \sim NID(\boldsymbol{\theta}, Q_t)$ $y_t = Z_t \alpha_t + \varepsilon_t \quad \varepsilon_t \sim NID(\boldsymbol{\theta}, H_t)$

where

$$\alpha_{t} = \begin{pmatrix} \mu_{t} \\ \beta_{t} \\ \gamma_{t} \\ \psi_{t} \\ \omega_{t} \\ v_{t} \end{pmatrix}, \ \Phi_{t} = \begin{pmatrix} T_{t} \\ Z_{t} \end{pmatrix}, \Omega_{t} = \begin{pmatrix} R_{t}Q_{t}R_{t}^{'} & \theta \\ \theta & H_{t} \end{pmatrix} = \begin{pmatrix} \sigma_{\eta}^{2} & \theta \\ \theta & \sigma_{\varepsilon}^{2} \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \alpha_{t} \\ P_{t} \end{pmatrix} \text{ where } \mu_{t} = \text{local level}, \ \beta_{t} = \text{local slope},$$

$$\gamma_{t} = \text{seasonality} \qquad \varepsilon_{t} = \text{vector of measurement errors}$$

$$\psi_{t} = \text{cyclicity} \qquad R_{t} = \text{selection matrix}$$

$$v_{t} = \text{regression effects} \quad Q_{t} = \text{diagonal matrix of evolution variances}$$

$$\omega_{t} = \text{intervention effects (outliers, level shifts)}$$

$$P_{t} = \text{initial state variance} \quad H_{t} = \text{diagonal matrix of measurement errors}$$

$$\alpha_{t} = \text{initial state mean} \qquad \alpha_{t} = \text{state vector}$$

$$Z_{t} = \text{matrix of factor loadings } \beta_{t} = \text{slope component of trend}$$

$$T_{t} = \text{transition matrix}$$

The General State Space Model

Measurement model

 $y_{t} = \mu_{t} + \beta_{t} + \gamma_{t} + \psi_{t} + \omega_{t} + v_{t} + \varepsilon_{t}$ where

 $\mu_t = local \, level + \eta_t \, (level \, error)$

 $\beta_t = local \ slope + \tau_t(local \ slope \ error)$

 $\gamma_t = seasonal \ component + \lambda_t \omega_t(seasonal \ error)$

 $\boldsymbol{\psi}_t = cyclical \ component$

 ω_t = intervention component

 v_t = regression effects component + ζ_t (reg effect error)

 \mathcal{E}_t = measurement error

For a multivariate state space model We know that for a steady – state solution in a state – space model P = TPT' + RQR'

In a multivariate model P - TPT' = RQR' $P(I - T \otimes T') = RQR'$ $vec(P) = (I - T \otimes T')^{-1} RQR'$

Initial conditions and convergence

- 1. For time invariant models
 - Starting values for the mean and variance-covariance matrix of the unconditional distribution of the state vector must be provided.
 - 2. The transition equation provides the mean

$$\alpha_{t} = c_{t} + T\alpha_{t-1} + R\eta_{t} \quad \text{var}(\eta) = Q$$

$$c_{t} = \alpha_{t} - T\alpha_{t-1} = (1 - T)\alpha_{t}$$

$$\alpha_{t} = (1 - T)^{-1}c_{t} \text{ is the mean}$$
and $P = \text{the variance from } P = TPT' + RQR$

Condition of nonstationarity

T must remain nonsingular for $P_{\theta}^{-1} = \theta$

The state vector remains stationary in the stochastic process if $\lambda(T) < 1$ and c_t remains constant.

P=TPT' +RQR'.

If the variance (K)= σ_k^2 then P= σ_k^2 /(1- ρ^2)

Condition of nonstationarity

If the transition equation is nonstationary, the unconditional distribution is undefined (Harvey, op. cit, 120).

 P_0 prior variance $\rightarrow \infty$ while the precision drops to zero. Something cannot be divided by a precision of zero and remain mathematically defined.

 $P_0 = \kappa I$ where k=a nonnegative scalar, with a $K \rightarrow \infty$

diffuse prior obtained

This means that the initial distribution of the state vector alpha sub zero has a non-informative or diffuse prior. With kappa = infinity, we have reached the limit. We don't need it to be that large. 10^7 or 10^6 can approximate infinity and remain algorithmically tractable.

Information filter

When the variance of P_0 is infinite, the information filter may provide a more stable algorithm than the Kalman filter to apply (Harvey, 120). Hence, the Precision P_0^{-1} =zero. The inversion of F is not required by the information filter. When the dimensions of the state vector are larger than the dimension, m, of the state, the avoidance of inverting a large matrix like F could render the estimation much more efficient.

This method involves triangular structure of the stochastic equations in the covariance matrix, which have a limiting form for infinite variances. This permits the use of this filter for stationary as well as nonstationary series without modification (Hyndman et al., 2009, 189).

The information filter is deployed in Stamp during recursive filtering.

Partitioning the state vector into nonstationary and stationary portions

When the series is nonstationary, the transition matrix can be partitioned to divide the nonstationary from the stationary components. The nonstationary portion can be confined to T_1 to which the diffuse prior can be applied.

$$T = \begin{pmatrix} T_1 & \mathrm{M} \ T_2 \\ \mathrm{L} & \mathrm{L} & \mathrm{L} \\ \boldsymbol{0} & \mathrm{M} \ T_4 \end{pmatrix}$$

where the dimensions of the submatrices are

$$T_{1}, T_{2}, and T_{4}$$

 $dxd dx(m-d) dx(m-d)$
with $\lambda(T_{4}) < 1$
(Harvey, 1989, 123).

R. Yaffee state space lecture 2009-Nov-26

Matrix partitions for nonstationary and stationary components (Harvey, 1989, 123) The covariance matrix P can be conformably partitioned so that

$$P_{I|\theta} = \begin{bmatrix} kI & \theta \\ \theta & P \end{bmatrix}$$

and the

Z' matrix can be partitioned as $\begin{bmatrix} z'_1 & z'_2 \end{bmatrix}$

SO

 $y = Z_t' \alpha_t + \varepsilon_t$ the measurement model still holds

so long as the first *d* nonstationary elements are observable and T₁ is nonsingular R. Yaffee state space lecture 2009-Nov-26 Even with a nonstationary process, it is possible to show that this system is stable and can converge to a steady state solution

Convergence is exponentially fast even with a nonstationary process.

Harvey suggests partitioning the transition matrix into segments. In one segment, the stationary elements can reside, while in another segment the nonstationary elements can reside.

This permits proper prior assignment to partitions of the initial value for the state vector.

The nonstationary partition can have a diffuse prior while the stationary segment can have a proper prior.

Stability of the process

A necessary and sufficient condition for stability of the state space evolution Is that the characteristic roots of the transition matrix, T, should have eigenvalues with a modulus less than unity (Hamilton, 378; Harvey, 114). In other words, this is a condition necessary and sufficient for covariance stationarity.

$$\lambda_{j}(T) < 1$$
, for $j = 1, ..., m$

This means that there are no unit roots in the evolutionary process.

Partitioning the state vector and transition matrix

Harvey suggests conformably partitioning the transition matrix and the state vector :

$$\alpha_{t} = \begin{bmatrix} \alpha_{1} \\ L \\ \alpha_{2} \end{bmatrix} \text{ Stationary elements} \qquad T = \begin{bmatrix} T_{1} & M & T_{2} \\ dxd & dx(m-d) \\ L & L & L \\ 0 & M & T_{4} \\ (m-d)x(m-d) \end{bmatrix}$$

Estimation

ML

Assumes that observations are Normal and iid. Hence, the likelihood is the product of the individual likelihoods. When logged, the likelihood is the sum of the individual likelihoods.

With time series, that is not the case. Observations are conditional on the previous information set.

$$L(y; \boldsymbol{\psi}) = \prod_{t=1}^{T} p(y_t \mid Y_{t-1})$$

We write the joint density as a function of the conditional density times a prior distribution.

Likelihood of the state space model

Ibid, 120.

The model is estimated by maximizing the likelihood by minimizing the prediction error variance and maximizing the fit with the recursive equations, when the DGP process is NID.

$$LL = -\frac{T}{2}\log 2\pi - \frac{T}{2}\log \sigma_*^2 - \frac{1}{2}\sum_{t=1}^T \log |F_t| - \frac{1}{2}\sum_{t=1}^T v_t' |F_t|^{-1} v_t$$

where

$$v_t = y_t - \hat{y}_{t|t-1}$$

The first term on the rhs is a constant. The last term on the far rhs requires inversion of a matrix. If the rank of that matrix is of low dimension, the algorithm proceeds quickly. If it is of high order, this process can become time-consuming.

Asymptotic characteristics

The estimator is asymptotically multivariate normal if T is invertible.

- The parameters within the parameter space are identifiable.
- Derivatives up to order 3 exist within the parameter space of the information set and are continuous.

The term on the far rhs of the prediction error decomposition of the variance reveals that this algorithm proceeds according to a minimization of the mean square error of prediction as well as fit (as F is included in the likelihood function).

Exact Maximum Likelihood

When the model is stationary and the prior is proper, the exact likelihood can be estimated with the formula just given.

Quasi-Maximum Likelihood

Generalized least squares with a White or a Newey-West estimator can be used for multivariate models to handle situations where Kim and Nelson (1999) provide an excellent account of how this works as does Harvey. Deviations from Gaussianity can be handled so long as the distribution is symmetric. Log-normal distributions can still yield approximate likelihood.

GLS can be used to estimate state space models when unknown exogenous variables are added to the measurement model

The state space model can be rewritten in a regression form

(Harvey, 1989, 130) writes that because $y_t = z'\alpha_t + x'\beta + v_t$ we can rewrite the state space model as related regressions : $y_t = x'\beta + e_t$ $e_t = z' \alpha_t + v_t$ If we assume $E(e_t) = 0$, $Var(e_t) = V$ Even if the unknown x' in the model generates heteroskedasticity, we can solve for $\beta = (X'V^{-1}X)^{-1}(X'V^{-1}Y) \text{ using this GLS.}$

The Properties of V render it amenable to a Cholesky decomposition

Harvey, 1989, 131 writes that because V is positive definite, there is a matrix L, which is lower triangular and has ones in the principle diagonal, which can be pre and post-multiplied by F inverse to yield the inverse of V.

$$V^{-1} = L'F^{-1}L$$

By multiplying those regression equations by L, we obtain a heteroskedastic regression equation that solves for beta with GLS. (See Kim and Nelson, 1999, 20.

The F can be used in GLS for V.

The log likelihood for GLS then becomes

$$LL = LogL - \frac{1}{2} \sum_{t=\tau+1}^{T} \log |F| - \frac{1}{2} \sum_{t=\tau+1}^{T} \log |v_t'F^{-1}v_t|$$
$$\beta = (X'F^{-1}X)^{-1} (X'F^{-1}Y)$$

So GLS is functionally equivalent to a maximum likelihood solution for the parameters, though ML usually proceeds by arriving at the mean and the variance through the gradient and the information matrix. R. Yaffee state space lecture 2009-Nov-26

The EM algorithm

The expectation maximization algorithm. It consists of expectation step followed by a maximization step. The algorithm iterates until the likelihood given the data can no longer be improved.

Commandeur and Koopman maintain that this algorithm assures nonnegativity of hyperparameter estimation.

The disadvantage of this algorithm is that it is very slow, especially when there are many parameters to be estimated.

The BFGS algorithm is much faster, but does not assure monotone convergence. A combination of these two algorithms is used to find the proper balance.

Rosenberg's algorithm (1973)

The state vector is partitioned into a stationary sub-vector and a nonstationary sub-vector. The state vector $a = Ta^* + Ta$

B. Rosenberg's algorithm

 $\alpha_{t+1} = Ts_t + T * s_{t-1}^* + e_t + e_t^*$ partitions the state vector into 2 subvectors,

one s_t is stationary and the other s_t^* is not. s_t^* uses a diffuse prior while s_t uses a normal prior.

The priors are used as starting values for the mean and variance of the state vector.

DeJong's algorithm for diffuse smoothing.

Requires the inversion of large matrices but Rosenberg's does not. Rosenberg just augments the state vector to accommodate the nonstationary components using a diffuse prior for them only. To invert the singular matrix, He employs a generalized inverse. Eventually, the nonstationary part collapses to the classical Kalman filter As it becomes stationary and then it proceeds until convergence is attained.

DeJong in 1989 in JASA provides new algorithm for fixed lag smoothing which more efficiently performs diffuse smoothing while covering the degenerate cases and happens to be more computationally efficient. To model diffuseness of beta, he lets beta = b + B δ where b is a fixed vector, B is a fixed matrix of full column rank and delta is a random vector unrelated to the v(t) and u(t) and the nonsingular covariance matrix $\sigma^2 \Sigma$

Exact initial Kalman filter

Koopman discovered a means of finding the exact initial Kalman filter. This is more computationally efficient when dealing with nonstationary series. (Koopman, S.J. "The Exact Initial Kalman filter and the smoothing of nonstationary time series," in Harvey and Proietti, (eds.), 2005, 54). The smoothing of this filter leads to the exact score vector of the initial state vector.

Diffuse Log Likelihood

(Schweppes, 1965), according to Koopman, 2005, 55.

Diffuse
$$LL(y) = \log L(y) + \frac{m}{2}\log(\kappa)$$

where

$$Log(y) = constant + \frac{1}{2} \sum_{t=1}^{n} \log |F_{*,t}^{-} + F_{\infty,t}^{-}| - \frac{1}{2} \sum_{t=1}^{n} v_{t}' F_{*,t}^{-} v_{t}$$

Identification

Hamilton (1994, 387) maintains that unless proper constraints are introduced, into the T, Q, G, H, β , and R matrices, the state space model will be unidentified.

Recall that the model is

$$\alpha_{t} = T\alpha_{t-1} + WX_{t} + R_{t}\eta_{t} \qquad \eta_{t} \sim NID(\theta, Q)$$

$$y_{t} = Z\alpha_{t-1} + \beta X_{t} + G_{t}\varepsilon_{t} \qquad \varepsilon_{t} \sim NID(\theta, R)$$

So the question arises, how many of what kind of constraints must be applied to identify such a model?

Smoothing

Smoothing is estimation of the signal from the measurement model.

It involves extraction and projection of this signal onto the y vector.

Interpolation is the projection of x(t), or alpha(t), onto the y(t) space

(DeJong, P. Smoothing and Interpolation with State Space Models, in

(1989) Harvey and Proietti (eds) (2005), 73).

Smoothing

A set of backward recursions using the output of the Kalman filter, formulated in Durbin and Koopman (2001) *Time Series Analysis by State Space Methods*. This smoothing is functionally equivalent to the output of a *Weiner-Kolmogorov* filter (Hyndman et al.,2009,225):

WK filter
$$(l_{s,t}) = \frac{\alpha^2 y_t}{[1 - (1 - \alpha)L][1 - (1 - \alpha)L^{-1}]}$$
$$= \frac{\alpha}{2 - \alpha} \sum_{j = -\infty}^{\infty} (1 - \alpha)^{|j|} y_{t-j}$$

Smoothing can be used for interpolation, signal extraction, residual analysis, deleted residuals, and auxiliary residuals. Residuals can be useful model diagnostics.

Diffuse Smoothing

Smoothing algorithms depend on initial values of the mean and variance of the state vector. If it is assumed that nothing is known about the first state, a noninformative prior distribution may be used from which to obtain these values. Noninformative or diffuse prior distributions are combined by a weighted average with current data to arrive at an estimate. The noninformative prior has a variance that is approximately infinite or extremely large. The precision (the inverse of the variance) is used as the weight given to this part of the weighted average. However, nothing can be divided by zero and remain finite. Therefore, an approximation can be because the convergence properties of the Kalman filter can handle such quantities.

After enough iterations to overcome the impact of the nonstationary elements, the diffuse Kalman filter will collapse to the classical Kalman filter and the filter, if there is a steady-state solution, will then converge toward it.

A diffuse Kalman filter can generate the diffuse smoothing $\beta = B + \delta b$

$$\begin{split} B &= fixed \ vector \ of \ full \ column \ rank \\ \delta &= random \ vector \ unrelated \ to \ u_t \ or \ v_t \\ that \ has \ a \ nonsingular \ covariance \\ as \ \Sigma &= > \infty, \ \Sigma^{-1} \ - > 0 \ as \ the \ state \ variance \\ becomes \ diffuse. \\ The \ diffuse \ projections \ can \ be \ performed \end{split}$$

by an augmented Kalman filter.

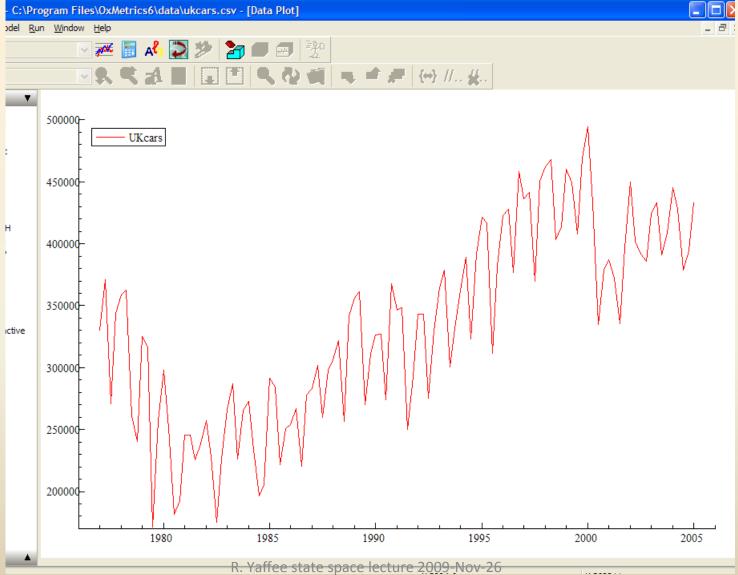
Preliminary State Space Model Analysis

Download the data and record the source, time, date, and study description Of the dataset.

Be sure the dates are correct for time series data.

Check for missing values.

Time plot of the data


Look for abnormalities in the data

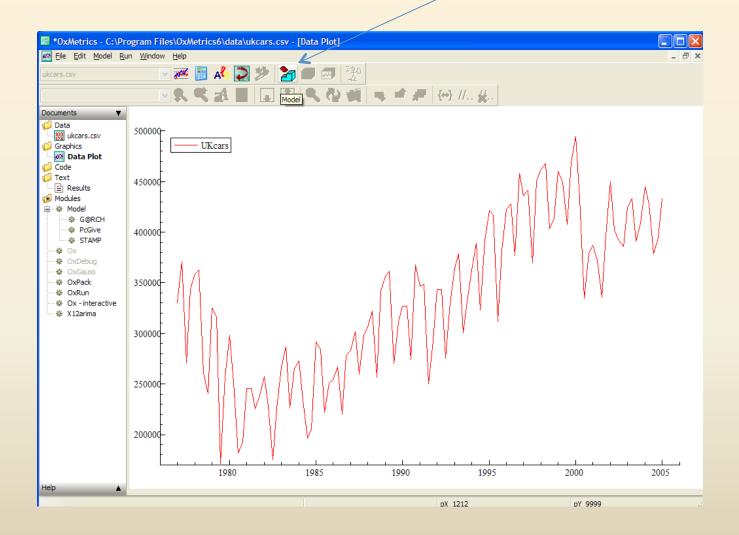
UK cars downloaded from http://

www.exponential smoothing.net 11/13/2009

Click here to graph ics - C:\Program Files\0xMetrics6\data\ukcars.csy - [*ukcars.csy - C:\Program Files\0xMetrics6\data\ukcars.csy] View Model Run Window Help AL Ast. A 👞 📫 🚝 [{+}] //... 従.. Graphics E. Ouarter UKcars Ŧ. 1977Q1 1977(1) 1977(2) 1977Q2 ars.csv 1977Q3 1977(3) Plot 1977Q4 1977(4)1978Q1 1978(1) 1978Q2 1978(2) ts 1978(3) 1978Q3 1978(4)1978Q4 1979Q1 1979(1) @RCH 1979Q2 :Give 1979(2) **LAWD** 1979Q3 1979(3) 1979(4)1979Q4 1980Q1 1980(1) 251464 1980(2) 1980Q2 ck 1980Q3 1980(3) n. 1980(4) 1980Q4 nteractive 1981Q1 1981(1) ima

Time series plot

......


What's potentially problematic in this graph

- There is a regime shift in 1980-1982
- the number of cars stops falling and begins to rise.
- This would be a problem for an ARIMA model but not for a state space model.
- Why?
- There is another level shift in 2000-2001.
- Is this a problem? It would be for an ARIMA model? Is it for a state space model? If so,
- why? If not, why not?

Basic Structural Model

- The basic structural model contains a local level, a local slope, and a local seasonal.
- We begin by allowing all of these components to be stochastic.

Click on the model icon

Dialog box comes down click on formulate

STAMP -	Models for time-series data	×
All Module	s G@RCH PcGive STAMP	
Module	STAMP	
<u>C</u> ategory	Models for time-series data	~
<u>M</u> odel class	Unobserved Components using \$TAMP	*
0	Estimate > Eormulate < Yerogress <	
	Options Close	

Add the Ukcars variable to the selection box by clicking on the move arrow in the middle, then click OK

Formulate - STAMP unot	oserved components	s module - ukcar	'S.CSV	
Selection		<< <u>L</u> ags	Database	
Y UKcars		None None	Quarter UKcars	
		Add to sele	ection	
Use default status	Set	<u>C</u> lear>>		
Recall a previous model			ukcars.csv	~
	ОК		ancel	

Select the level, slope, seasonal as stochastic (random), and interventions as automatic

Sele	ect components - STAMP ur	observed components module	3
	Basic components	·	
	Level		
	Stochastic	•	
	Fixed	0	
	Slope		
	Stochastic	•	
	Fixed	0	
	Order of trend (1-4)	1	
	Seasonal		
	Stochastic	•	
	Fixed	0	
	Select frequencies		— 1 1.1
	Irregular		Then click
+	Cycle(s)		ОК
Ξ	Options		
	Multivariate settings		
	Set regression coefficients		
	Select interventions		
	none	0	
	manually	0	
	automatically	•	
	Sot peromotors to	· · · · · · · · · · · · · · · · · · ·	
		OK Cancel	

An estimation dialog box appears. We don't shorten the estimation horizon at first—leave this the full sample for the first pass

Estimate - STAMP unobserved components module					
Choose the estimation sample:					
Selection sample	1977(1) - 2005(1)				
Estimation starts at	1977(1)				
Estimation ends at	2005(1)				
Choose the estimation method:					
Maximum Likelihood (exact score)	•				
Maximum Likelihood (BFGS, exact score)	0				
Maximum Likelihood (BFGS, numerical score)	0				
Expectation Maximization (only variances)	0				
No estimation	0				
Use Exact score ML (the default) at first pass					
(OK Cancel				

Omnibus Estimation review

Strong convergence and steady state found are good indicators

```
Ox Professional version 6.00 (Windows/U) (C) J.A. Doornik, 1994-2009
                            STAMP 8.20 (C) S.J. Koopman and A.C. Harvey, 1995-2009
                            ---- STAMP 8.20 session started at 11:50:04 on 19-11-2009 ----
                            Estimating...
                            Very strong convergence relative to 1e-007
                             - likelihood cvg 7.80019e-015
                             - gradient cvg 2.46577e-009
                             - parameter cvg 5.60377e-008
                             - number of bad iterations 0
                             Very strong convergence relative to 1e-007
                             - likelihood cvg 1.91037e-016
                             - gradient cvg 1.78719e-010

    parameter cvg 7.46128e-008

    number of bad iterations 0

                             Estimation process completed.
Estimation
                          UC(1) Estimation done by Maximum Likelihood (exact score)
completed
                                The database used is C:\Program Files\OxMetrics6\data\ukcars.csv
                                The selection sample is: 1977(1) - 2005(1) (T = 113, N = 1)
                                The dependent variable Y is: UKcars
                               The model is: Y = Trend + Seasonal + Irregular + Interventions
                               Steady state. found
Model description
                            Log-Likelihood is -1063.73 (-2 LogL = 2127.46).
Predictive error
                            Prediction error variance is 5.15371e+008
variance
```

Omnibus statistical review

```
UC(1) Estimation done by Maximum Likelihood (exact score)
    The database used is C:\Program Files\OxMetrics6\data\ukcars.csv
    The selection sample is: 1977(1) - 2005(1) (T = 113, N = 1)
     The dependent variable Y is: UKcars
    The model is: Y = Trend + Seasonal + Irregular + Interventions
     Steady state. found
 Log-Likelihood is -1063.73 (-2 LogL = 2127.46).
 Prediction error variance is 5.15371e+008
 Summary statistics
                   UKcars
  т
                  113.00
                 3.0000
  p
  std.error
                 22702.
 Normality 0.11890
                0.79677
  H(35)
  DW
                 2.0367
  r(1)
              -0.033528
                 12.000
  a
  r(q)
               -0.10845
                                               Box-Ljung Q stat (12,9)
                41.693
  Q(a,a-p)
  Rs^2
                 0.33489
  Variances of disturbances:
                   Value
                            (g-ratio)
                               1.000) ← All components are
 Level
             2.39535e+008 (
                  29756.2 (0.0001242)
 Slope
                                            stochastic (each > 0)
 Seasonal
           1.21628e+006 ( 0.005078)
                          (R. Yaffee state space lecture 2009-Nov-26
 Irregular 1.07839e+008
```

To test the chi-square at 9 df, click on model in the menu bar and then on Tail Probability

ogra	ogram Files\OxMetrics6\data\ukcars.csv - [Results]						
jew	<u>M</u> odel <u>R</u> un <u>W</u> indow	<u>H</u> elp					
	🚈 Graphics	Alt+G	/ 🎦 🗊 🐼 💱				
	Calculator	Alt+C					
_	A ^{lg} <u>A</u> lgebra	Alt+A	🗓 🛅 🔍 🤣 🕵 💻 🖝 🖉				
u	Datch	Alt+B	ogram Files\OxMetrics6\data\ukcars.cs				
	🖕 Ox Batch Code	Alt+O					
0	<u>∑n</u> odel	Alt+Y	.00 (Windows/U) (C) J.A. Doornik, 199				
S	📶 <u>E</u> stimate	Alt+L	an and A.C. Harvey, 1995-2009				
	편 <u>T</u> est	Alt+T	tarted at 11:50:04 on 19-11-2009				
	Disp Command	Ctrl+W					
	<u>T</u> ail Probability		relative to 1e-007 e-015				
	Preferences		009				
	- parameter cvg						
	 number of bad 	iteratio	ons O				

Enter 9df in n1 and insert the critical value given in the output

|--|

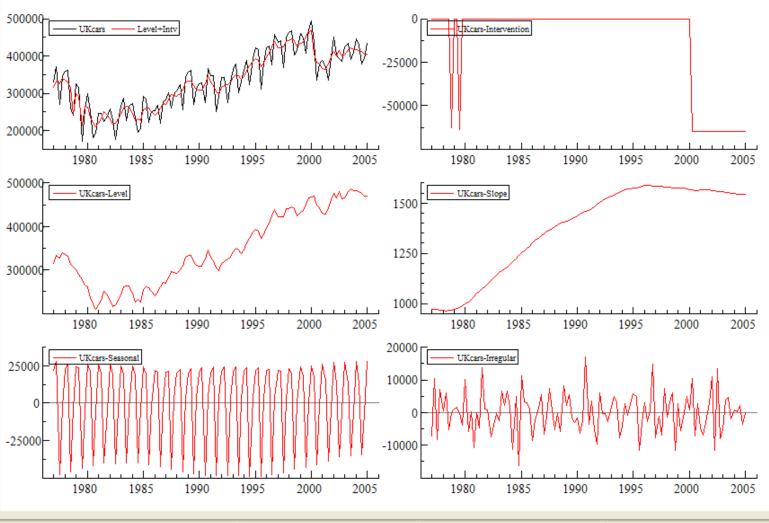
At the bottom of your output, the significance test will be recorded

Chi^2(9) = 41.693 [0.0000] **

A significant result indicates that there remains serial correlation in the residuals.

This result will bias your t-tests, F-tests, and R^2 upward.

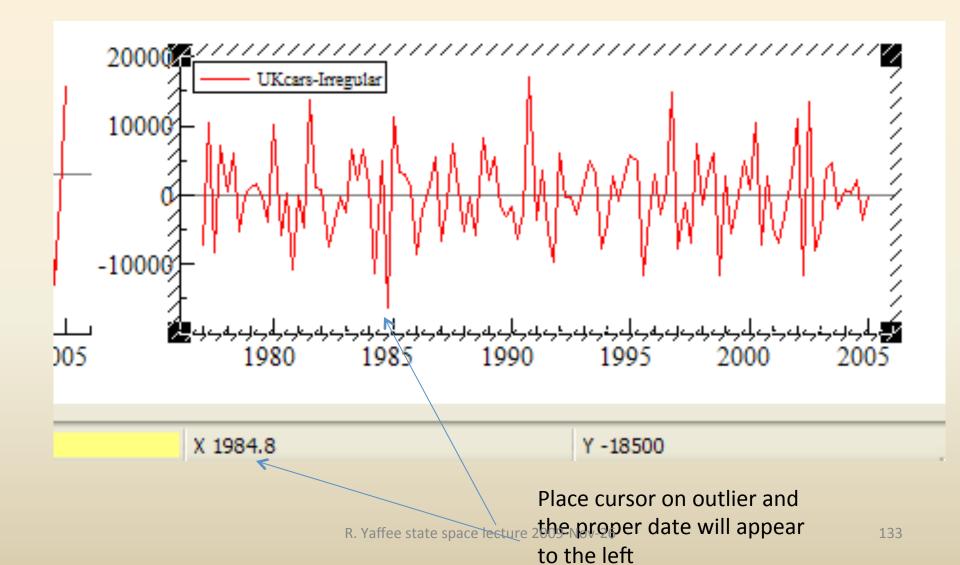
To be able to trust those tests, you will need to neutralize the serial correlation in the residuals


Click on the test cube on the right, and select component graphics from the test menu, and click ok

st Menu	\mathbf{X}
Test Menu	
More written output	
Components graphics	
Weight functions	
Residuals graphics	
Auxiliary residuals graphics	
Prediction graphics	
Forecasting	
Store in database	
ОК	

A first pass, just consider the main components

Com	ponents graphics - STAMP unobs	erved components module	×
	Equation	UKcars	~
	Trend		
	Trend plus Cycles and ARs		
	Trend plus Regression effects		
Ξ	Select components to plot without	Y and for composite signal	
	Level		
	Slope		
	Seasonal		
	Cycles and ARs		
	Time-varying regression effects		
	Fixed regression effects		
	Fixed intervention effects		
	Irregular		
+	Select type of plot		
+	Further plots		
+	Prediction, filtering and smoothing.		
Ξ	Further options		
	Plot confidence intervals		
	Anti-log analysis		
	Zoom sample range	full sample	
	Store selected components in database		
		OK Cancel	


Component graphics are generated from the smoothed components of the state vector (signal extraction)

R. Yaffuedetate space leptures42009-Nov-26

pY -52

Diagnosing outliers and level shifts

A more detailed examination requires more output

(click on the test icon and then in the test menu, on "More written output". Then click ok.

Test Menu	
More written output	
Components graphics	
Weight functions	
Residuals graphics	
Auxiliary residuals graphics	
Prediction graphics	
Forecasting	
Store in database	

The More Written Output menu

Select these options and click ok.

Mor	e written output - STAMP	unobserved components module	×
	Print parameters		
	Variances		
	Parameters by component		
	Full parameter report		
	Print state vector		
	State vector analysis		
	State and regression output		
	Missing observation estimates		
+	Print recent state values		
	Print tests and diagnostics		
	Summary statistics		
	Residual diagnostics		
	Outlier and break diagnostics		
	Write large absolute values		
	exceeding the value of	3	
	Anti-log analysis		
			_
		OK Cancel	

Full parameter report shows no problem computing first and 2nd derivatives (or asymptotic standard errors)

```
Full parameter report
 Actual parameters (all)
                    Value
Var Level
            2.3954e+008
Var Slope
                   29756.
Var Seasonal
             1.2163e+006
             1.0784e+008
Var Irregular
 Transformed parameters (not fixed)
                Transform
                                1stDer
                                            2ndDer
                                                      asymp.s.e
Var Level
                  9.6471
                              0.033280
                                          -0.69824
                                                        0.32377
Var Slope
               5.1504 -2.1566e-005 -0.00038409
                                                        6.1493
Var Seasonal
                  7.0057
                             0.0049193 -0.044708
                                                        0.87008
Var Irregular
                   9.2481 0.020847
                                         -0.27549
                                                        0.63997
Actual parameters (not fixed) with 68% asymmetric confidence interval
                   Value
                            leftbound
                                        rightbound
Var Level
              2.3954e+008 1.2536e+008
                                        4.5771e+008
Var Slope
                   29756.
                               0.13563
                                        6.5281e+009
Var Seasonal
             1.2163e+006 2.1345e+005
                                        6.9307e+006
Var Irregular
              1.0784e+008 2.9985e+007
                                        3.8784e+008
```

All components are significant except the slope

we could trim the model and gain power with more df for a test by pruning out the slope

```
State vector analysis at period 2005(1)
                           Value
                                      Prob
Level
                     469891.41528 [0.00000]
                       1542.90170 [0.39354]
Slope
Seasonal chi2 test
                         45.19769 [0.00000]
Seasonal effects:
               Period
                           Value
                                      Prob
                    1 27966.58096 [0.00002]
                    2 13519.89654 [0.04214]
                    3-34818.84346 [0.00000]
                    4 -6667.63404 [0.28321]
State vector at period 2005(1)
             Coefficient
                               RMSE t-value
                                                     Prob
            469891.41528 23742.14541 19.79145 [0.00000]
Level
            1542.90170 1800.91354 0.85673 [0.39354]
Slope
           31392.71221 4930.13796 6.36751 [0.00000]
Seasonal
Seasonal 2 10093.76529 5062.46656 1.99384 [0.04876]
Seasonal 3 -3426.13125 4076.24819
                                       -0.84051 [0.40253]
Regression effects in final state at time 2005(1)
                   Coefficient
                                     RMSE t-value
                                                           Prob
Outlier 1978(4)
                  -62534.93392 18121.05052 -3.45096 [0.00081]
Outlier 1979(3)
                  -63562.56645 17875.22817 -3.55590 [0.00057]
Level break 2000(2)-64718.35882 21068.46118 -3.07181 [0.00271]
                R. Yaffee state space lecture 2009-Nov-26
```

To test the removal of the slope against a significant change in the LL, click on formulate icon, (the left hand cube) and then on progress button in the dialog box

🛃 STAMP -	- Models for time-series data	×
All Modules	es G@RCH PcGive STAMP	
Module	STAMP	
<u>C</u> ategory	Models for time-series data	~
Model class	Unobserved Components using STAMP	~
୍	Eormulate > Estimate > Yerogress <	
	Qptions Close	

Click on "mark general to specific" and then ok.

Progress - STAM	P unobserved com	ponents modu	le		×
U C(1)	4 x 113 -10	63.73 Maximum	Likelihood	(exact score)	
< Del		Mark Spec	tific to General	Mark <u>G</u> eneral to Specific	
		OK	ind more general Cancel	models for this specific model	

This leaves a record in memory as to the goodness of fit of that model as indicated by LL or IC

odel	Т	р	log-likelihood	SC	HQ	AIC		
C(1)	113	4	Maximum Likelihood (exact	score)	-1063.7319	18.994<	18.937<	18.89

When the select components menu appears, deselect the slope and leave intervention selection on manual then click ok.

Sele	ct components - STAMP u	nobserved components module	×				
Ξ	Basic components						
	Level						
	Stochastic	\odot					
	Fixed	0					
	Slope						
	Stochastic	•					
	Fixed	0					
	Order of trend (1-4)	1					
	Seasonal						
	Stochastic	•					
	Fixed	0					
	Select frequencies						
	Irregular						
+	Cycle(s)						
Ξ	Options						
	Multivariate settings						
	Set regression coefficients						
	Select interventions						
	none	0					
	manually	\odot					
	automatically	0					
	Cot poromotors to		*				
		OK Cancel					

When the select interventions menu appears, we do not change it, and click ok. We are only testing the significance of the slope.

Sele	ect intervent	ions - STAMP	unobserved	l components module						
Pres	Press Add button to include more interventions in the model.									
	Select	Type	Period	1						
0	~	irregular	1978(4)							
1	~	irregular	1979(3)							
2		irregular	1990(4)							
з	✓	level	2000(2)							
			Add	< > Del						
	C	ок	Cancel	Load Save As Reset						

The estimation menu, we also leave the same, and proceed to click ok.

Estimate - STAMP unobserved components module						
Choose the estimation sample:						
Selection sample	1977(1) - 2005(1)					
Estimation starts at	1977(1)					
Estimation ends at	2005(1)					
Choose the estimation method:						
Maximum Likelihood (exact score)	\odot					
Maximum Likelihood (BFGS, exact score)	0					
Maximum Likelihood (BFGS, numerical score)	0					
Expectation Maximization (only variances)	0					
No estimation	0					
ſ	OK Cancel					

The New Model appears with all components significant.

- We go back to the formulate icon (the left hand cube) and click on it.
- We click on the progress button on the drop down formulate dialog box.
- We then click on General to specific.
- What appears at the bottom of our output is:

Progress to								
Model	Т	р	log-likelihood	SC	HQ	AIC		
UC(1)	113	4	Maximum Likelihood (exact	score)	-1063.7319	18.994<	18.937<	18.898
UC(2)	113	3	Maximum Likelihood (exact	score)	-1070.9629	19.081	19.038	19.008
			n (please ensure models ar 2(1) = 14.462 [0.000		for test validit	7)		=

Removal of the slope component significantly reduced the log-likelihood

- Therefore, we will restore the stochastic slope component to our state vector, even though it did not appear to be important by comparison to the other components.
- The signal to noise ratio was not very high for that component. However, there was a perceptible bend in the curve that matched the trend.

2nd pass—select all components as stochastic and reiterate

Sele	ect components - STAMP un	observed components module	×
Ξ	Basic components		•
	Level		
	Stochastic	•	
	Fixed	0	
	Slope		
	Stochastic	\odot	
	Fixed	0	
	Order of trend (1-4)	1	
	Seasonal		
	Stochastic	\odot	
	Fixed	0	
	Select frequencies		
	Irregular		
+	Cycle(s)		
Ξ	Options		
	Multivariate settings		
	Set regression coefficients		
	Select interventions		-
	none	0	
	manually	0	
	automatically	\odot	~
	Cot poromotore to		
		OK Cancel	

If this menu appears regardless of your having opted for automatic selection, select all suggested and then ok.

Select	interventi	ions - STAMP u	inobserved	components	module			X
Press Ad	ld button to i	include more interv	ventions in the	model.				
	Select	Type	Period					
0	✓	irregular	1978(4)					
1	~	irregular	1979(3)					
2	V	irregular	1990(4)					
3	✓	level	2000(2)					
			Add			D-I		
		<i>,</i>	AUU	<	>	Del		
	_							
	L	ОК	Cancel		Load	Save As	Reset	

State Space Model Diagnosis

- Omnibus model diagnostics
- Component diagnostics
- Residual analysis
 - Auxiliary residuals
 - Residuals
 - Graphical diagnostics
- Intervention diagnostics
- Explanatory variable diagnostics
- Forecasting
- Forecasting evaluation
- Model fitting strategies
- Model adequacy
- Model optimality and the progress option

This model did not fully converge to a steady state.

```
Estimating....
  Weak convergence relative to 1e-007
  - likelihood cvg 1.91461e-010
  - gradient cvg 4.44545e-006
  - parameter cvg 2.85583e-005
  - number of bad iterations 0
  Very strong convergence relative to 1e-007
  - likelihood cvg 4.30692e-015
  - gradient cvg 6.41512e-009
  - parameter cvg 7.26624e-008

    number of bad iterations 0

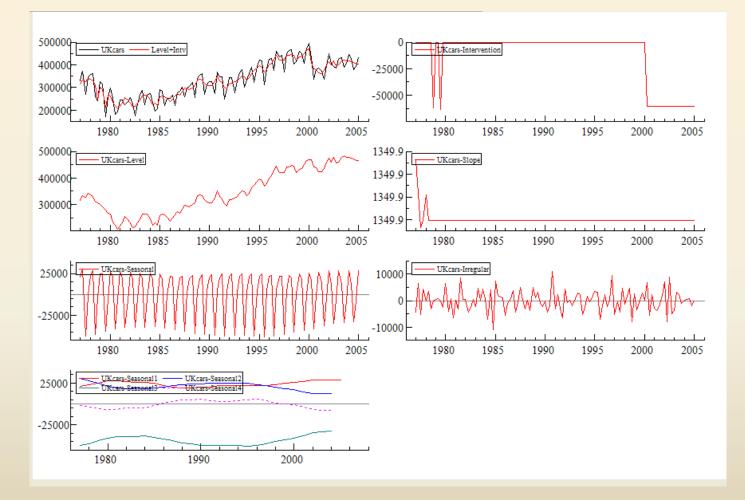
  Estimation process completed.
UC(3) Estimation done by Maximum Likelihood (exact score)
     The database used is C:\Program Files\OxMetrics6\data\ukcars.csv
     The selection sample is: 1977(1) - 2005(1) (T = 113, N = 1)
     The dependent variable Y is: UKcars
     The model is: Y = Trend + Seasonal + Irregular + Interventions
     Steady state ..... found without full convergence
 Log-Likelihood is -1063.91 (-2 LogL = 2127.81).
 Prediction error variance is 5.14948e+008
```

What are our options?

- We may fine-tune the model, by
- Trying different starting values for parameters
- We may fit other interventions to improve convergence to a steady-state.
- We begin by looking at the component graphics and then asking for more written output.

Omnibus Diagnosis

- We test our Box-Ljung Q for residual serial autocorrelation with 9 df. It is still significant so we have autocorrelation in the residuals.
- We will have to deal with that to avoid biasing our significance tests .
- We opt for component graphics first, and also select individual seasonals from further plots.


Omnibus model diagnostics

- These diagnostics assess overall model goodness of fit
- They may provide hints wrt problems
- They are helpful in initial comparison of models

Selecting component graphics for the 2nd pass

Com	ponents graphics - STAMP unob	served components module	×
	Trend		
	Trend plus Cycles and ARs		
	Trend plus Regression effects		
Ξ	Select components to plot without	Y and for composite signal	
	Level		
	Slope		
	Seasonal		
	Cycles and ARs		
	Time-varying regression effects		
	Fixed regression effects		
	Fixed intervention effects		
	Irregular		
Ξ	Select type of plot		
	Individual time plots of components	\odot	
	Time plot of composite signal	0	
	Time plot of composite signal with Y	0	
	Crossplot of composite signal vs Y	0	
Ξ	Further plots		
	Detrended Y		
	Seasonally adjusted Y		
	Individual seasonals		
	number of lines	٨	_
		OK Cancel	

The slope is very different this time. We need to ascertain why.

The Full parameter report reveals that inversion of the vcv matrix failed and a generalized inverse was used to proceed.

```
Outlier 1979(3) -63242.04916 16246.70236 -3.89261 [0.00017]
Level break 2000(2)-60747.83025 20022.10404 -3.03404 [0.00304]
Chi^2(9) = 37.431 [0.0000] **
Full parameter report
Actual parameters (all)
                   Value
Var Level
            2.5464e+008
Var Slope
                 0.00000
Var Seasonal 1.6112e+006
Var Irregular 5.8689e+007
Warning: invertgen: invertsym failed, proceeding with generalized p.s.d. inverse
SEst.ox (2593): PrintPar
Transformed parameters (not fixed)
               Transform
                             1stDer
                                          2ndDer
                                                     asymp.s.e
                            0.11332 -0.97661
                                                       0.16515
Var Level
                 9.6777
Var Seasonal
                 7.1462
                           0.018175 -0.067805
                                                       0.36380
Var Irregular
                8.9439 0.053840 -0.097339
                                                       0.38523
Actual parameters (not fixed) with 68% asymmetric confidence interval
                   Value
                          leftbound rightbound
Var Level
            2.5464e+008 1.8301e+008 3.5430e+008
Var Seasonal 1.6112e+006 7.7832e+005 3.3353e+006
Var Irregular 5.8689e+007 2.7161e+007 1.2681e+008
State vector at period 2005(1)
            Coefficient
                             RMSE t-value
                                                 Prob
Level
           465183.25500 22203.14185 20.95124 [0.00000]
Slope
           1349.90063 1522.88053 0.88641 [0.37742]
Seasonal 30761.14809 5033.38760 6.11142 [0.00000]
Seasonal 2 10197.28991 5239.73598 1.94615 [0.05431]
Seasonal 3 -2221.12361 4151.19778 -0.53506 [0.59374]
```

Lack of variance in the slope may have caused it to be modeled as fixed

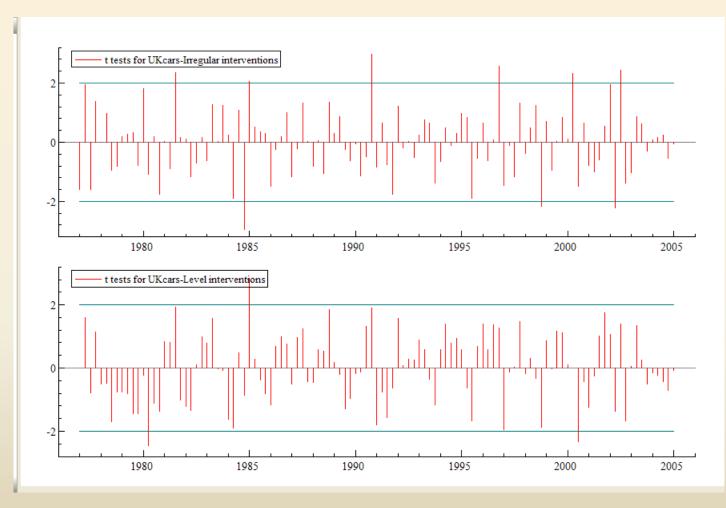
v	ariances	of disturbances	:	
		Value		(q-ratio)
Le	vel	2.54638e+008	(1.000)
S1	ope	0.00000	(0.0000)
Se	asonal	1.61120e+006	(0.006327)
Ir	regular	5.86886e+007	(0.2305)

Omnibus statistics

```
Goodness-of-fit based on Residuals UKcars
                                      Value
Prediction error variance (p.e.v) 5.1495e+008
Prediction error mean deviation (m.d) 4.6036e+008
Ratio p.e.v. / m.d in squares
                           0.79655
Coefficient of determination R^2 0.92178
... based on differences Rd^2
                          0.80538
... based on diff around seas mean Rs^2 0.33544
Information criterion Akaike (AIC) 20.219
                                    20.436
... Bayesian Schwartz (BIC)
Serial correlation statistics for Residuals UKcars
Durbin-Watson test is 2.12445
Asymptotic deviation for correlation is 0.09759
  Lag df Ser.Corr
                          BoxLjung prob
    4
         1 -0.18074 14.966 [ 0.0001]
  8 5 0.1077 27.708 [ 0.0000]
   12 9 -0.10418 37.431 [ 0.0000]
```

R² is probably inflated owing to the residual serial autocorrelation

- The R square = .92 but this is questionable
- Serial correlation in the residuals could inflate this, F and t values.
- Yet all residuals appear to be normal:
 - Irregular
 - Level
 - Slope


Residuals appear normally distributed for all components

Normality test for	r Irregular residual
	Value
Sample size	113.00
	-0.0030608
St.Dev	1.1131
Skewness	0.17326
Excess kurtosis	
Minimum	-2.9569
Maximum	2.9587
	Chi^2 prob
Skewness	0.56536 [0.4521]
Kurtosis (0.0014852 [0.9693]
Bowman-Shenton	0.56685 [0.7532]
Normality test for	r Level residual
	Value
Sample size	111.00
Mean	-0.010333
St.Dev	1.0891
Skewness	-0.027343
Excess kurtosis	-0.64500
Minimum	-2.4666
Maximum	2.8404
	Chi^2 prob
Skewness	0.013831 [0.9064]
Kurtosis	1.9241 [0.1654]
Bowman-Shenton	1.938 [0.3795]
Normality test for	r Slope residual
-	Value
Sample size	111.00
Mean	0.58561
<	

We need to examine the graphics of the irregular to look for other interventions

Value Sample size 111.00 Mean 0.58561 St.Dev 0.78850 Skewness -0.088005 Excess kurtosis -0.66432 Minimum -1.5964 Maximum 2.2688 Chi^2 prob Skewness 0.14328 [0.7050] Kurtosis 2.0411 [0.1531] Bowman-Shenton 2.1844 [0.3355]	Normality test f	or Slope residual
Mean 0.58561 St.Dev 0.78850 Skewness -0.088005 Excess kurtosis -0.66432 Minimum -1.5964 Maximum 2.2688 Chi^2 prob Skewness 0.14328 0.7050] Kurtosis 2.0411 0.1531]		Value
St.Dev 0.78850 Skewness -0.088005 Excess kurtosis -0.66432 Minimum -1.5964 Maximum 2.2688 Chi^2 prob Skewness 0.14328 0.7050] Kurtosis 2.0411 0.1531]	Sample size	111.00
Skewness -0.088005 Excess kurtosis -0.66432 Minimum -1.5964 Maximum 2.2688 Chi^2 prob Skewness 0.14328 [0.7050] Kurtosis 2.0411 [0.1531]	Mean	0.58561
Excess kurtosis -0.66432 Minimum -1.5964 Maximum 2.2688 Chi^2 prob Skewness 0.14328 [0.7050] Kurtosis 2.0411 [0.1531]	St.Dev	0.78850
Minimum -1.5964 Maximum 2.2688 Chi^2 prob Skewness 0.14328 0.7050] Kurtosis 2.0411 0.1531]	Skewness	-0.088005
Maximum 2.2688 Chi^2 prob Skewness 0.14328 [0.7050] Kurtosis 2.0411 [0.1531]	Excess kurtosis	-0.66432
Chi^2 prob Skewness 0.14328 [0.7050] Kurtosis 2.0411 [0.1531]	Minimum	-1.5964
Skewness 0.14328 [0.7050] Kurtosis 2.0411 [0.1531]	Maximum	2.2688
Kurtosis 2.0411 [0.1531]		Chi^2 prob
,	Skewness	0.14328 [0.7050]
Bowman-Shenton 2.1844 [0.3355]	Kurtosis	2.0411 [0.1531]
	Bowman-Shenton	2.1844 [0.3355]

2 candidate outliers in the irregular and one in the level

Candidate outliers

- For the irregular, Aug 1984 and Sept 1990.
- For the level, Jan 1985.
- If these do not eliminate residual serial autocorrelation, when implemented, then we introduce an ar1 lag into the model.
- I found that the slope had been changed by the system to fixed so I reset that to stochastic, selected the those 2 outliers and 1 level shift, and then re-estimated.

Pass 4 (changed the slope to random)

Estimating.... Weak convergence relative to 1e-007 - likelihood cvg 4.16272e-012 - gradient cvg 3.6852e-007 - parameter cvg 3.20674e-006 - number of bad iterations 0 Estimation process completed. UC(4) Estimation done by Maximum Likelihood (exact score) The database used is C:\Program Files\OxMetrics6\data\ukcars.csv The selection sample is: 1977(1) - 2005(1) (T = 113, N = 1) The dependent variable Y is: UKcars The model is: Y = Trend + Seasonal + Irregular + Interventions Steady state. found Log-Likelihood is -1027.58 (-2 LogL = 2055.15). Prediction error variance is 4.4347e+008 Summary statistics UKcars т 113.00 3.0000 p std.error 21059. Normality 0.64445 H(34) 1.0693 DW 2.0533 r(1) -0.049024 12.000 q -0.12002r(q) Q(q,q-p)35.466 Rs^2 0.44403 Variances of disturbances:

Omnibus review

• Steady state was found, model converged.

Variances of disturbances:	
Value (q-:	ratio)
Level 2.82462e+008 (1.000)
Slope 66766.8 (0.00)	02364)
Seasonal 2.30098e+006 (0.00	
Irregular 4.10468e+007 (0	.1453)
State vector analysis at period 2	
	ue Prob
Level 401104.173	63 [0.00000]
Slope 1174.6852	20 [0.59189]
Seasonal chi2 test 33.4050	02 [0.00000]
Seasonal effects:	
Period Valu	ue Prob
1 28618.622	88 [0.00008]
2 12072.4223	38 [0.10717]
3-31771.9042	20 [0.00002]
4 -8919.1410	06 [0.19131]
Regression effects in final state	e at time 2005(1)
	RMSE t-value Prob
	16569.84786 -3.79776 [0.00025]
	16240.32708 -3.84816 [0.00021]
	15877.98409 2.88445 [0.00478]
Level break 2000(2)-58782.04032	20441.50495 -2.87562 [0.00491]
Outlier 1984(3) 23482.87575 3	16007.04136 1.46703 [0.14544]
Level break 1985(1)R.64397@6398627sp	200521@c561292009-N&v026977 [0.00320]

We ask for more written output from the test menu

Mor	More written output - STAMP unobserved components module				
	Print parameters				
	Variances				
	Parameters by component				
	Full parameter report				
	Print state vector				
	State vector analysis				
	State and regression output				
	Missing observation estimates				
÷	Print recent state values				
	Print tests and diagnostics				
	Summary statistics				
	Residual diagnostics				
	Outlier and break diagnostics				
	Write large absolute values				
	exceeding the value of	3			
	Anti-log analysis				
		OK Cancel			

The dependent variable is normally distributed, residual serial correlation persists, and this could inflate the R² and t-tests.

Normality test for	Residuals	UKcars	
	Value		
Sample size	102.00		
Mean	0.091095		
St.Dev	0.99584		
Skewness	-0.18420		
Excess kurtosis	-0.12521		
Minimum	-2.4413		
Maximum	2.7477		
		prob	
	0.57682		
	0.06663		
Bowman-Shenton	0.64345	[0.7249]	
Goodness-of-fit bas	sed on Res	iduals UKcar	-
			Value
Prediction error va		-	
Prediction error me			
Ratio p.e.v. / m.d Coefficient of dete			1.0005 0.93456
based on differ			0.93456
based on diffe		-	
Information criter: Bayesian Schwar		(AIC)	20.123 20.412
Dayesian Schwa	ruz (BIC)		20.412
Serial correlation	etatietic	e for Desidu	ale IIKcare
Durbin-Watson test			als Uncals
Asymptotic deviat:			0 0990148
		BoxLjung	
	-0.15051		[0.0017]
8 5	0.073764		[0.0003]
12 9	-0.12002		[0.0000]
	0.12002	55.100	[0.0000]

Residuals are otherwise well-behaved. The slope (not shown here) residuals are also normally distributed.

ormality test f	or Irregular residual
	Value
Sample size	113.00
lean	-0.0032692
t.Dev	0.98884
kewness	0.23553
xcess kurtosis	0.021461
linimum	-2.2647
laximum	2.5556
	Chi^2 prob
kewness	1.0448 [0.3067]
	0.0021685 [0.9629]
Sowman-Shenton	
formality test f	for Level residual
	Value
Sample size	111.00
lean	-0.011262
t.Dev	0.98813
kewness	-0.14663
xcess kurtosis	-0.52923
linimum	-2.3309
laximum	1.9978
	Chi^2 prob
kewness	0.39776 [0.5282]
Curtosis	1.2954 [0.2551]

As a last resort, we click on select components and add the ar(1) component and re-estimate

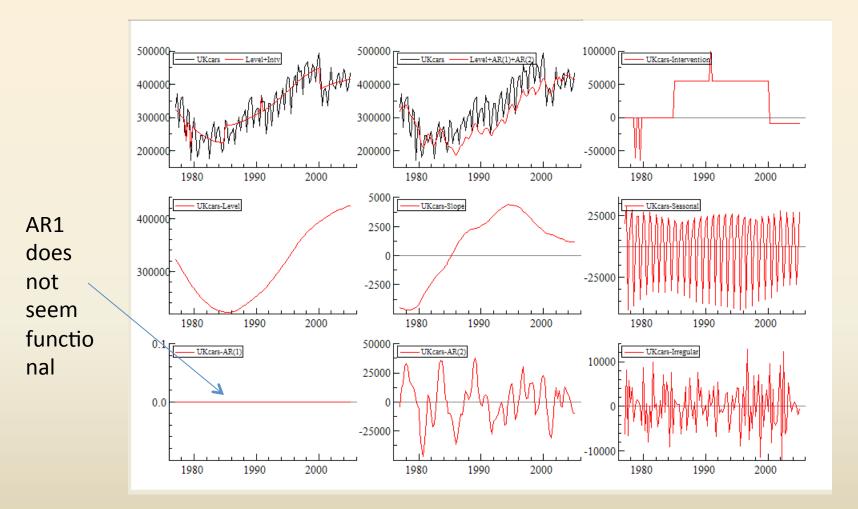
Sele	ect components - STAMP un	observed components module	×
	Stochastic	۲	^
	Fixed	0	
	Slope		
	Stochastic	\odot	
	Fixed	0	
	Order of trend (1-4)	1	
	Seasonal		
	Stochastic	\odot	
	Fixed	0	
	Select frequencies		
	Irregular		
Ξ	Cycle(s)		
	Cycle short (default 5 years)		
	Order of cycle (1-4)	1	
	Cycle medium (default 10 years)		
	Order of cycle (1-4)	1	
	Cycle long (default 20 years)		
	Order of cycle (1-4)	1	
	AR(1)		
	AR(2)		
Ξ	Options		
	Multivariate estimat		~
		OK Cancel	

R. Yaπee state space lecture 2009-Nov-26

Steady state is found again on this

pass

The data The sele The depe The mode Steady s	abase used is C ection sample is endent variable el is: Y = Trep state, found	nd + Seasonal + Irregular + AR(1) + Interventions
-		(-2 LogL = 2052.17).
Prediction e	error variance i	is 4.32196e+008
Summary stat	istics	
Dummary Dour	UKcars	
т	113.00	
- 0	5.0000	
std.error	20789.	
Normality	0.93851	
H(34)	1.0154	
DW	2.0385	
r(1)	-0.033170	
đ	14.000	
r(q)	0.13231	
Q(q,q-p)	29.775	
Rs^2	0.45817	
Variances o	of disturbances:	
	Value	(q-ratio)
Level	32508.0	(5.302e-005)
Slope		(0.0008595)
Seasonal	2.39504e+006	(0.003907)
AR(1)	6.13083e+008	(1.000)
Irregular	113757.	(0.0001855)
AR(1) other	parameters:	
AR coefficie	ent 0.71183	


Some residual ar is attenuated, but not all. We enter the ar2 and re-estimate

Bowman-Shenton	0.57886 [0.7487]	
Goodness-of-fit	based on Resi	duals UKcar	3
			Value
Prediction error	variance (p.	e.v)	4.322e+008
Prediction error	mean deviati	on (m.d)	3.4017e+008
Ratio p.e.v. / m	.d in squares		1.0277
Coefficient of d	etermination 3	R^2	0.93622
based on dif	ferences Rd^2		0.84132
based on dif	f around seas	mean Rs^2	0.45817
Information crit	erion Akaike	(AIC)	20.097
Bayesian Sch	wartz (BIC)		20.386
Serial correlati Durbin-Watson t Asymptotic devi	est is 2.0384	6	
Lag df	Ser.Corr	BoxLjung	prob
4 0	-0.084352	5.7345	[1.0000]
8 4	0.048756	16.389	[0.0025]
12 8	-0.11991	27.159	[0.0007]
Normality test f	Value	residual	
Sample size	113.00		
	0.0062564		
St.Dev	0.98946		
Skewness	0.20587		
Excess kurtosis			
Minimum	-2.4043		
Maximum	2.5012		

We try an ar(1) and ar(2) and reestimate.

Sele	ect components - STAMP un	observed components module	×
Ξ	Basic components		~
	Level		
	Stochastic	•	
	Fixed	0	
	Slope		
	Stochastic	\odot	
	Fixed	0	
	Order of trend (1-4)	1	
	Seasonal		
	Stochastic	\odot	
	Fixed	0	
	Select frequencies		
	Irregular		
Ξ	Cycle(s)		
	Cycle short (default 5 years)		
	Order of cycle (1-4)	1	
	Cycle medium (default 10 years)		
	Order of cycle (1-4)	1	
	Cycle long (default 20 years)		
	Order of cycle (1-4)	1	
	AR(1)		
	AR(2)		~
		OK Cancel	

Component graphics

The variance-covariance matrix did not invert and a generalized inverse was used. This may be associate with the failure of AR(1) component.

				**	
Full parameter repo:	rt				
Actual parameters (all)				
	Value				
Var Level	0.00000				
Var Slope	5.2207e+005				
Var Seasonal	2.6252e+006				
Var AR(1)	0.00000				
AR(1) coefficient 1	0.11531				
Var AR(2)	5.0905e+008				
AR(2) coefficient 1	0.51795				
AR(2) coefficient 2	0.51836				
Var Irregular	8.1471e+007				
Warning: invertgen:	invertsym faile	d, proceeding	with generali	zed p.s.d. inverse	2
SEst.ox (2593): Print	tPar				
Transformed paramete	ers (not fixed)				
	Transform	1stDer	2ndDer	asymp.s.e	
Var Slope	6.5828	7.4301e-005	-0.057022	0.39707	
Var Seasonal	7.3903	0.00030442	-0.10323	0.39615	
AR(1) coefficient 1				6.4975e-016	
Var AR(2)	10.024	-0.0010687	-0.62373	0.18127	
AR(2) coefficient 1	0.071841	-0.00025521	-0.045275	1.5582	
AR(2) coefficient 2	0.073454	-0.00025835	-0.045332	1.5574	
Var Irregular	9.1079	0.00068996	-0.26568	0.30715	
Actual parameters (not fixed) with	n 68% asymmetr	ic confidence	interval	
	Value	leftbound	rightbound		
Var Slope	5.2207e+005	2.3596e+005	1.1551e+006		
Var Seasonal	2.6252e+006	1.1887e+006	5.7976e+006		
AR(1) coefficient 1	0.11531	0.11531	0.11531		
Var AR(2)	5.0905e+008	3.5425e+008	7.3150e+008		
AR(2) coefficient 1	0.51795	0.18447	0.83617		
AR(2) coefficient 2					
Var Irregular	8.1471e+007	4.4077e+007	1.5059e+008		
State vector at perio	od 2005(1)				

We can see that the AR(1) component did not work

State vector at period 2005(1)

	Coefficient	RMSE	t-value	Prob
Level	424546.93797	34489.62307	12.30941	[0.00000]
Slope	1149.54803	2428.03794	0.47345	[0.63690]
Seasonal	29629.21775	5654.74466	5.23971	[0.00000]
Seasonal 2	10745.27324	5985.14446	1.79532	[0.07553]
Seasonal 3	-1568.80378	4726.82869	-0.33189	[0.74064]
AR(1)	0.00000	0.00000	.NaN	[.NaN]
AR (2)	-9905.76290	18360.67871	-0.53951	[0.59070]
AR(2) 2	2424.62188	5055.14654	0.47963	[0.63250]

Regression effects in final state at time 2005(1)

	Coefficient	RMSE	t-value	Prob
Outlier 1978(4)	-61014.93554	16775.76961	-3.63709	[0.00043]
Outlier 1979(3)	-64257.53147	16400.80328	-3.91795	[0.00016]
Outlier 1990(4)	44941.31741	15990.80695	2.81045	[0.00592]
Level break 2000(2)-64117.42562	19364.57045	-3.31107	[0.00128]
Level break 1985(1) 54913.02641	18998.22880	2.89043	[0.00469]

Irregular and slope residuals are good but slope residuals are not.

Normality test for	r Irregular residual	
	Value	
Sample size	113.00	
Mean	-0.015329	
St.Dev	1.0136	
Skewness	0.14430	
Excess kurtosis	-0.15552	
Minimum	-2.3730	
Maximum	2.5258	
	Chi^2 prob	
Skewness	0.39215 [0.5312]	
Kurtosis	0.11388 [0.7358]	
Bowman-Shenton	0.50604 [0.7765]	
Normality test for	r Level residual	
Normality test for	r Level residual Value	
	Value	
Sample size	Value	
Sample size	Value 112.00	
Sample size Mean	Value 112.00 -0.017971	
Sample size Mean St.Dev	Value 112.00 -0.017971 0.97626 -0.15121	
Sample size Mean St.Dev Skewness Excess kurtosis	Value 112.00 -0.017971 0.97626 -0.15121	
Sample size Mean St.Dev Skewness Excess kurtosis	Value 112.00 -0.017971 0.97626 -0.15121 -0.55133	
Sample size Mean St.Dev Skewness Excess kurtosis Minimum	Value 112.00 -0.017971 0.97626 -0.15121 -0.55133 -2.4257 1.9597	
Sample size Mean St.Dev Skewness Excess kurtosis Minimum Maximum	Value 112.00 -0.017971 0.97626 -0.15121 -0.55133 -2.4257 1.9597 Chi^2 prob	
Sample size Mean St.Dev Skewness Excess kurtosis Minimum Maximum Skewness	Value 112.00 -0.017971 0.97626 -0.15121 -0.55133 -2.4257 1.9597 Chi^2 prob 0.42681 [0.5136]	
Sample size Mean St.Dev Skewness Excess kurtosis Minimum Maximum Skewness Kurtosis	Value 112.00 -0.017971 0.97626 -0.15121 -0.55133 -2.4257 1.9597 Chi^2 prob	

Residual serial correlation and misbehaved slope residuals plague this model (failure of AR(1)) component

Value

Goodness-of-fit based on Residuals UKcars

	value
Prediction error variance (p.e.v)	4.3824e+008
Prediction error mean deviation (m.d)	3.4892e+008
Ratio p.e.v. / m.d in squares	1.0043
Coefficient of determination R^2	0.9347
based on differences Rd^2	0.83752
based on diff around seas mean Rs	0.4452
Information criterion Akaike (AIC)	20.093
Bayesian Schwartz (BIC)	20.358

Serial correlation statistics for Residuals UKcars Durbin-Watson test is 2.08782

Asymptotic deviation for correlation is 0.0985329

Lag	df	Ser.Corr	BoxLjung		prob
4	-1	-0.084399	4.5647	[1.0000]
8	3	0.033324	14.458	[0.0023]
12	7	-0.076398	24.558	[0.0009]

Normality test f	for Slope rea	sid	iual
	Value		
Sample size	111.00		
Mean	0.30453		
St.Dev	0.93478		
Skewness	0.0084911		
Excess kurtosis	-1.2212		
Minimum	-1.6725		
Maximum	2.0243		
	Chi^2		prob
Skewness	0.0013338	[0.9709]
Kurtosis	6.8975	[0.0086]
Bowman-Shenton	6.8988	[0.0318]

We try again with and hope that a different starting value will lead to a more propitious result.

```
Estimating.....
  Strong convergence relative to 1e-007
  - likelihood cvg 0
  - gradient cvg 8.18304e-005
  - parameter cvg 0
  - number of bad iterations 5
  . . . . . . .
  Strong convergence relative to 1e-007
  - likelihood cvg 0
  - gradient cvg 0.000234708
  - parameter cvg 0

    number of bad iterations 5

  Estimation process completed.
UC(7) Estimation done by Maximum Likelihood (exact score)
     The database used is C:\Program Files\OxMetrics6\data\ukcars.csv
     The selection sample is: 1977(1) - 2003(1) (T = 105, N = 1)
     The dependent variable Y is: UKcars
     The model is: Y = Trend + Seasonal + Irregular + AR(1) + AR(2) + Interventions
     Steady state. found
 Log-Likelihood is -958.678 (-2 LogL = 1917.36).
 Prediction error variance is 4.57688e+008
```

This time a stead state is found, and although there were 5 bad iterations the model converged. R. Yaffee state space lecture 2009-Nov-26

This time the Box-Ljung Q is smaller and the ar(1) and ar(2) worked.

Log-Likelihood is -958.678 (-2 LogL = 1917.36). Prediction error variance is 4.57688e+008

Summary statistics

	UKcars
Т	105.00
p	7.0000
std.error	21394.
Normality	1.5991
H(31)	1.2357
DW	1.9409
r(1)	0.026838
q	15.000
r(q)	0.068166
Q(q,q-p)	13.967
Rs^2	0.44419

Variances of disturbances:

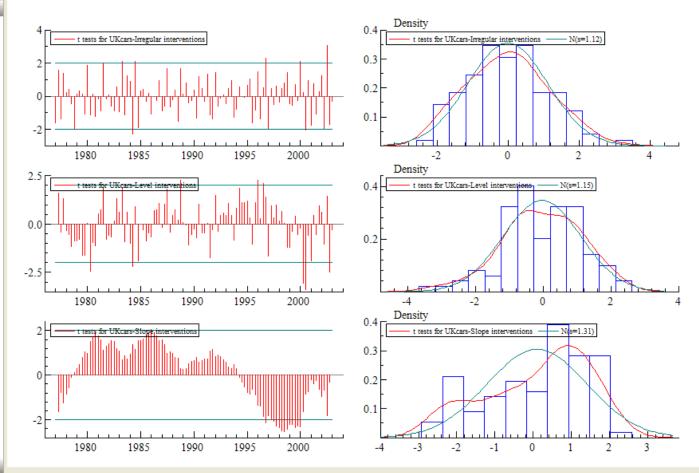
		Val	ue		(q-ratio)
Level	0	.0000	00	(0.0000)
Slope		50379	4.	(0.04722)
Seasonal	4.841	39e+0	06	(0.4537)
AR(1)	1.215	38e+0	06	(0.1139)
AR(2)	5.375	49e+0	80	(50.38)
Irregular	1.067	02e+0	07	(1.000)
AR(1) other	parame	ters:			
AR coefficie	nt	0.60	756		
AR(2) other	parame	ters:			
AR coefficie	nt	0	.607	56	
AR(1) coeffi	cient	1	.051	69	
AR(2) coeffi	cient	-0	.276	21	

A Box-Ljung Q test with 8 df shows that the autocorrelation of the residuals is not significant.

Distribution Chi^2(n1) F(n1,n2) N(0,1) N(0,1) - one sided Student t-(n1) Student t-(n1) - one sided	Arguments n1 n2 Critical value	8 1 13.967	4>
ОК Сhi^2(8) = 13.967 [0	Cancel		

The residuals are no longer signficantly autocorrelated.

	Goodness-of-fit based on Residuals UKcars									
						Value				
	Prediction	error	variance (p.e	.v)	4.5	769e+008				
	Prediction	error a	mean deviatio	n (m.d)	4.08	359e+008				
	Ratio p.e.	7. / m.	d in squares			0.7988				
	Coefficient	t of de	termination R	^2		0.93111				
based on differences Rd^2 0.83889										
	based of	on diff	around seas	mean Rs^2		0.44419				
Information criterion Akaike (AIC) 20.151										
	Bayesia	an Schw	artz (BIC)			20.429				
Serial correlation statistics for Residuals UKcars										
Durbin-Watson test is 1.9409										
Asymptotic deviation for correlation is 0.102598										
	Lag	df	Ser.Corr	BoxLjung	r	prob				
	4	-1	-0.10978	3.4393	[1.0000]				
	8	3	0.10541	7.628	[0.0544]				
	12	7	-0.067548	13.134	1	0.0689]				


Irregular and level residuals remain well-behaved.

Normality test f	or UKcars-Irregular residual
	Value
Sample size	105.00
Mean	-0.0073490
St.Dev	1.1223
Skewness	0.17703
Excess kurtosis	-0.42145
Minimum	-2.2919
Maximum	3.0698
	Chi^2 prob
Skewness	0.54846 [0.4589]
Kurtosis	0.7771 [0.3780]
Bowman-Shenton	1.3256 [0.5154]
Values larger th	an 3 for UKcars-Level residual:
	Value prob
0000/01	
2000(2)	-3.04466 [0.00147]
	-3.36943 [0.00147] -3.36943 [0.00053]
2000 (3)	
2000 (3)	-3.36943 [0.00053]
2000(3) Normality test f Sample size	-3.36943 [0.00053] or UKcars-Level residual Value 103.00
2000(3) Normality test f Sample size	-3.36943 [0.00053] or UKcars-Level residual Value
2000(3) Normality test f Sample size	-3.36943 [0.00053] or UKcars-Level residual Value 103.00
2000(3) Normality test f Sample size Mean St.Dev Skewness	-3.36943 [0.00053] or UKcars-Level residual Value 103.00 -0.027816 1.1513 -0.32333
2000(3) Normality test f Sample size Mean St.Dev	-3.36943 [0.00053] or UKcars-Level residual Value 103.00 -0.027816 1.1513 -0.32333
2000(3) Normality test f Sample size Mean St.Dev Skewness	-3.36943 [0.00053] or UKcars-Level residual Value 103.00 -0.027816 1.1513 -0.32333
2000(3) Normality test f Sample size Mean St.Dev Skewness Excess kurtosis	-3.36943 [0.00053] or UKcars-Level residual Value 103.00 -0.027816 1.1513 -0.32333 -0.015384

Only the slope residual is potentially problematic

Normality test f	or UKcars-Level residual
	Value
Sample size	
Mean	-0.027816
St.Dev	1.1513
Skewness	-0.32333
Excess kurtosis	-0.015384
Minimum	-3.3694
Maximum	2.2561
	Chi^2 prob
Skewness	1.7947 [0.1804]
Kurtosis	0.0010158 [0.9746]
Bowman-Shenton	1.7957 [0.4075]
Normality test f	or UKcars-Slope residual
	Value
Sample size	103.00
Mean	0.10017
St.Dev	1.3109
Skewness	-0.56602
Excess kurtosis	-0.86870
Minimum	-2.5361
Maximum	2.0508
	Chi^2 prob
Skewness	5.4998 [0.0190]
Kurtosis	3.2386 [0.0719]
Bowman-Shenton	8.7384 [0.0127]

However, the auxiliary residuals indicate that the problem area for the slope is before 2000.

We decide to use this model for forecasting

- Modeling residuals before 2000 would not help solve the problem with the slope residuals.
- We therefore suspect that this is about the best model that we can get with these data.
- This is confirmed by a likelihood ratio test of the LL for the last model and this model.
- Hence, our decision to use it as a basis for out-ofsample (1 year) forecast.
- We set the date of forecast origin to

We find a significant improvement between the last and the current model.

Progress t	to date					
Model	Т	р	1	og-likeliho	od	SC
UC(6)	113	7	Maximum	Likelihood	(exact	score)
UC(7)	105	8	Maximum	Likelihood	(exact	score)
Chi^2(1)	= 77.313	[0.0	000] **			

Out-of-sample forecasting

- We decide to forecast over a horizon of one year, with the forecast origin set at 2002(1).
- To do so, we have to reset the estimation period.
- The remainder of time the data span will be called the validation segment of the data and will be used to test the accuracy of the forecast.

We reformulate and when we come to the estimation period, we set the forecast origin to 2002(1)

Choose the estimation sample:			
Selection sample	1977(1) - 2005(1)		
Estimation starts at	1977(1)		
Estimation ends at	2002(1)		
Choose the estimation method:			
Maximum Likelihood (exact score)	\odot		
Maximum Likelihood (BFGS, exact score)	0		
Maximum Likelihood (BFGS, numerical score)	0		
Expectation Maximization (only variances)	0		
No estimation	0		

Then we go to the test menu and select forecasting

Test Menu	
Test Menu	
More written output	
Components graphics	
Weight functions	
Residuals graphics	
Auxiliary residuals graphics	
Prediction graphics	
Forecasting	
Store in database	
ОК	Cancel

We are then presented with the forecast menu and select:

Fore	ecasting - STAMP unobserv		×
	Edit/Save forecasts X&Y		^
	Write forecasts Y		
	Write forecasts components		
Ξ	Select components to plot w	ith Y	
	Signal		
	Trend		
	Trend plus Cycles and ARs		
	Trend plus Regression effects		
Ξ	Select components to plot w	ithout Y	
	Level		
	Slope		
	Seasonal		
	Cycles and ARs		
	Time-varying regression effects		
	Fixed regression effects		
	Fixed intervention effects		
Ξ	Further options		
	Plot confidence intervals		
	Anti-log analysis		
	Zoom sample range	1997(2) - 2002(1)	~
			_
		OK Cancel	

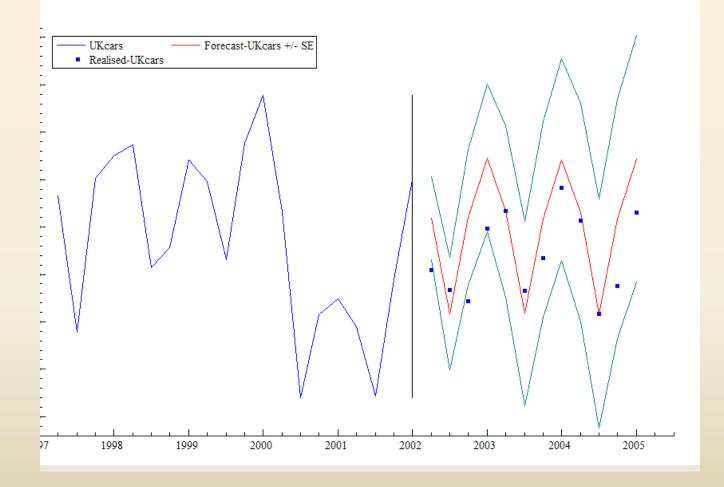
Stamp provides forecasts and evaluations over their forecast horizon

												-	
r	orecasts								-		T)	Iorward	18:
		Fored	cast	stan	d.err	lef	tbou	nd	right	ound			
1	429	678.53	3364	21681.	730624	407996	.803	0245	1360.2	26426			
2	379	333.78	3944	29574.	045093	349759	.744	3440	8907.8	33453			
3	430	063.30	5012	35881.3	179773	394182	.180	3546	5944.5	53988			
4	461	409.32	2726	38900.	708744	422508	.618	5250	0310.0	3600			
5	433	303.11	1375	45150.	856763	388152	.256	9947	8453.9	97051			
6	379	487.20	5281	48534.3	398873	330952	.863	9442	8021.0	56167			
7	429	173.50	164	51589.	511953	377583	.989	6948	0763.0	01358			
8	460	493.47	7752	53212.	571594	407280	.905	9351	3706.0	04911			
9	432	718.90	920	57626.	738753	375092	.170	4449	0345.6	54795			
1	0 379	303.51	1494	60401.	472153	318902	.042	7943	9704.9	98710			
1	1 429	347.22	2775	63220.	452183	366126	.775	5749	2567.0	57993			
1	2 460	950.04	1895	64951.3	330823	395998	.718	1352	5901.3	37977			

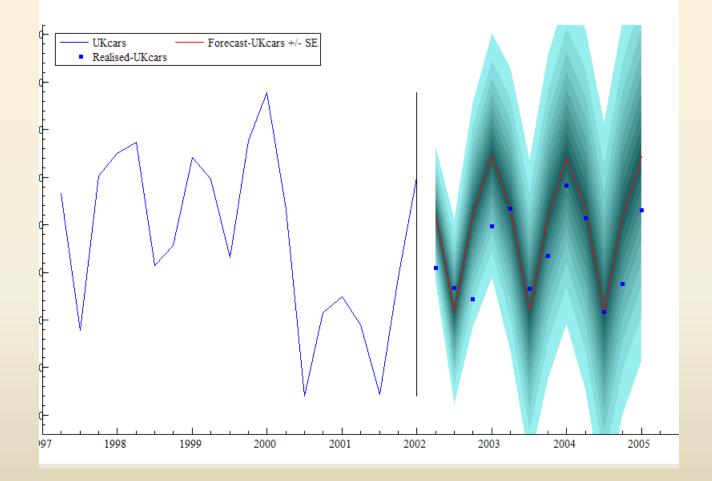
Forecast accuracy measures from period 2002(1) forwards:

	Error	RMSE	RMSPE	MAE	MAPE
1	27426.53364	27426.53364	0.68182	27426.53364	6.81825
2	-12513.21056	21316.60370	0.53238	19969.87210	5.00582
3	44173.36012	30876.53332	0.79104	28037.70144	7.15293
4	37084.32726	32539.69982	0.81256	30299.35790	7.54960
5	23.11375	29104.39415	0.72678	24244.10907	6.04074
6	-11725.73719	26996.36304	0.67465	22157.71375	5.53350
7	20433.50164	26159.81022	0.65255	21911.39774	5.45716
8	15035.47752	25041.00457	0.62196	21051.90771	5.19693
9	4516.90920	23656.84714	0.58745	19214.68565	4.73670
10	255.51494	22443.00122	0.55730	17318.76858	4.26977
11	35305.22775	23900.06113	0.59610	18953.90123	4.69613
12	28154.04895	24283.04040	0.60082	19720.58021	4.84688

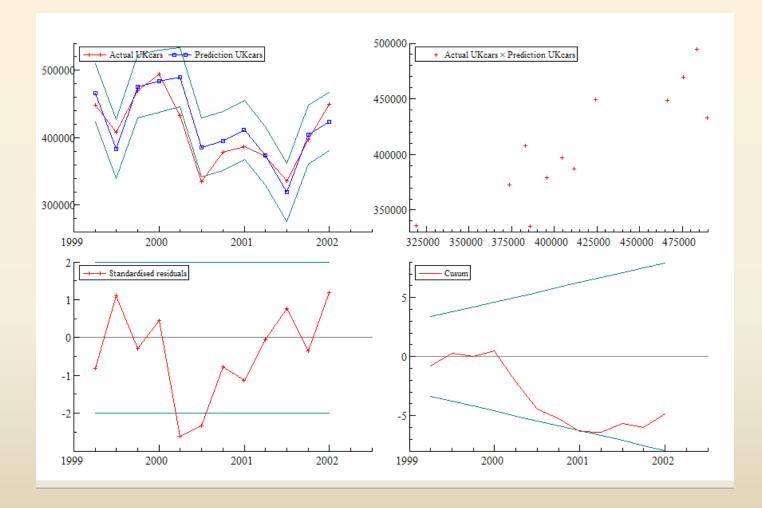
Criteria of forecast evaluation


• Criteria:

Error=(y-f) $RMSE = \sqrt{\frac{\sum_{i=1}^{T} (y_i - \hat{y}_i)^2}{T}}$ $RMSPE = \sqrt{\frac{\sum_{i=1}^{H} (y_i - f_i)^2}{H} * 100}$ $MAE = \frac{\sum_{i=1}^{H} |y - \hat{y}|}{H}$ $MAPE = 100*\frac{\sum_{i=1}^{H} |y - \hat{y}|}{H}$


Stamp will also provide forecasts and confidence intervals of those forecasts for each component as well(including AR(1) and AR(2)).

Fore	casts with 68% confidence interval from period 2002(1) forwar	de ·
TOLE	Forecast stand.err leftbound rightbound	us.
1	354856.39999 33151.93043321704.46956388008.33042	
2	355137.34377 34816.42015320320.92361389953.76392	
3	355418.28754 36656.63551318761.65203392074.92305	
4	355699.23132 38665.30696317033.92436394364.53828	
7 5	355980.17510 40834.44925315145.72584396814.62435	
5 6	356261.11887 43155.83164313105.28724399416.95051	
o 7	356542.06265 45621.31810310920.74456402163.38075	
- C	356823.00643 48223.09462308599.91181405046.10105	
8		
9	357103.95021 50953.80654306150.14367408057.75675	
10	357384.89398 53806.62906303578.26492411191.52304	
11	357665.83776 56775.29103300890.54673414441.12879	
	357946.78154 59854.06794298092.71359417800.84948 () warning: SLOPE can not be part of signal	
Ssf(Fore		ds:
Ssf(Fore) warning: SLOPE can not be part of signal	ds:
Ssf(Fore Fore) warning: SLOPE can not be part of signal cast values for Seasonal casts with 68% confidence interval from period 2002(1) forwar	ds:
Ssf(Fore Fore) warning: SLOPE can not be part of signal cast values for Seasonal casts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound	ds:
Ssf (Fore Fore 1 2	() warning: SLOPE can not be part of signal ccast values for Seasonal ccasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655	ds:
Ssf (Fore Fore 1 2 3	() warning: SLOPE can not be part of signal coast values for Seasonal coasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895	ds:
Fore	() warning: SLOPE can not be part of signal cast values for Seasonal casts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610	ds:
Ssf (Fore Fore 1 2 3 4	() warning: SLOPE can not be part of signal ecast values for Seasonal ecasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610 35123.73632 9569.83400 25553.90233 44693.57032	ds:
Ssf(Fore Fore 1 2 3 4 5 6	() warning: SLOPE can not be part of signal ecast values for Seasonal ecasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610 35123.73632 9569.83400 25553.90233 44693.57032 7334.96779 10560.43744 -3225.46965 17895.40523	ds:
Ssf (Fore Fore 1 2 3 4 5	<pre>() warning: SLOPE can not be part of signal ccast values for Seasonal ccasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610 35123.73632 9569.83400 25553.90233 44693.57032 7334.96779 10560.43744 -3225.46965 17895.40523 -46174.62175 10541.97601-56716.59775-35632.64574</pre>	ds:
Ssf(Fore Fore 1 2 3 4 5 6 7	<pre>() warning: SLOPE can not be part of signal ccast values for Seasonal ccasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610 35123.73632 9569.83400 25553.90233 44693.57032 7334.96779 10560.43744 -3225.46965 17895.40523 -46174.62175 10541.97601-56716.59775-35632.64574 3715.91763 10558.95228 -6843.03465 14274.86991</pre>	ds:
 Ssf(Fore Fore 1 2 3 4 5 5 6 7 8	<pre>() warning: SLOPE can not be part of signal ccast values for Seasonal ccasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610 35123.73632 9569.83400 25553.90233 44693.57032 7334.96779 10560.43744 -3225.46965 17895.40523 -46174.62175 10541.97601-56716.59775-35632.64574 3715.91763 10558.95228 -6843.03465 14274.86991 35123.73632 11422.19915 23701.53718 46545.93547</pre>	ds:
 Ssf(Fore Fore 1 2 3 4 5 5 6 7 8 9	<pre>() warning: SLOPE can not be part of signal ccast values for Seasonal ccasts with 68% confidence interval from period 2002(1) forwar Forecast stand.err leftbound rightbound 7334.96779 8522.78876 -1187.82097 15857.75655 -46174.62175 8499.90280-54674.52454-37674.71895 3715.91763 8520.94847 -4805.03083 12236.86610 35123.73632 9569.83400 25553.90233 44693.57032 7334.96779 10560.43744 -3225.46965 17895.40523 -46174.62175 10541.97601-56716.59775-35632.64574 3715.91763 10558.95228 -6843.03465 14274.86991 35123.73632 11422.19915 23701.53718 46545.93547 7334.96779 12264.08372 -4929.11593 19599.05151</pre>	ds:


Forecasts can be graphed as well

Forecast Profiles may be edited and changed into forecast fan charts or error bar charts

Other prediction graphics are available, including coverage, cumsum, and cumsum squared plots.

Diagnosing the State Space model

Residuals are used for diagnosis. These are the innovations. But the auxiliary residuals are estimators of the disturbances associated with the unobserved components. Although they are related to the residuals, they may display the information somewhat differently.

Residuals are useful for diagnostics in large samples. However, in finite samples, auxiliary residuals may be more helpful. They may be regarded as minimum mean square estimators under conditions of Gaussianity, according to Harvey and Koopman 1992, in Harvey and Proietti (2005), 84.

Auxiliary residuals are serially correlated. However, they are useful in detecting outliers and level shifts. The Bowman-Shenton test, which is distributed as a χ^2 test with 2 df, is modified to account for this autocorrelation, they can be used to distinguish between them as well.

Computation of Auxiliary Residuals

Just run the Kalman filter and then the smoother. When computing the variances at the beginning or end of the series, they will seem very large compared to the others.

For test statistics, only the observations in the middle of the series should be used. The variances at either end are much larger.

Auxiliary residuals are standardized for presentation. By dividing the residual by the square root of the variance t-tests for significance are obtained. Using all of the data as a basis for the significance test, these auxiliary residuals are usually preferred for the first pass of the diagnostics of model adequacy.

Applications of the Auxiliary Residuals

Testing for a level shift is best done with the use of the auxiliary residuals.

Testing for seasonal change would be better done with auxiliary residuals.

Testing for an individual outlier is perhaps better done with residuals that are not autocorrelated. Harvey and Koopman argue that auxiliary residuals combine in the best way to use them for testing in this kind of case (*Ibid, 86*)

Tests based on skewness and kurtosis:

Forecasting with State Space Models

Three methods are provided with Stata's space.

One-step-ahead forecasting is performed by the Kalman filter in its filtering process.

Iterative projection results from repeated application of this process.

Forecast evaluation

Forecast evaluation is performed by out-of-sample comparison of the forecasts to the actual data.

Aside from the predictive error variance computed from the predictive error decomposition, error, Root mean square error, root mean square percentage error, mean absolute error, and mean absolute percentage error are criteria employed to evaluate the forecast accuracy.

Other predictive graphics tests can also be applied to the forecasts for evaluation: Predictive error variance, cumsum, and cumsum squares, and Chow's predictive failure test are among them.

Relationship of State Space to ARIMA models

(Ruey Tsay, class notes)

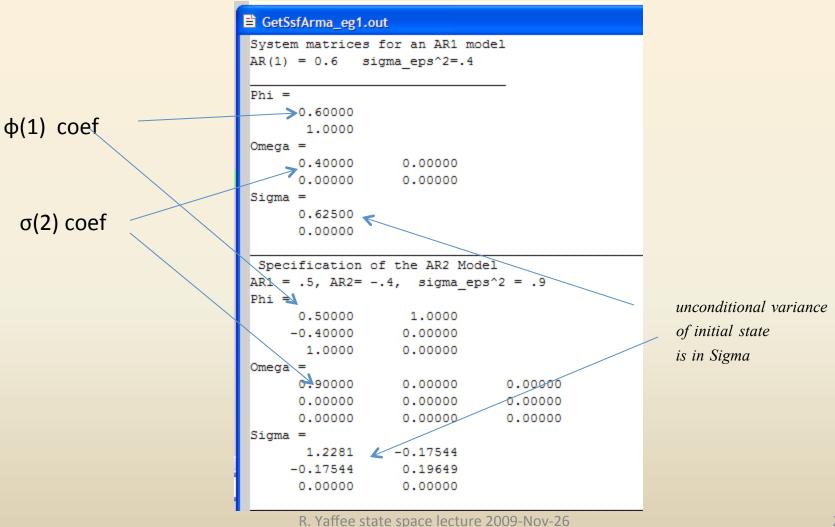
Cayley-Hamilton Theorem:

for any m x m matrix F, with characteristic equation, such a matrix is reduce able to an ARIMA model. (Details are not presented here).

What do ARIMA models look like when presented as State Space System form? We consider just a few cases.

The AR(1) case The AR(2) case The MA(1) case The MA(2) case The ARMA(1,1) case The ARMA(2,2) case The ARIMA(0,1,1) case The ARIMA(0,2,2) case

The equations are stacked within System matrices (α , Φ , Ω , and Σ , T, Z, R and H(=1 and in front of epsilon)


If $\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$, $\eta_t = iid \ N(0, \sigma_{\eta_t}^2)$ transition equation $y_t = Z_t \alpha_t + \varepsilon_t$, $\varepsilon_t = iid \ N(0, \sigma_{\varepsilon_t}^2)$ measurement equation, then α_{t+1} Φ_t $\begin{pmatrix} \alpha_{t+1} \\ y_t \end{pmatrix} = \begin{pmatrix} T_t \\ Z_t \end{pmatrix} (\alpha_t) + \begin{pmatrix} R_t \eta_t \\ \varepsilon_t \end{pmatrix} \qquad \Omega_t = \begin{pmatrix} \sigma_{\eta}^2 \\ 0 & \sigma_{\varepsilon}^2 \end{pmatrix}$ where $y_t = \mu_t + \varepsilon_t$, $\varepsilon_t = iid \ N(0, \sigma_{\varepsilon_t}^2) \qquad \Sigma = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

 $\alpha_{1} \sim N(\alpha_{1}, P_{1})$ $NB : In \ a \ local \ level \ Model : T_{t} = I, \ so$ $\alpha_{t+1} = \alpha_{t} + R_{t}\eta_{t}$ R. Yaffee state space lecture 2009-Nov-26

SsfPack program to generate AR(1) and AR(2) system matrices

```
Tx GetSsfArma_eg1.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\GetSsfArma_eg1.ox
                                                                              #include <oxstd.h>
    #include <oxdraw.h>
    #import <maximize>
4
    #include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>
5
6
   main()
8
    {
9
    decl mPhi, mOmega, mSigma;
10
   println("System matrices for an AR1 model");
11
   println("AR(1) = 0.6 sigma eps^2=.4 ");
12
   println("
                                              ");
13
14
   GetSsfArma
   (<.6>, <>, sqrt(.4), &mPhi, &mOmega, &mSigma);
15
16
   print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ", mSigma);
17
18
  println ("
                                                                       ");
19
20
  println(" Specification of the AR2 Model");
21
   println( "AR1 = .5, AR2= -.4, sigma eps^2 = .9");
22
23
   GetSsfArma
   (<0.5,-0.4>,<>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
24
   print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ", mSigma);
25
   println ("
26
                                                                       ");
27
                     R. Yaffee state space lecture 2009-Nov-26
```

ARIMA(1,0,0) and ARIMA(2,0,0) state space system matrices AR(1) model: $\phi_1=0.6$, $\sigma^2=.4$; AR(2) model: $\phi_1=0.5$, $\phi_2=-.4$, $\sigma^2=.9$

ARIMA(0,0,1) and ARIMA(0,0,2) state space system matrices SsfPack code

```
GetSsfArma_eg1.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\GetSsfArma_eg1.ox
22
23
    GetSsfArma
24
    (<0.5,-0.4>,<>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
    print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ", mSigma);
25
26
    println ("
                                                                       ");
27
28
   println(" MA(1) Model");
  println( "MA1 = .4 sigma eps = .6 ");
29
  GetSsfArma(<>,<.4>,sqrt(.6), &mPhi, &mOmega, &mSigma);
30
31
   print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ", mSigma);
32
33
    println("
                                                                          ");
34
35
     println(" The Following specification is that of an MA(2) model");
36
     println( "The parms are ar=0, ma1 = -.3, ma2 = - .4, sigma=sqrt(5)");
37
38
39
    GetSsfArma
40
    (<>,<-0.3,-.4>,sqrt(.5), &mPhi, &mOmega, &mSigma);
41
    print("Phi = ",mPhi," Omega = ",mOmega," Sigma = ",mSigma);
42
43
44
45
46
                      R. Yaffee state space lecture 2009-Nov-26
```

State Space System matrices for MA(1) model θ_1 =.4 σ^2 =.6

🖹 GetSs	sfArma_eg1.	out			
MA(1)	Model				~
MA1 =	.4 sigma	_eps = .6		.4*.6	
Phi =					
	0.00000	1.0000			
	0.00000	0.00000			
	1.0000	0.00000			
Omega	= K				
	0.60000	0.24000	0.00000		
	0.24000	0.096000	0.00000		
	0.00000	0.00000	0.00000		
Sigma	=				
	0.69600	0.24000			
	0.24000	0.096000			
	0.00000	0.00000			_
					~
<					>

State Space System Matrices for MA(2) model θ_1 =-0.3 θ_2 =-0.4 σ^2 =5

🗎 GetSsfArma_eg1.out

The Follo	wing spect	ification is	that of an N	MA(2) model
The parms	are ar=0,	ma1 =3, 1	ma2 =4, s	sigma_eps^2=5
Phi =				
0.00	000	1.0000	0.0000	
0.00	000 (0.00000	1.0000	-0.3 x .5
0.00	000 (0.00000	0.00000	
1.0	000	5.00000	0.00000	-0.4 x .5
Omega =	K			
0.50	000 -(0.15000	-0.20000	0.00000
-0.15	000 0	.045000	0.060000	0.00000
-0.20	000 < 0	.060000	0.080000	0.00000
0.00	000 (0.00000	0.00000	0.00000
Sigma =				
0.62	500 -0	.090000	-0.20000	
-0.090	000 (0.12500	0.060000	
-0.20	000 0.	.060000	0.080000	
0.00	000 (0.00000	0.00000	

SsfPack code snippet for system matrices for ARMA(1,1) and ARMA(2,2) models

```
🖳 GetSsfARMA.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\GetSsf...
44
   println(" ARMA(1,1) Models ");
45
  println(" ar1 = .6 ma = -0.3 sigma esp^2=.4 ");
46
47
   GetSsfArma
48
  (<.6>,<-0.3>, sqrt(.4), &mPhi, &mOmega, &mSigma);
49
  print("Phi = ",mPhi," Omega = ",mOmega," Sigma = ",mSigma);
50
51
  println("
                                                           ");
52
53
  println(" ARMA(2,2) Models ");
54
   println(" ar1 = 0.6 ar2= -0.3 ma1 = -0.3 ma2=.5 sigma esp^2=.4
                                                                      ");
55
   GetSsfArma
56
  (<.6,-.3>,<-0.3,.5>, sqrt(.4), &mPhi, &mOmega, &mSigma);
57 print("Phi = ",mPhi," Omega = ",mOmega," Sigma = ",mSigma);
58
59
   3
```

System matrices for ARMA(1,1) models Can you tell from output what the parameters are?

E GetSsfARMA.out		г
	ARMA(1,1)	Models
ar1 = .6 ma = Phi =	-0.3	sigma_esp^2=.4
0.60000	1.0000	
0.00000	0.00000	
1.0000	0.00000	
Omega =		
0.40000	-0.12000	0.00000
-0.12000	0.036000	0.00000
0.00000	0.00000	0.00000
Sigma =		
0.45625	-0.12000	
-0.12000	0.036000	
0.00000	0.00000	
<	Ш	

ARMA(2,2) system matrices

Can you tell what the parameters are from this output (ignoring the listing of Them on the top?

GetSsfARMA.out			
ARMA(2,2) Models			
ar1 = 0.6 ar2	= -0.3 ma1 =	-0.3 ma2=.5	sigma_esp^2=.4
Phi =			
0.60000	1.0000	0.00000	
-0.30000	0.00000	1.0000	
0.00000	0.00000	0.00000	
1.0000	0.00000	0.00000	
Omega =			
0.40000	-0.12000	0.20000	0.00000
-0.12000	0.036000	-0.060000	0.00000
0.20000	-0.060000	0.10000	0.00000
0.00000	0.00000	0.00000	0.00000
Sigma =			
0.50354	-0.11588	0.20000	
-0.11588	0.061319	-0.060000	
0.20000	-0.060000	0.10000	
0.00000	0.00000	0.00000	
	III		3
13			

SsfPack code snippet: System matrices for an ARIMA(1,1,1) model

P _X A	ARIMA.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\ARIMA.ox	_ 🗆 🗙
1	#include <oxstd.h></oxstd.h>	^
2	<pre>#include <c:\program files\oxmetrics51\ox\packages\ssfpack\ssfpack_ex.h=""></c:\program></pre>	
3		
4	main()	
5	{	
6	<pre>println("Chapter 3 ARIMA Model(with 1st differencing)");</pre>	-
7	println("	") =
8 9	<pre>println(" d=1, ar1=.6, MA1=4, sigma_eps^2 = .9");</pre>	
	decl mPhi, mOmega, mSigma;	
10	GetSsfSarima	
11	(1,<0.6>,<-0.4>, sqrt(0.9), &mPhi, &mOmega, &mSigma);	
12	print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ",mSigma);	
13	}	
14		×
<		S

State space system matrices for ARIMA(1,1,1) model

ARIMA.out

ARIMA.out				
Chapter 3 ARI	MA Model(with	1st differencir	ıg)	
	MA1=4, si	gma_eps^2 = .9		
Phi =				
1.0000	1.0000	0.00000		
0.00000	0.60000	1.0000		
0.00000	0.00000	0.00000		
1.0000	1.0000	0.00000		
Omega =				
0.00000	0.00000	0.00000	0.00000	
0.00000	0.90000	-0.36000	0.00000	
0.00000	-0.36000	0.14400	0.00000	
0.00000	0.00000	0.00000	0.00000	
Sigma =				
-1.0000	0.00000	0.00000		
0.00000	0.95625	-0.36000		
0.00000	-0.36000	0.14400		
0.00000	0.00000	0.00000		
<				

ARIMA(0,1,1) aka simple exponential smoothing

System matrices for ARIMA(0,1,1) model

ARIMA011.out

Antimation				
Chapter 3 ARIMA (0,1,1) Model				
d=1, MA1=4,	sigma_eps^:	2 = .9		
Phi =				
1.0000	1.0000	0.00000		
0.00000	0.00000	1.0000		
0.00000	0.00000	0.00000		
1.0000	1.0000	0.00000		
Omega =				
0.00000	0.00000	0.00000	0.00000	
0.00000	0.90000	-0.36000	0.00000	
0.00000	-0.36000	0.14400	0.00000	
0.00000	0.00000	0.00000	0.00000	
Sigma =				
-1.0000	0.00000	0.00000		
0.00000	1.0440	-0.36000		
0.00000	-0.36000	0.14400		
0.00000	0.00000	0.00000		

ARIMA(0,2,2) system matrices

```
*ARIMA011.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_3\ARIMA0...
3
   main()
5
    £
6
7
    println("Chapter 3 ARIMA (0,2,2) Model");
    8
9
10
    println( " d=2, MA1= - .4, MA2 = 0.5, sigma eps^2 = .9");
    decl mPhi, mOmega, mSigma;
    GetSsfSarima
11
    (1,<> ,<-0.4>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
12
    print("Phi = ", mPhi, "Omega = ", mOmega, "Sigma = ", mSigma);
13
```

ARMA(2,2) system matrices

E	🖹 GetSsfARMA.out					
		ARMA(2,2)	Models			
	ar1 = 0.6 ar2=	-0.3 mal =	-0.3 ma2=.5	sigma_esp^2=.4		
	Phi =					
	0.60000	1.0000	0.00000			
	-0.30000	0.00000	1.0000			
	0.00000	0.00000	0.00000			
	1.0000	0.00000	0.00000			
	Omega =					
	0.40000	-0.12000	0.20000	0.00000		
	-0.12000	0.036000	-0.060000	0.00000		
	0.20000	-0.060000	0.10000	0.00000		
	0.00000	0.00000	0.00000	0.00000		
	Sigma =					
	0.50354	-0.11588	0.20000			
	-0.11588	0.061319	-0.060000			
	0.20000	-0.060000	0.10000			
	0.00000	0.00000	0.00000			
<				>		
F	1J					

System matrices for ARIMA(0,2,2) model

= ARIMAUZZ.out						
Ox Professional	version 6.00	(Windows/U/M)	[) (C) J.A. D	oornik, 1994-2	009	
Chapter 3 ARIMA	A (0,2,2) Mode	:1				
					=	
d=2, MA1=4 Phi =	MAZ = 0.5,	sigma_eps.2	= .9			
1.0000	1.0000	1.0000	0.00000	0.00000		
0.00000	1.0000	1.0000	0.00000	0.00000		
0.00000						
	0.00000	0.00000	1.0000	0.00000		
0.00000	0.00000	0.00000	0.00000	1.0000		
0.00000	0.00000	0.00000	0.00000	0.00000		
1.0000	1.0000	1.0000	0.00000	0.00000		
Omega =						
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
0.00000	0.00000	0.90000	-0.36000	0.45000	0.00000	
0.00000	0.00000	-0.36000	0.14400	-0.18000	0.00000	
0.00000	0.00000	0.45000	-0.18000	0.22500	0.00000	
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
Sigma =						
-1.0000	0.00000	0.00000	0.00000	0.00000		
0.00000	-1.0000	0.00000	0.00000	0.00000		
0.00000	0.00000	1.2690	-0.54000	0.45000		
0.00000	0.00000	-0.54000	0.36900	-0.18000		
0.00000	0.00000	0.45000	-0.18000	0.22500		
0.00000	0.00000	0.00000 R. Yaffee state	0.00000 space lecture 200	0.00000)9-Nov-26		

Structural time series model (Stsm)

Koopman et al. (2008)

The state space form of the structural time series mod*el is*

$$y_{t} = \mu_{t} + \beta_{t} + \gamma_{t} + \psi_{t}$$
where
$$\mu_{t} = unobserved \ trend \ (level) \ componen$$

$$\beta_{t} = unobserved \ slope \ component$$

$$\gamma_{t} = unobserved \ seasonal \ component$$

$$\psi_{t} = unobserved \ cyclical \ component$$

$$\xi_{t} = unobserved \ irregular \ component$$

Structural time series models

Koopman, S.J., Shephard, N. and Doornik, J. (2008)

$$y_{t} = \mu_{t} + \gamma_{t} + \psi_{t} + \xi_{t} \qquad \xi_{t} \sim NID(\theta, \sigma_{\xi}^{2})$$
where
$$y_{t} = response \ variable$$

$$\mu_{t} = local \ level$$

$$\beta_{t} = unobserved \ slope \ component$$

$$\gamma_{t} = seasonality$$

$$\psi_{t} = cycle$$

$$\xi_{t} = measurement \ error$$

Nonstationary trend component

When the trend contains drift or deterministic slope, it is not stationary.

Hence, the slope component is added to the trend in order to handle

Such nonstationarity. All of these components are random effects.

They are characterized by their own measurement error, sampling

error, or other error in variables. Consequently, each unobserved

component has its own error term. (Zivot and Wang, 530.)

Is the level fixed or random

Usually, the level will be time-varying and possess an evolutionary error ,eta , (η_t). Moreover, unless measured without error, the measurement error , epsilon(ϵ_t) will be nonzero as well. Hence, their standard deviations, apparent in the sigma matrix, will also be nonzero.

If there is no error of measurement, then the epsilon would be fixed at zero. In the measurement equation. The error term for the transition (evolutionary) process then can be set to zero by equating eta to 0. and letting its standard deviation in the sigma matrix = 0 as well. This can be done in the transition equation while any representation of that variation in the sigma matrix can be set to zero.

The local linear trend model

Contains drift or stochastic trend (random walk) (error allowed to vary) or

Contains deterministic trend (error=0) sometimes called smooth trend

$$\begin{split} \mu_{t+1} &= \mu_t + \beta_t + \eta_t \qquad \eta_t : GWN(\theta, \sigma_{\eta}^2) \\ \beta_{t+1} &= \beta_t + \zeta_t \qquad \zeta_t \sim GWN(\theta, \sigma_{\zeta}^2) \\ when the error &= 0, these trends are smooth \\ and fixed(deterministic), but when \\ the errors and error variances are \\ nonzero, these components are \\ random (having either measurement, \\ sampling, or some other kind of \\ error. \end{split}$$

Initial values of trend

 $\mu_1 = N(\boldsymbol{\theta}, \sigma_{\eta}^2)$ $\beta_1 = N(\boldsymbol{\theta}, \sigma_{\varsigma}^2)$

when the error variance- $>\infty$, this indicates reduction in the precision of the prior parameter to 0, so the data receive almost give all of the weight in the sequential weighted averaging process that predicts the posterior predictive mean or variance. On the computer, a very large number, such as 10^6 or 10^7 replaces the infinite variance. After a few more iterations, the process usually converges to a solution.

This is a local trend

The trend is a local rather than global trend. The trend is allowed to varying over time.

It can be time varying or fixed, depending upon whether the errors positive or equal to zero.

Trends are evident in changes in the level and/or slope, sometimes apparent in a graph of the series.

Identifying the nature of the trend

When we test the signal to noise ratio of the trend and find that it is zero,

We infer that the trend is not stochastic but fixed (deterministic).

There are also higher order trends such as u m-1, u m-2, ... that can be interpreted as first, second, or higher order (m) derivatives.

$$\mu_{i,t+1} = \mu_{i,t} + \mu_{i-1,t}$$

where
 $i = 2, 3, ..., m$

Local Linear Trend model with Ox (Koopman, Shephard, and Doornik, 2008, 8)

```
#include <oxstd.h>
#include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>
// Local Linear Trend Model
main()
{
   decl mPhi, mSigma, mOmega;
   GetSsfStsm
  (<CMP IRREG, 1.0, 0,0,0;
     CMP LEVEL, .5,0,0,0;
     CMP SLOPE, .1,0,0,0>,
   &mPhi, &mOmega, &mSigma);
   format ("%#6.2g");
  println("Local Linear Trend Model ");
   println("
                                         ");
  print("Phi = ",mPhi, " Omega = ",mOmega, " Sigma = ",mSigma);
```

Local Linear Trend Model system matrices

```
Ox at 21:32:37 on 09-Nov-2009 -----
Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
Local Linear Trend Model
Phi =
  1.0 1.0
 0.00 1.0
 1.0 0.00
Omega =
 0.25 0.00 0.00
 0.00 0.010 0.00
 0.00 0.00 1.0
Sigma =
 -1.0 0.00
 0.00 -1.0
 0.00 0.00
```

Seasonal component

Seasonality, like all unobserved components, can be stochastic (random) or fixed or nonexistent.

Seasonality, an annual variation, may render a series nonstationary and difficult to use for forecasting.

Seasonality may be defined by dummy variables or trigonometric functions.

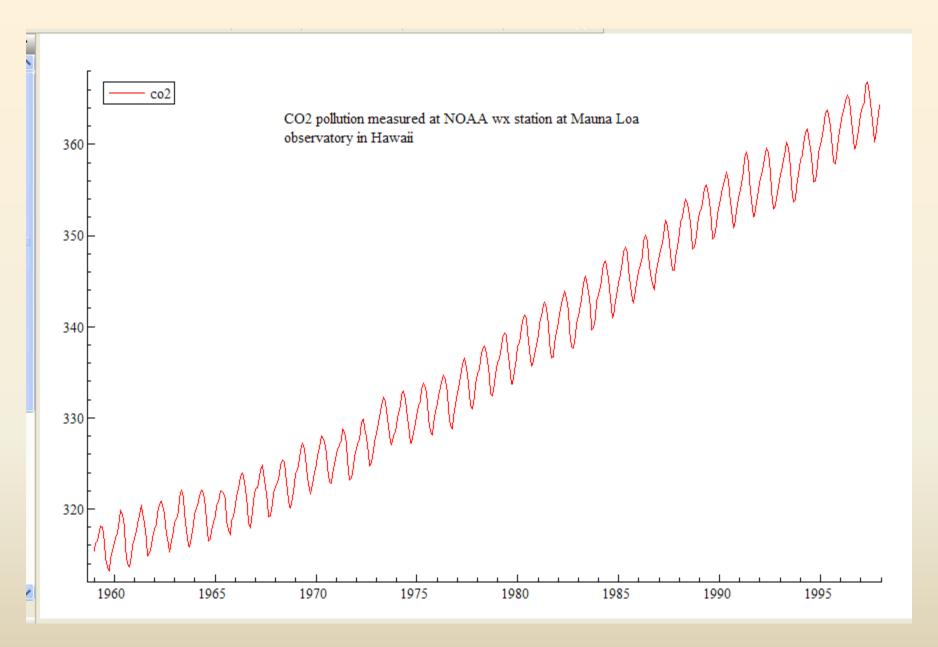
Defining seasonality

 $\gamma_{1,t+1} = -\gamma_{1,t} - \gamma_{2,t} - \gamma_{3,t} + \omega_t \qquad \omega_t \sim NID(\theta, \sigma_{\omega}^2)$

Another formulation is

$$\begin{split} \gamma(L) &= \mathbf{1} + L + L^2 + L + L^{s-1} + \omega_t \\ where \\ s &= seasonal \ periodicity \\ \omega_t &= random \ error \ of \ seasonal \ component \end{split}$$

If omega is non-zero, the series is random (stochastic).


If omega is zero, the series can be seasonal yet have a fixed seasonality.

Identifying and assessing seasonality

Is it fixed or random? Is it continuous or discrete? Should we select Dummy variables or trigonometric variables to represent the seasonality?

All these questions need to be answered for us to decide how to define the variable.

Koopman et al. generally suggest beginning with a stochastic model And looking at the signal to noise ratio (q) for evidence of a random effect. If the coefficient = 0, it may be fixed or non-existent. We try it as fixed and test for the model fit. We select the better fit.

Co2 measurement at NOAA observatory at Mauna Loa

Module	STAMP
<u>C</u> ategory	Models for time-series data
Model class	Unobserved Components using STAMP
0	> Estimate> Eormulate > Progress <

Click on formulate

Move the dependent variable over into the selection box

Formulate - STAMP unobserved component	ts module - co2.i	in7 📃 🗖 🔀
Selection	<< <u>L</u> ags	Database
У со2	None 💌	co2
•	1	
	<<	
	>>	
1		
=		
	<u>C</u> lear>>	
Use default status 🛛 Set		
Recall a previous model		co2.in7
		Cancel

Then click On OK.

Begin by testing a basic structural model (level, slope, and seasonal)

	Select components - STAMP un	observed components module	×
	Basic components		^
	Level		
	Stochastic	\odot	
Allow the	Fixed	0	
	Slope		
Stochastic	Stochastic	\odot	
Options	Fixed	0	
to be	Order of trend (1-4)	1	
	Seasonal		
checked	Stochastic	\odot	
at the	Fixed	0	
	Select frequencies		
first pass.	Irregular		
	Cycle(s)		-
	Cycle short (default 5 years)		
	Order of cycle (1-4)	1	
	Cycle medium (default 10 years)		
Then click	Order of cycle (1-4)	1	
On OK.	Cycle long (default 20 years)		
	Order of cycle (1-4)	1	
	AR(1)		~
	AD (7)		
		OK Cancel	

Leave the default estimation checked and first test on the full sample

stimate - STAMP unobserved components module				
Choose the estimation sample:	Choose the estimation sample:			
Selection sample	1959(1) - 1997(12)			
Estimation starts at	1959(1)			
Estimation ends at	1997(12)			
Choose the estimation method:				
Maximum Likelihood (exact score)	۲			
Maximum Likelihood (BFGS, exact score)	0			
Maximum Likelihood (BFGS, numerical score)	0			
Expectation Maximization (only variances)	0			
No estimation	0			

Then click on OK.

Examine the errors. Each component reveals a nonzero error variance.

The model converged as is indicated by the steady state having been found.

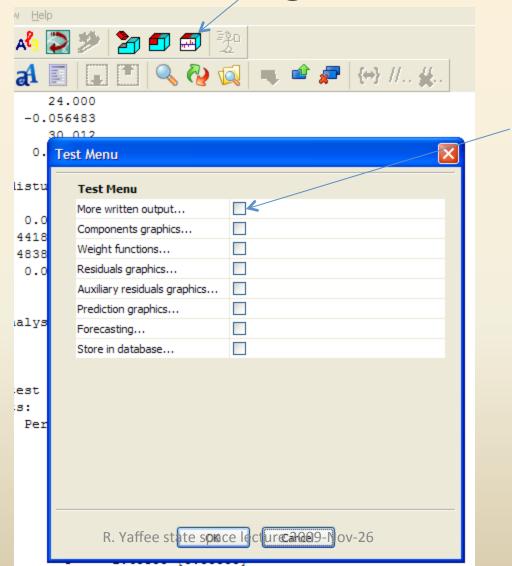
We do observe some normality of the residuals.

UC (Estimation done by Maximum Likelihood (exact score)
	The database used is C:\Program Files\OxMetrics6\data\co2.in7
	The selection sample is: 1959(1) - 1997(12) (T = 468, N = 1)
	The dependent variable Y is: co2
	The model is: Y = Trend + Seasonal + Irregular
	Steady state. found

Log-Likelihood is 537.692 (-2 LogL = -1075.38). Prediction error variance is 0.0834561

Summary statistics

	co2	
Т	468.00	
p	3.0000	
std.error	0.28889	
Normality	1.3316	
H(151)	0.96985	
DW	1.8683	
r(1)	0.055094	
q	24.000	
r(q)	-0.056483	
Q(q,q-p)	30.012	
Rs^2	0.085267	
Variances	of disturbances	:
	Value	(q-ratio)
Level	0.0285623	(1.000)
Slope	4.44185e-006	(0.0001555)
Seasonal	2.48387e-005	(0.0008696)
Irregular	0.0254314	(0.8904)


This means that all components are random and have an error term.

All components of the state vector are significant. We retain all of them.

State vector analysis at	period 199	97 (12)
	Value	Prob
Level	364.97931	[0.00000]
Slope	0.12858	[0.00000]
Seasonal chi2 test	3837.23560	[0.00000]
Seasonal effects:		
Period	Value	Prob
1	0.02164	[0.82882]
2	0.75558	[0.00000]
3	1.45031	[0.00000]
4	2.71683	[0.00000]
5	3.15913	[0.00000]
6	2.35544	[0.00000]
7	0.76412	[0.00000]
8	-1.40800	[0.00000]
9	-3.43157	[0.00000]
10	-3.40383	[0.00000]
11	-2.13673	[0.0000]
12	-0.84294	[0.00000]

We then proceed.

We click on the test icon to obtain a test dialog box

We click on more test output and then ok at the bottom

Another dialog box appear and we check the boxes accordingly

Mor	e written output - STAMP	unobserved components module	×			
	Print parameters					
	Variances					
	Parameters by component					
	Full parameter report					
	Print state vector					
	State vector analysis					
	State and regression output					
	Missing observation estimates					
Ŧ	Print recent state values					
	Print tests and diagnostics					
	Summary statistics	Then click ok				
	Residual diagnostics	at the bottom				
	Outlier and break diagnostics					
	Write large absolute values					
	exceeding the value of	3				
	Anti-log analysis					
	Arrunog anarysis					
—			_			
	OK Cancel					

The full parameter report shows actual and transformed stochastic parameter

Full paramete						
full paramete	Full parameter report					
Actual parame	Actual parameters (all)					
	Value					
Var Level	0.028562					
Var Slope	4.4419e-006					
Var Seasonal	2.4839e-005					
Var Irregular	0.025431					
Transformed p	arameters (not	fixed)				
	Transform	1stDer	2ndDer	asymp.s.e		
Var Level	-1.7778	7.9936e-010	-0.45820	0.091672		
Var Slope	-6.1622	3.5527e-010	-0.0077765	0.52466		
Var Seasonal	-5.3016	-9.7700e-010	-0.066040	0.18925		
Var Irregular	-1.8359	-1.0436e-009	-0.55919	0.081027		
Actual parame	ters (not fixe	d) with 68% as	ymmetric confid	lence interval		
	Value	leftbound	rightbound			
Var Level	0.028562	0.023778	0.034310			
Var Slope	4.4419e-006	1.5554e-006	1.2685e-005			
Var Seasonal	2.4839e-005	1.7012e-005	3.6267e-005			
Var Irregular	0.025431	0.021627	0.029905			

We observe that all derivatives were successfully computed. Then we look below

We note that all components are significant and look below

State vector analysis	at period 199	97(12)	
	Value	Prob	
Level	364.97931	[0.00000]	
Slope	0.12858	[0.00000]	
Seasonal chi2 test	3837.23560	[0.00000]	
Seasonal effects:			
Period	d Value	Prob	
1	0.02164	[0.82882]	
2	0.75558	[0.00000]	
3	3 1.45031	[0.00000]	
4	2.71683	[0.00000]	
5	3.15913	[0.00000]	
6	5 2.35544	[0.00000]	
1	0.76412	[0.00000]	
8	-1.40800	[0.00000]	
<u> -</u>	-3.43157	[0.00000]	
10	-3.40383	[0.00000]	
11	-2.13673	[0.00000]	
12	-0.84294	[0.00000]	

We observe the coefficients for the components and note their sign, magnitude and significance.

State vector at period 1997(12)

	Coefficient	RMSE	t-value	Prob
Level	364.97931	0.14260	2559.42414	[0.00000]
Slope	0.12858	0.01902	6.76195	[0.00000]
Seasonal	-1.73438	0.05053	-34.32131	[0.00000]
Seasonal 2	2.38882	0.05105	46.79554	[0.00000]
Seasonal 3	0.84459	0.04038	20.91501	[0.00000]
Seasonal 4	-0.02917	0.04106	-0.71032	[0.47787]
Seasonal 5	0.12645	0.03774	3.35040	[0.00087]
Seasonal 6	-0.05475	0.03800	-1.44095	[0.15029]
Seasonal 7	-0.11719	0.03706	-3.16209	[0.00167]
Seasonal 8	-0.03915	0.03664	-1.06832	[0.28594]
Seasonal 9	0.00874	0.03697	0.23637	[0.81325]
Seasonal10	-0.00263	0.03601	-0.07309	[0.94176]
Seasonal11	0.02885	0.03082	0.93594	[0.34980]

We begin to diagnose the model

We look for violation of the assumptions of normality, independence of observations, and white noise residuals.

The residuals appear to be normally distributed but there is evidence of spurious correlation and consequent bias in our estimates upward.

Normality test for	Residuals	co2
	Value	
Sample size	455.00	
Mean	0.065963	
St.Dev	0.99782	
Skewness	-0.077487	
Excess kurtosis	-0.23697	
Minimum	-2.7429	
Maximum	2.5714	
	Chi^2	prob
Skewness	0.45532	[0.4998]
Kurtosis	1.0646	[0.3022]
Bowman-Shenton	1.519	[0.4677]
Goodness-of-fit bas	sed on Res	iduals co2

Prediction error variance (p.e.v)	0.083456
Prediction error mean deviation (m.d)	0.067494
Ratio p.e.v. / m.d in squares 💊	0.97333
Coefficient of determination R^2	0.99964
based on differences Rd^2	0.94402
based on diff around seas mean Rs^2	0.085267
Information criterion Akaike (AIC)	-2.4236
Bayesian Schwartz (BIC)	-2.2995

Serial correlation statistics for Residuals co2								
Durbin-Wa	Durbin-Watson test is 1.86825							
Asymptoti	c deviat	tion for corre	elation is	0.0468807				
Lag	df	Ser.Corr	BoxLjung	prob				
4	1	-0.054437	6.298	[0.0121]				
5	2	-0.039249	7.0098	[0.0300]				
6	3	-0.081798	10.108	[0.0177]				
7	4	-0.01865	10.27	[0.0361]				
9	5	-0 068798	10 470	r n n2891				
5								

Value

We examine the goodness of fit test and find the R^2 to be too high

Autocorrelation In the residuals And unmodeled outliers seem to be evident.

The model fit could be improved by adding an ar(1) Component and modeling the outliers.

	Value
Prediction error variance (p.e.v)	0.083456
Prediction error mean deviation (m.d)	0.067494
Ratio p.e.v. / m.d in squares	0.97333
Coefficient of determination R^2	0.99964
based on differences Rd^2	0.94402
based on diff around seas mean Rs^2	0.085267
Information criterion Akaike (AIC)	-2.4236
Bayesian Schwartz (BIC)	-2.2995

Goodness-of-fit based on Residuals co2

Serial	corre	elation	ı sta	tist	tics	for	Resi	idua	als	co2	
Durbin	n-Wat:	son tes	st is	1.8	36825	5					
Asympt	totic	deviat	ion	for	corr	relat	tion	is	0.0	4688	07

Lag	df	Ser.Corr	BoxLjung	prob
4	1	-0.054437	6.298	[0.0121]
5	2	-0.039249	7.0098	[0.0300]
6	3	-0.081798	10.108	[0.0177]
7	4	-0.01865	10.27	[0.0361]
8	5	-0.068798	12.472	[0.0289]
12	9	0.029252	18.643	[0.0284]
24	21	-0.056483	30.012	[0.0918]
36	33	-0.00081262	49.121	[0.0352]

Values larger than 3 for Irregular residual:

	Value	prob
1971(4)	-3.30415	[0.00051]
1972 (3)	-3.11111	[0.00099]
1986(9)	3.10229	[0.00102]

There remain problems in the level and slope residuals as well

Values larger th	Value		
1973(12)	-3.49240 [0	_	
	0000000 [0		
Normality test f	or Level res	idua	al
	Value		
Sample size	468.00		
Mean	0.00032373		
St.Dev	1.0007		
Skewness	-0.097486		
Excess kurtosis	0.040163		
Minimum	-3.4924		
Maximum	2.4945		
	Chi^2		prob
	0.74127	-	-
	0.031455	-	-
Bowman-Shenton	0.77272	[0	.6795]
Normality test f	-	idua	al
	Value		
Sample size	467.00		
Mean	0.76903		
St.Dev	0.62943		
Skewness	-0.28796		
Excess kurtosis	-0.015191		
Minimum	-0.78047		
Maximum	2.9626		
	Chi^2		-
Skewness	6.4541	[0	.0111]
Kurtosis	0.0044904	[0	.9466]
Bowman-Shenton	6.4586	[0	.0396]

There is an unmodeled level residual and the slope residuals are not quite normal.

R. Yaffee state space lecture 2009-Nov-26

Click on the model icon and then on formulate.

Wi	dow Help	
	🖧 🚬 🤌 🎽 🗊 🖅 🛃	
0	; al 🗉 🔲 🔍 🦓 🕵 🗯 🖝 🖉 💮 // 🗶	
	Value prob	
	-3.49240 [0.00026]	
ce	for level residual	
	🖥 STAMP - Models for time-series data 🛛 🛛 🔀]
ze		
	All Modules G@RCH PcGive STAMP	
50		
	Module STAMP	
	Category Models for time-series data	
nt	Model class Unobserved Components using STAMP	
ce		
	> <u>E</u> stimate>	
ze	Formulate	
	< Progress <	
		-
50	R. Yaffee state space lecture 2009-Nov-26	

Click on ok again

Formulate - STAMP unobserved components module - co2.in7					
Selection	<< Lags	- Data <u>b</u> ase			
¥ co2	None V	co2			
	<< >>				
	<u>Q</u> lear>>				
Use default status Set Recall a previous model		co2.in7			
R. Yaffe <mark>e sta</mark>	k space lecture	2009-Npv-26			

247

In the Select components box, click on Cycles(s), on ar(1), and then Ok.

Sele	ct components - STAMP un	observed components module
	Stochastic	•
	Fixed	0
	Slope	
	Stochastic	•
	Fixed	0
	Order of trend (1-4)	1
	Seasonal	
	Stochastic	۲
	Fixed	0
	Select frequencies	
	Irregular	
Ξ	Cycle(s)	
	Cycle short (default 5 years)	
	Order of cycle (1-4)	1
	Cycle medium (default 10 years)	
	Order of cycle (1-4)	1
	Cycle long (default 20 years)	
	Order of cycle (1-4)	1
	AR(1)	
	AR(2)	
	Options	
	Multivariata esttinee	
		OK Cancel
	R. Vaffee state	space lecture 2009-Nov-26

When the estimate box appears, leave the defaults checked and click ok.

timate - STAMP unobserved components module					
Choose the estimation sample:					
Selection sample	1959(1) - 1997(12)				
Estimation starts at	1959(1)				
Estimation ends at	1997(12)				
Choose the estimation method:					
Maximum Likelihood (exact score)	\odot				
Maximum Likelihood (BFGS, exact score)	0				
Maximum Likelihood (BFGS, numerical score)	0				
Expectation Maximization (only variances)	0				
No estimation	\circ				

All components remain significant including the AR(1) component

The dat The sel The dep The mod	abase used is C ection sample is endent variable	<pre>Maximum Likelihood (exact score) :\Program Files\OxMetrics6\data\co2.in7 s: 1959(1) - 1997(12) (T = 468, N = 1) Y is: co2 nd + Seasonal + Irregular + AR(1)</pre>
-	ood is 539.403 error variance :	(-2 LogL = -1078.81). is 0.0827491
Summary sta	tistics	
-	co2	
т	468.00	
р	5.0000	
std.error	0.28766	
Normality	1.1240	
H(151)	1.0028	
DW	1.9210	
r(1)	0.029069	
q	25.000	
r(q)	0.076226	
Q(q,q-p)	29.432	
Rs^2	0.093016	
Variances	of disturbances	:
		(q-ratio)
	0.0190756	
	4.81875e-006	
	2.24881e-005	
	0.0306863	
Irregular	0.0165861	(0.5405)
	parameteRs%affee ent 0.57117	e state space lecture 2009-Nov-26

All state vector components appear significant as we scroll down

Variances	of disturbanc	es:	
	Valu	e (q-rat	tio)
Level	0.019075	6 (0.62	216)
Slope	4.81875e-00	6 (0.00015	570)
Seasonal	2.24881e-00	5 (0.00073	328)
AR(1)	0.030686	3 (1.0	000)
Irregular	0.016586	1 (0.54	405)
	parameters:		
AR coeffici	ent 0.571	17	
State vecto	r analysis at		
		Value	
Level		364.86769	
Slope			[0.00000]
	i2 test	3759.50663	[0.00000]
Seasonal ef			
	Period	Value	
	1		[0.87580]
	2		[0.00000]
	3		[0.00000]
	4		[0.00000]
	5		[0.00000]
	6		[0.00000]
	7		[0.00000]
	8		[0.00000]
		-3.40881	
	10		[0.00000]
	11		[0.00000]
	12		[0.00000]
	R. Yaffee state	space lectur	e 2009-Nov-26

We click on the test icon and the more written output box and then OK.

lp		
2	🎾 🎦 🖅 🖉 🔁	
	∖, 📰 🔍 🧞 🙀 💷 📽 🐙 (↔) // ∦	
.093	3016	
urba	ances:	
	est Menu	
7	Test Menu	
3	More written output	
1	Components graphics	
1	Weight functions	
	Residuals graphics	
	Auxiliary residuals graphics	
	Prediction graphics	
1	Forecasting	
	Store in database	
1		
-	D. Voffee state engle lesture 2000 Neu 20	
	R. Yaffee state spate lecture 2009-Nov-26	

In the More Written output, we check the boxes below and then click on ok.

Mor	e written output - STAMP	unobserved components module
	Print parameters	
	Variances	
	Parameters by component	
	Full parameter report	
	Print state vector	
	State vector analysis	
	State and regression output	
	Missing observation estimates	
+	Print recent state values	
	Print tests and diagnostics	•
	Summary statistics	
	Residual diagnostics	
	Outlier and break diagnostics	
	Write large absolute values	
	exceeding the value of	3
	Anti-log analysis	
		OK Cancel

Observe a decline in the BIC, a high R^2 but no more residual autocorrelation.

Our model, however, is not Yet optimized because we still have unmodeled outliers.

We will begin to model those next. Prediction error variance (p.e.v) Prediction error mean deviation (m.d) Ratio p.e.v. / m.d in squares Coefficient of determination R^2 ... based on differences Rd^2 ... based on diff around seas mean Rs^2 Information criterion Akaike (AIC) ... Bayesian Schwartz (BIC)

5

1

Goodness-of-fit based on Residuals co2

Value 0.082749 0.066934 0.97299 0.99964 0.94449 0.093016 -2.4321 -2.308

2.6012 [0.1068]

Serial correlation statistics for Residuals co2 Durbin-Watson test is 1.92102 Asymptotic deviation for correlation is 0.0468807 Lag df Ser.Corr BoxLjung prob

-0.016078

6	2	-0.069725	4.8526	[0.0884]
7	3	-0.0061134		[0.1816]
8	4	-0.070771	7.1998	[0.1257]
9	5	0.10077	11.934	[0.0357]
12	8	0.035624	13.613	[0.0924]
24	20	-0.060105	26.622	[0.1462]
36	32	-4.4464e-005	45.76	[0.0546]
Values lar	ger th	an 3 for Irreg	ular residu	al:
	\backslash	Value	prob	
1971(4)	M	-3.19234 [0.0	0075]	
1972(3)		-3.24716 [0.0	0062]	
1986(9)	N/ 66	3.14235 [0.0	0089]	

R. Yaffee state space lecture 2009-Nov-26

We examine the residuals of the other

components too.

Normality is no longer a problem for irregular or level residuals, although both components have unmodeled outliers.

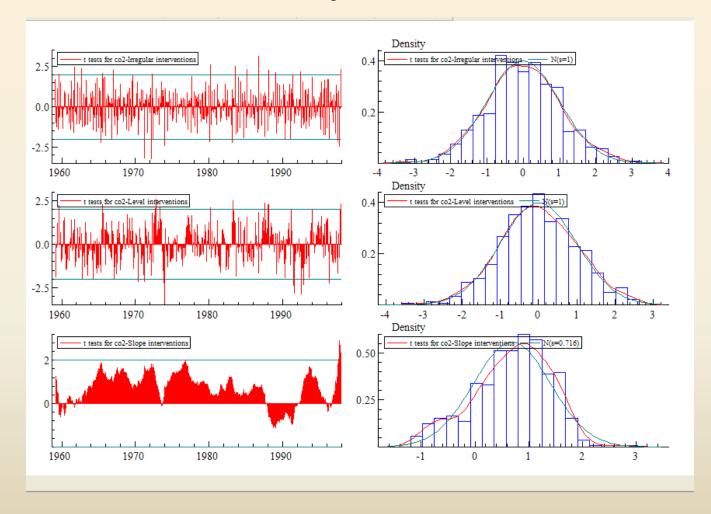
• • • • •	🖛 📼 Kaski kuuni 🛛 😼 🛩
Normality test for	or Irregular residual
	Value
Sample size	468.00
Mean	468.00 0.00094326
St.Dev	1.0026
Skewness	0.031373
Excess kurtosis	0.12461
Minimum	-3.2472
Maximum	3.1423
	Chi^2 prob
Skewness	0.076775 [0.7817]
Kurtosis	0.3028 [0.5821]
Bowman-Shenton	0.37958 [0.8271]
Values larger that	an 3 for Level residual:
	Value prob
1973(12)	-3.38167 [0.00039]
Normality test for	or Level residual
	Value
Sample size	467.00
	0.00043138
St.Dev	1.0016
	-0.034242
Excess kurtosis	
Minimum	-3.3817
Maximum	2.6242
	Chi^2 prob
S Rewraffee state spa	ce lectine22009-Nov-266] 0.0063491 [0.9365] 0.097609 [0.9524]
Kurtosis	0.0063491 [0.9365]
Bowman-Shenton	0 097609 [0 9524]

Yet the slope residual is still not normal.

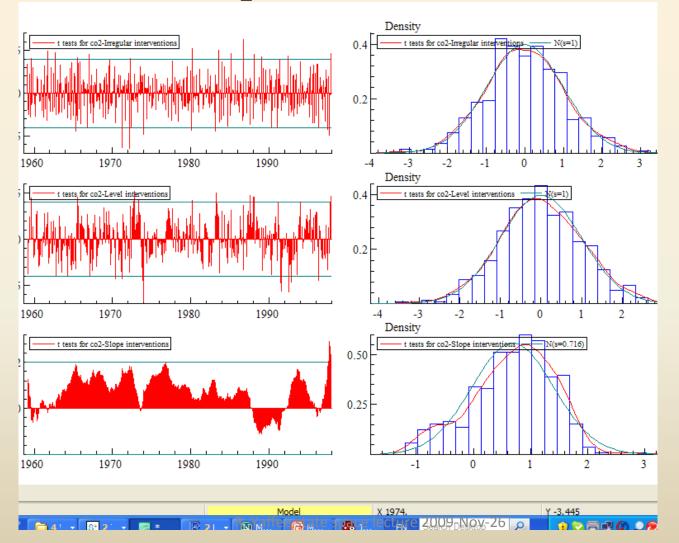
Normality test for	Slope rea	sid	dual
	Value		
Sample size	466.00		
Mean	0.69058		
St.Dev	0.71606		
Skewness	-0.38642		
Excess kurtosis	-0.16212		
Minimum	-1.1089		
Maximum	2.9056		
	Chi^2		prob
Skewness	11.598	[0.0007]
Kurtosis	0.51034	[0.4750]
Bowman-Shenton	12.108	[0.0023]

Diagnosis of residual problems begins with the Auxiliary residuals

- The auxiliary residuals are smoothed residuals divided by the square root of the F, the measurement variance. So they in effect are t-tests.
- We can look at graphical analysis of them for quick


In the test menu, we select Auxiliary residuals graphics and then click OK.

Te	est Menu	×
	Test Menu	
	More written output	
	Components graphics	
	Weight functions	
	Residuals graphics	
	Auxiliary residuals graphics 🔽	
	Prediction graphics	
	Forecasting	
	Store in database	
—		
	OK Cancel R. Yaffee state space lecture 2009-Nov-26	


In the drop-down menu, we make the selections shown below:

uxiliary residuals graphics - STAMP unobserved components module				
Select equation and auxiliary r	esiduals (t-tests for)			
Equation	co2			
Irregular (outlier intervention)				
Level (break in level intervention)				
Slope (break in slope intervention)				
Select plots				
Index plot				
Histogram				
QQ plot				
Write				
Normality tests				
Large absolute values				
exceeding the value of	3			
Store				
Selected auxiliary residuals				

Time index plots and histograms of our auxiliary residuals

We examine the outliers and find that during the oil embargo of 1973 there was a huge drop in co₂ level and irregular

261

We go to our select components menu again and in the select interventions choose manual insertion

We then click

on OK.

Sele	ct components - STAMP und	observed components module
Ŧ	Basic components	
_	Cycle(s)	
	Cycle short (default 5 years)	
	Order of cycle (1-4)	1
	Cycle medium (default 10 years)	
	Order of cycle (1-4)	1
	Cycle long (default 20 years)	
	Order of cycle (1-4)	1
	AR(1)	
	AR(2)	
Ξ	Options	
	Multivariate settings	
	Set regression coefficients	
	Select interventions	
	none	0
	manually	\odot
	automatically	0
	Set parameters to	
	default values	\odot
	default values and edit	0
	current values and edit	0
		OK Cancel

In the select menu, click on add to open up two intervention boxes

	Sele	ect intervent	ions - STAMP	unobserved	components m	nodule		
	Pres	s Add button to	include more int	erventions in the	model.			
Now we will proceed to define the interventions	0	Select	Type irregular irregular					
				Add	<	>	Del	
		(ОК	Cancel		Load	Save As	Reset

We click on type in the lower box and choose level

Sel	ect interven	tions - STAMP	unobserved	components r	nodule			×
Pre	ss Add button to	o include more inte	erventions in the	e model.				
	Select		Period	-				
0		irregular	1959(1)					
1		irregular	✓ 1959(1)					
		irregular level						
		slope						
			Add	<	>	Del		
	(ОК	Cancel		Load	Save As	Reset	

We change the date to the proper date and then click the box on the left

Se	elect interventions - STAMP unobserved components module						
Pre	ess Add button to	include more inte	rventions in the	model.			
	Select	Туре	Period]			
0		irregular	1959(1)				
1		level	1974(1)	-			
			Add	<	>	Del	
-							
	(ок	Cancel		Load	Save As	Reset

We configure the other outlier and then click ok at the bottom

Sele	ect intervent	ions - STAMP (inobserved	components	module		
Pres	s Add button to	include more inter	ventions in the	model.			
	Select	Type	Period				
0	<u>~</u>	irregular	1974(1)				
1	✓	level	1974(1)				
			Add	<	>	Del	
		ок	Cancel		Load	Save As	Reset

Leave the defaults in the Estimate menu and click ok.

Estimate - STAMP unobserved components module				
Choose the estimation sample:				
Selection sample	1959(1) - 1997(12)			
Estimation starts at	1959(1)			
Estimation ends at	1997(12)			
Choose the estimation method:				
Maximum Likelihood (exact score)	\odot			
Maximum Likelihood (BFGS, exact score)	0			
Maximum Likelihood (BFGS, numerical score)	0			
Expectation Maximization (only variances)	0			
No estimation	0			
	OK Cancel			

Our new model appears. Steady state strong convergence is found.

```
Estimating.....
 Strong convergence relative to 1e-007
 - likelihood cvg 8.24892e-011
 - gradient cvg 2.03461e-008
 - parameter cvg 5.52095e-006
 - number of bad iterations 0
 Estimation process completed.
UC( 8) Estimation done by Maximum Likelihood (exact score)
    The database used is C:\Program Files\OxMetrics6\data\co2.in7
    The selection sample is: 1959(1) - 1997(12) (T = 468, N = 1)
    The dependent variable Y is: co2
    The model is: Y = Trend + Seasonal + Irregular + AR(1) + Interventions
    Steady state. found
Log-Likelihood is 539.123 (-2 LogL = -1078.25).
Prediction error variance is 0.0821776
Summary statistics
                     co2
 Т
                 468.00
                 5.0000
 p
 std.error 0.28667
 Normality
                 1.0323
                 1.0042
 H(151)
 DW
                 1.9184
               0.030328
 r(1)
                 25.000
 q
 r(q)
               0.077997
                 29.647
 Q(q,q-p)
```

Rs^2

0.10126

We see that all components remain stochastic (with a random error)

_	co2	
Т	468.00	
p	5.0000	
std.error	0.28667	
Normality	1.0323	
H(151)	1.0042	
DW	1.9184	
r(1)	0.030328	
đ	25.000	
r(q)	0.077997	
Q(q,q-p)	29.647	
Rs^2	0.10126	
Variances (of disturbances	:
	Value	(q-ratio)
evel	0.0182309	(0.5882)
lope	4.98100e-006	(0.0001607)
easonal	2.24629e-005	(0.0007248)
	0.0309919	
	0.0155950	
rregular		

Observe that the level shift at 1974 is not quite significant (n=468)

	S
There is plenty of	3
reason to believe	
that other	
outliers have not	
yet been	
modeled and	
that our model is	
afflicted by	
specification	
error.	R

100

	State vector analysis at period 1997(12)
	Value Prob
	Level 365.31871 [0.00000]
	Slope 0.12929 [0.00000]
f	Seasonal chi2 test 3809.58740 [0.00000]
'	Seasonal effects:
٤	Period Value Prob
	1 0.01656 [0.86626]
	2 0.74517 [0.00000]
	3 1.44037 [0.00000]
•	4 2.70524 [0.00000]
	5 3.15084 [0.00000]
	6 2.35317 [0.00000]
	7 0.76517 [0.00000]
- 1	8 -1.39704 [0.00000]
>	9 -3.41117 [0.00000]
	10 -3.38855 [0.00000]
	11 -2.13292 [0.00000]
	12 -0.84685 [0.00000]
	Regression effects in final state at time 1997(12)
	Coefficient RMSE t-value Prob
	Level break 1974(1) -0.45970 0.25408 -1.80928 [0.07107]

We therefore request more written output

D	Test Menu
t	Test Menu
	More written output
	Components graphics
Γ	Weight functions
	Residuals graphics
	Auxiliary residuals graphics
	Prediction graphics
	Forecasting
ĥ	Store in database
	OK Cancel

We ask for a rerun of the residual diagnostics and click on OK

More written output - STAMP unobserved components module					
	Print parameters				
	Variances				
	Parameters by component				
	Full parameter report				
	Print state vector				
	State vector analysis				
	State and regression output				
	Missing observation estimates				
÷	Print recent state values				
	Print tests and diagnostics	i			
	Summary statistics				
	Residual diagnostics				
	Outlier and break diagnostics				
	Write large absolute values				
	exceeding the value of	3			
	Anti-log analysis				
		OK Cancel			

We observe more unmodeled outliers.

	Goodness-o	f-fit b	ased on R	esiduals	co2		
1							Value
1	Prediction	error	variance	(p.e.v)		0	.082178
	Prediction	error	mean devi	ation (m	1.d)	0	.066542
	Ratio p.e.	v. / m.	d in squa:	res			0.97093
	Coefficien	t of de	terminati	on R^2			0.99964
	based	on diff	erences R	d^2			0.945
	based	on diff	around se	eas mean	Rs^2		0.10126
	Informatio	n crite	rion Akail	ke (AIC)			-2.4348
	Bayesi	an Schw	artz (BIC)			-2.3018
	Serial cor	relatio	n statist:	ics for	Residua	als	co2
	Durbin-Wa	tson te	st is 1.9	1839			
	Asymptoti	c devia	tion for (correlat	ion is	0.0	469323
	Lag	df	Ser.Co:	rr Bo	xLjung		prob
	5	1	-0.014	16	2.8394	C	0.0920]
	6	2	-0.0665	55	4.8863	C	0.0869]
	7	3	-0.00501	67	4.898	[0.1794]
	8	4	-0.067	51	7.0135	C	0.1352]
	9	5	0.099	33	11.604	C	0.0406]
	12	8	0.0357	46	13.419	C	0.0982]
	24	20	-0.0660	52	26.711	[0.1436]
1	36	32	0.00158	44	45.994	[0.0521]
	Values lar	ger tha	n 3 for I:	rregular	residu	al:	1
			Value	pro	b		
	1971(4)		-3.19262	[0.00075	1		
	1972 (3)		-3.25050	[0.00062	1		
	1986(9)		3.14345	[0.00089	1		

We select automatic intervention modeling this time around.

Sele	ct components - STAMP un	observed components module
Ŧ	Basic components	
_	Cycle(s)	
	Cycle short (default 5 years)	
	Order of cycle (1-4)	1
	Cycle medium (default 10 years)	
	Order of cycle (1-4)	1
	Cycle long (default 20 years)	
	Order of cycle (1-4)	1
	AR(1)	
	AR(2)	
Ξ	Options	
	Multivariate settings	
	Set regression coefficients	
	Select interventions	
	none	0
	manually	0
	automatically	۲
	Set parameters to	
	default values	۲
	default values and edit	0
	current values and edit	0
		OK Cancel

This time we have a good model with strong convergence.

	hadhad hassed	v 🛥 🕶 v			
AR(1) other parameters					
AR coefficient 0.43	1730				
State vector analysis a	at period 199	97(12)			
		Prob			
Level	367.30883	[0.00000]			
Slope	0.13797	[0.00000]			
Seasonal chi2 test	4971.96405	[0.00000]			
Seasonal effects:					
Period	Value	Prob			
1	0.01425	[0.86699]			
2	0.73328	[0.00000]			
3	1.42725	[0.00000]			
4	2.67870	[0.00000]			
5	3.11441	[0.00000]			
6	2.31165	[0.00000]			
7	0.80697	[0.00000]			
8	-1.36072	[0.00000]			
9	-3.39110	[0.00000]			
10	-3.36828	[0.00000]			
11	-2.12097	[0.00000]			
12	-0.84544	[0.00000]			
Regression effects in :	final state a	at time 199	97 (12)		
C	oefficient	RMSE	t-value	Prob	
Outlier 1971(4)					
Outlier 1972(3)					
Outlier 1986(9)			3.51745	• •	
Level break 1973(12)				-	
Level break 1991(7)					
Level break 1992(7)				-	

We proceed to residual diagnosis looking for white noise residuals

170 1 110

Goodness-of-fit based on Residuals co2

	varue
Prediction error variance (p.e.v)	0.072109
Prediction error mean deviation (m.d)	0.061917
Ratio p.e.v. / m.d in squares	0.86347
Coefficient of determination R^2	0.99969
based on differences Rd^2	0.95227
based on diff around seas mean Rs^2	0.22006
Information criterion Akaike (AIC)	-2.5441
Bayesian Schwartz (BIC)	-2.3668

ł	Serial	corre	elation	sta	atist	tics	for	Resi	idua	als	co2	
	Durbi	n-Wat:	son test	: is	3 1.9	93891	L					
	Asympt	totic	deviati	ion	for	cori	relat	tion	is	0.0)4719	29

Lag	df	Ser.Corr	BoxLjung	prob
5	1	-0.019196	3.4346	[0.0638]
6	2	-0.072638	5.8465	[0.0538]
7	3	0.023065	6.0902	[0.1073]
8	4	-0.045068	7.0229	[0.1347]
9	5	0.085687	10.402	[0.0646]
12	8	-0.00031172	10.676	[0.2207]
24	20	-0.074838	26.077	[0.1633]
36	32	0.033135	52.499	[0.0126]

Normality test for Irregular residual

	Value
Sample size	468.00
Mean	0.00078048
St.Dev	1.0601
Skewness	0.11722
Excess kurtosis	-0.13869
Minimum	-2.7478
Maximum	2.9396

The level residuals are good, but there remains a slope shift at 1997(9)

Normality test for	Irregular residual
	Value
Sample size	468.00
Mean 0	.00078048
St.Dev	1.0601
Skewness	0.11722
Excess kurtosis	-0.13869
Minimum	-2.7478
Maximum	2.9396
	Chi^2 prob
Skewness	1.0718 [0.3005]
	0.37508 [0.5402]
	1.4468 [0.4851]
Dowingin Direncon	1.1100 [0.1001]
Normality test for	Level residual
-	Value
Sample size	467.00
Mean -0	.00096108
St.Dev	1.0666
Skewness	0.26111
Excess kurtosis	-0.15426
Minimum	-2.7689
Maximum	2.9577
	Chi^2 prob
Skewness	5.3066 [0.0212]
Kurtosis	0.46305 [0.4962]
Bowman-Shenton	5.7696 [0.0559]
Values larger than	3 for Slope residual:
varues larger than	Value prob
1997 (9)	3.18025 [0.00078]
1997 (9)	5.10025 [0.00076]

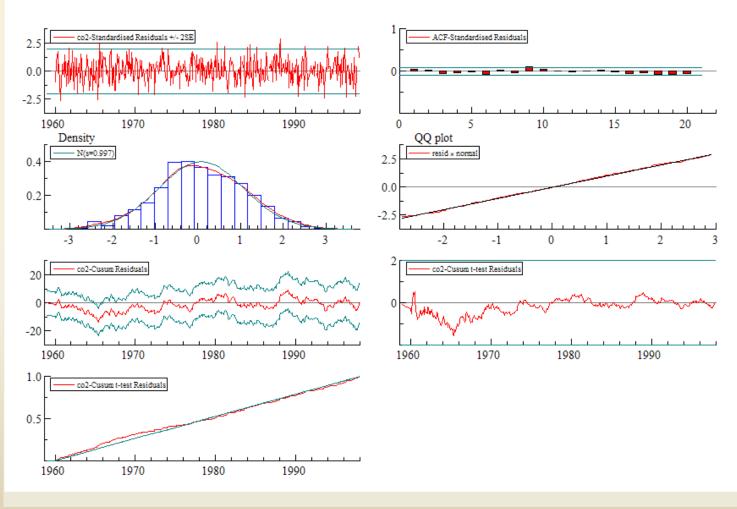
We add that intervention and then run the model

Sele	ect interventi	ons - STAMP u	nobserved c	omponents module			
Pres	Press Add button to include more interventions in the model.						
	Select	Туре	Period				
0		level	1974(1)				
1		irregular	1961(10)				
2		irregular	1962(9)				
3	~	irregular	1971(4)				
4	~	irregular	1972(3)				
5		irregular	1980(3)				
6		irregular	1983(8)				
7		irregular	1985(3)				
8	•	irregular	1986(9)				
9		irregular	1997(9)				
10		irregular	1997(12)				
11	✓	level	1972(10)				
12	<u> </u>	level	1973(12)				
13	<u> </u>	level	1983(4)				
14	✓	level	1991(7)				
15	✓	level	1992(7)				
		A	dd	< > Del			
		ок	Cancel	Load Save As Reset			

The new model is interesting for the interventions found

	Coefficient	RMSE	t-value	Prob
Level	365.49444	0.60679	602.34127	[0.00000]
Slope	0.12829	0.01678	7.64424	[0.00000]
Seasonal	-1.74460	0.04788	-36.43570	[0.00000]
Seasonal 2	2.35447	0.04737	49.70084	[0.00000]
Seasonal 3	0.82588	0.03782	21.83749	[0.00000]
Seasonal 4	-0.00646	0.03872	-0.16676	[0.86764]
Seasonal 5	0.13084	0.03477	3.76308	[0.00019]
Seasonal 6	-0.06255	0.03530	-1.77220	[0.07704]
Seasonal 7	-0.13079	0.03388	-3.86044	[0.00013]
Seasonal 8	-0.03528	0.03352	-1.05251	[0.29313]
Seasonal 9	0.01058	0.03364	0.31452	[0.75327]
Seasonal10	0.00014	0.03291	0.00411	[0.99673]
Seasonal11	0.02368	0.02819	0.84005	[0.40133]
AR(1)	0.01123	0.17655	0.06359	[0.94932]
Degragaion a	ffects in final	state at t	ime 1997(12)	

Outlier 1971(4)	-0.72283	0.21741	-3.32474 [0.00096]
Outlier 1972(3)	-0.70844	0.21740	-3.25863 [0.00121]
Outlier 1986(9)	0.71065	0.21728	3.27074 [0.00116]
Slope break 1997(9)	0.19328	0.09086	2.12719 [0.03395]
Level break 1972(10)	0.68416	0.23031	2.97064 [0.00313]
Level break 1973(12)	-0.85455	0.23026	-3.71127 [0.00023]
Level break 1983(4)	0.61582	0.23026	2.67450 [0.00776]
Level break 1991(7)	-0.79240	0.23193	-3.41655 [0.00069]
Level break 1992(7)	-0.79662	0.23242	-3.42757 [0.00067]

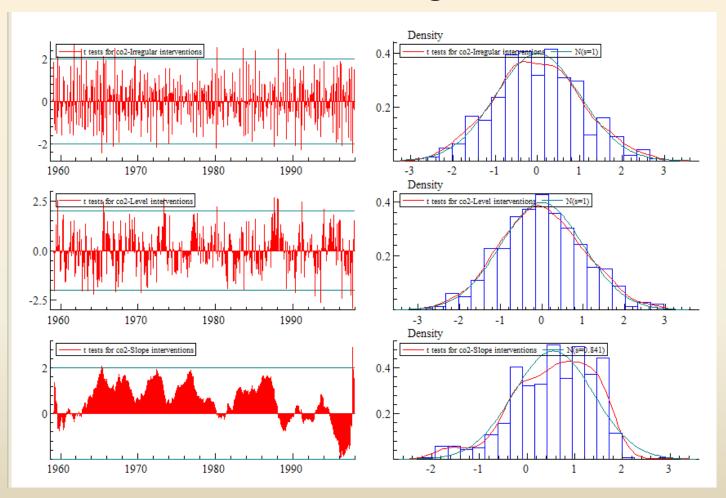

Although the AR(1) term is no longer significant, we leave it in to avoid biased estimation

 This is a judgment call. It we should try it both ways and see what happens. As long as we have well behaved residuals with the slight exception of the slope residual which appears to be significantly skewed and hence nonnormal, we know from quasi-Maximum likelihood that this may not be a real problem.

Further diagnosis

- There is no evidence of specification error since we modeled all of the outliers and level shifts we could.
- Now we review our residual graphics to see how well our model fits.

Residual graphics show residuals to be well behaved —not too noisy and they stay in line.


Click on formulate icon and then the progress button

STAMP -	Models for time-series data	×
All Modules	s G@RCH PcGive STAMP	
Module	STAMP	
<u>C</u> ategory	Models for time-series data	~
Model class	Unobserved Components using STAMP	~
0	Eormulate > Estimate > Eormulate < Test	
	Options Close	

Of all the models run, the most recent has the maximum likelihood.

Pro	ogress - Si	AMP unobserved	components module	×
	UC(11)	6 x 468	561.821 Maximum Likelihood (exact score)	
	UC(10)	6 x 468	562.559 Maximum Likelihood (exact score)	
	UC(9)	6 x 468	558.645 Maximum Likelihood (exact score)	
	UC(8)	6 x 468	539.123 Maximum Likelihood (exact score)	
	UC(7)	6 x 468	539.403 Maximum Likelihood (exact score)	
	UC(6)	4 x 468	537.692 Maximum Likelihood (exact score)	
	UC(5)	6 x 468	561.712 Maximum Likelihood (exact score)	
	UC(4)	6 x 468	560.379 Maximum Likelihood (exact score)	
		4 x 468	558.523 Maximum Likelihood (exact score)	
		4 x 468	557.099 Maximum Likelihood (exact score)	
	UC(1)	4 x 468	537.692 Maximum Likelihood (exact score)	
	<	Del >	Mark Specific to General Mark General to Specific	
_			OK Cancel	

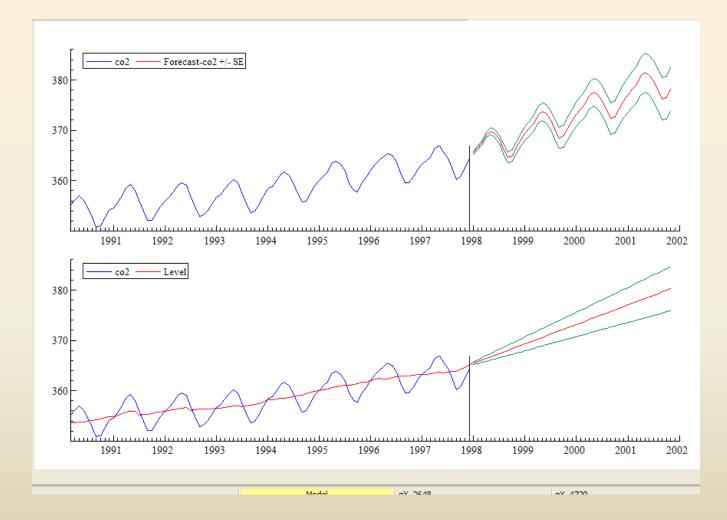
The end effect on the slope may bias a forecast but not the fit. Be wary of using this model for forecasting.

Suppose we had to forecast, we would then select forecast in the test menu

a	Test Menu
l	Test Menu
ſ	More written output
l	Components graphics
4	Weight functions
4	Residuals graphics
١	Auxiliary residuals graphics
	Prediction graphics
2	Forecasting
	Store in database
I	
-	OK Cancel

We could select these options and click on OK.

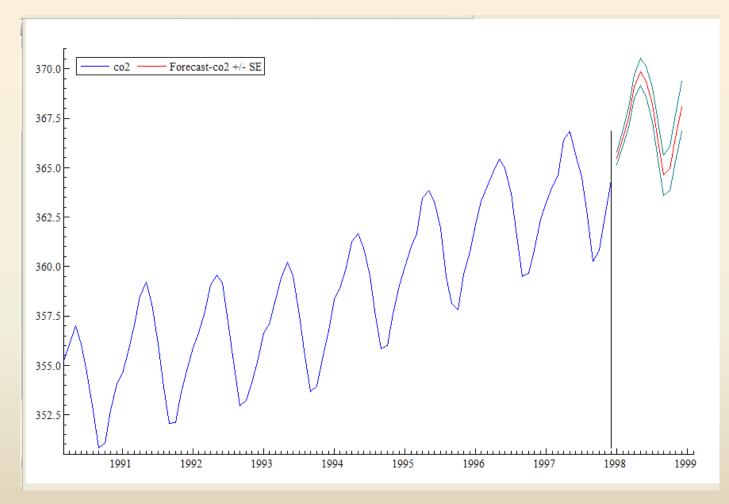
For	ecasting - STAMP unobserv	ed components module	×
	Select equation and forecast	settings	
	Equation	co2	
	Horizon	47	
	Generate forecasts X		
	Use realised X when available		
	Edit/Save forecasts X&Y		
	Write forecasts Y		
	Write forecasts components		
Ξ	Select components to plot w	ith Y	
	Signal		
	Trend		
	Trend plus Cycles and ARs		
	Trend plus Regression effects	\checkmark	
+	Select components to plot w	ithout Y	
Ξ	Further options		
	Plot confidence intervals		
	Anti-log analysis		
	Zoom sample range	1990(3) - 1997(12)	
		OK Cancel	


We can obtain ex ante forecasts for the whole series as well as for the separate components

Foreca	sts with 68% (confidence in	terval from	period 1997(12)	forwards:
	Forecast	stand.err	leftbound	rightbound	
1	365.46677	0.31697	365.14980	365.78373	
2	366.51499	0.41157	366.10342	366.92656	
3	367.52956	0.50445	367.02511	368.03401	
4	369.10108	0.59376	368.50733	369.69484	
5	369.85947	0.68349	369.17598	370.54296	
6	369.37681	0.77149	368.60533	370.14830	
7	368.19980	0.86125	367.33854	369.06105	
8	366.35732	0.95181	365.40551	367.30912	
9	364.62113	1.03029	363.59084	365.65142	
10	364.95447	1.10898	363.84549	366.06346	
11	366.51755	1.18799	365.32956	367.70554	
12	368.09861	1.26200	366.83661	369.36060	
Foreca	st values for	Level			
			terval from	period 1997(12)	forwards:
	sts with 68% (-	forwards:
	sts with 68% (Forecast	confidence in	leftbound	rightbound	forwards:
Foreca	sts with 68% (Forecast 365.62273	confidence in stand.err	leftbound 365.00255	rightbound 366.24290	forwards:
Foreca 1	sts with 68% (Forecast 365.62273	confidence in stand.err 0.62018 0.63372	leftbound 365.00255 365.11729	rightbound 366.24290 366.38473	forwards:
Foreca 1 2	sts with 68% (Forecast 365.62273 365.75101	confidence in stand.err 0.62018 0.63372 0.64743	leftbound 365.00255 365.11729 365.23188	rightbound 366.24290 366.38473 366.52673	forwards:
Foreca 1 2 3	sts with 68% of Forecast 365.62273 365.75101 365.87930 366.00759	confidence in stand.err 0.62018 0.63372 0.64743	leftbound 365.00255 365.11729 365.23188 365.34630	rightbound 366.24290 366.38473 366.52673 366.66888	forwards:
Foreca 1 2 3 4	sts with 68% of Forecast 365.62273 365.75101 365.87930 366.00759	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120	forwards:
Foreca 1 2 3 4 5	sts with 68% (Forecast 365.62273 365.75101 365.87930 366.00759 366.13588 366.26417	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056 365.57467	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120 366.95367	forwards:
Foreca 1 2 3 4 5 6	sts with 68% (Forecast 365.62273 365.75101 365.87930 366.00759 366.13588 366.26417	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532 0.68950 0.70384	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056 365.57467 365.68862	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120 366.95367 367.09630	forwards:
Foreca 1 2 3 4 5 6 7	sts with 68% (Forecast 365.62273 365.75101 365.87930 366.00759 366.13588 366.26417 366.39246	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532 0.68950 0.70384 0.71833	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056 365.57467 365.68862 365.80242	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120 366.95367 367.09630 367.23908	forwards:
Foreca 1 2 3 4 5 6 7 8	sts with 68% (Forecast 365.62273 365.75101 365.87930 366.00759 366.13588 366.26417 366.39246 366.52075 366.64904	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532 0.68950 0.70384 0.71833	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056 365.57467 365.68862 365.80242 365.91607	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120 366.95367 367.09630 367.23908 367.38200	forwards:
Foreca 1 2 3 4 5 6 7 8 9 10	sts with 68% (Forecast 365.62273 365.75101 365.87930 366.00759 366.13588 366.26417 366.39246 366.52075 366.64904	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532 0.68950 0.70384 0.71833 0.73297 0.74776	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056 365.57467 365.68862 365.80242 365.91607 366.02957	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120 366.95367 367.09630 367.23908 367.38200 367.52508	forwards:
Foreca 1 2 3 4 5 6 7 8 9 10	sts with 68% (Forecast 365.62273 365.75101 365.87930 366.00759 366.13588 366.26417 366.39246 366.52075 366.64904 366.77732 366.90561	confidence in stand.err 0.62018 0.63372 0.64743 0.66129 0.67532 0.68950 0.70384 0.71833 0.73297 0.74776	leftbound 365.00255 365.11729 365.23188 365.34630 365.46056 365.57467 365.68862 365.80242 365.91607 366.02957 366.14292	rightbound 366.24290 366.38473 366.52673 366.66888 366.81120 366.95367 367.09630 367.23908 367.38200 367.52508 367.66830	forwards:

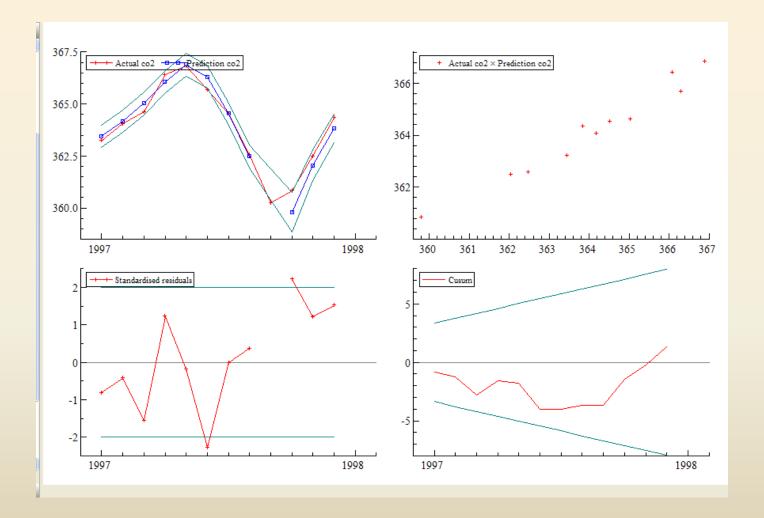
Stamp warns us about the slope being an unreliable part of the signal (the end effect)

Forecast values for Level								
Forecast	s with 68%	confidence in	terval from	period 1997(12)	forwards:			
	Forecast	stand.err	leftbound	rightbound				
1	365.62273	0.62018	365.00255	366.24290				
2	365.75101	0.63372	365.11729	366.38473				
3	365.87930	0.64743	365.23188	366.52673				
4	366.00759	0.66129	365.34630	366.66888				
5	366.13588	0.67532	365.46056	366.81120				
6	366.26417	0.68950	365.57467	366.95367				
7	366.39246	0.70384	365.68862	367.09630				
8	366.52075	0.71833	365.80242	367.23908				
9	366.64904	0.73297	365.91607	367.38200				
10	366.77732	0.74776	366.02957	367.52508				
11	366.90561	0.76269	366.14292	367.66830				
12	367.03390	0.77777	366.25613	367.81167				
Ssf() wa	rning: SLOP	E can not be p	part of sig	nal				
Forecast	values for	Seasonal						
Forecast	s with 68%	confidence in	terval from	period 1997(12)	forwards:			
	Forecast	stand.err	leftbound	rightbound				
1	0.01323	0.09192	-0.07870	0.10515				
2	0.74218	0.09192	0.65026	0.83410				
3	1.43682	0.09203	1.34478	1.52885				
4	2.68793	0.09212	2.59581	2.78005				
5	3.12558	0.09237	3.03321	3.21796				
6	2.32195	0.09261	2.22934	2.41456				
7	0.82378	0.09287	0.73091	0.91665				
8	-1.33997	0.09344	-1.43341	-1.24653				
9	-3.39751	0.09248	-3.48999	-3.30503				
10	-3.38559	0.09243	-3.47802	-3.29316				
11	-2.14398	0.09317	-2.23715	-2.05080				
12	-0.88441	0.09669	-0.98111	-0.78772				


Ex ante forecast

Forecast evaluation

For	ecasting - STAMP unobserv	ed components module	×
	Select equation and forecast	tsettings	
	Equation	co2	
	Horizon	12	
	Generate forecasts X		
	Use realised X when available		
	Edit/Save forecasts X&Y		
	Write forecasts Y		
	Write forecasts components		
Ξ	Select components to plot w	ith Y	
	Signal		
	Trend		_
	Trend plus Cycles and ARs		_
	Trend plus Regression effects		
÷	Select components to plot w	ithout Y	
Ξ	Further options		
	Plot confidence intervals		
	Anti-log analysis		
	Zoom sample range	1990(3) - 1997(12)	
		OK Cancel	


We can shorten the forecast horizon to improve our forecast accuracy

After requesting Prediction Graphics select the boxes below for forecast evaluation

diction graphics - STA	MP unobserved components module	
One-step ahead	•	_
Multi-step ahead	0	
Post-sample size	12	
Plot predictions and Y		
Predictions		
with Y		
with standard errors		
and scaled by	2	
Cross-plot predictions x Y		
Plot residuals Residuals		
with standard errors		
and scaled by	2	
Standardized residuals		
Cumulative sum		
Cumulative sum t-test		
Write		
prediction tests		
prediction tests		•
	OK Cancel	

Some of the Prediction graphics

Out-of-sample forecast evaluation

	101 101	12	post-sample	predictions	(with 1 missin	g values).
	err	or	stand.err	residual	cusum	sqrsum
1997(1)	-0.22	80	0.2692	-0.8204	-0.8204	0.6730
1997(2)	-0.11	34	0.2692	-0.4212	-1.242	0.8504
1997(3)	-0.41	93	0.2692	-1.557	-2.799	3.276
1997(4)	0.33	80	0.2692	1.229	-1.570	4.786
1997(5)	-0.048	34	0.2692	-0.1796	-1.750	4.818
1997(6)	-0.61	06	0.2692	-2.268	-4.018	9.964
1997(7)	-0.0019	21	0.2703	-0.007105	-4.025	9.964
1997(8)	0.099	13	0.2694	0.3680	-3.657	10.10
1997(9)	. N	aN	3162.	0.0000	-3.657	10.10
1997(10)	1.0	41	0.4683	2.222	-1.435	15.04
1997(11)	0.44	74	0.3688	1.213	-0.2217	16.51
1997(12)	0.51	04	0.3348	1.525	1.303	18.83
Post-sample	predictive	tes	ts.			
Failure Chi	2(11) test :	is	18.8346 [0	.0641]		
Cusum t(11) test	is	0.3929 [0	.7019]		

Post-sample prediction statistics. Sum of 11 absolute prediction errors is 3.84283 Sum of 11 squared prediction errors is 2.27563 Sum of 11 absolute prediction resids is 11.8111 Sum of 11 squared prediction resids is 18.8346

The cyclical component

Stochastic cyclicity:

$$\begin{bmatrix} \boldsymbol{\psi}_{t+1} \\ \boldsymbol{\psi}_{t+1}^* \end{bmatrix} = \rho \begin{bmatrix} \cos \lambda_c & \sin \lambda_c \\ -\sin \lambda_c & \cos \lambda_c \end{bmatrix} \begin{bmatrix} \boldsymbol{\psi}_t \\ \boldsymbol{\psi}_t^* \end{bmatrix} + \begin{bmatrix} \chi_t \\ \chi_t^* \end{bmatrix} \qquad \chi_t, \chi_t^* \sim N(\boldsymbol{\theta}, \sigma_{\chi_t}^2)$$
$$\operatorname{cov}(\chi_t, \chi_t^*) = \boldsymbol{\theta}$$

where

 $\rho = damping \ parameter \ s.t. \ \theta <= \rho <= 1$

$$\lambda_c = frequency of the cycle = \frac{2\pi}{p_c}$$

where
$$p_c = period$$
 of the cycle

R. Yaffee state space lecture 2009-Nov-26

The cyclic distribution Koopman et al. (2008, 22-23).

$$\begin{bmatrix} \boldsymbol{\psi}_{t+1} \\ \boldsymbol{\psi}_{t+1}^* \end{bmatrix} = \rho \begin{bmatrix} \cos \lambda_c & \sin \lambda_c \\ -\sin \lambda_c & \cos \lambda_c \end{bmatrix} \begin{bmatrix} \boldsymbol{\psi}_t \\ \boldsymbol{\psi}_t^* \end{bmatrix} + \begin{bmatrix} \boldsymbol{\chi}_t \\ \boldsymbol{\chi}_t^* \end{bmatrix} \qquad \boldsymbol{\chi}_t, \boldsymbol{\chi}_t^* \sim N(\boldsymbol{\theta}, \boldsymbol{\sigma}_{\boldsymbol{\chi}_t}^2)$$
$$\operatorname{cov}(\boldsymbol{\chi}_t, \boldsymbol{\chi}_t^*) = \boldsymbol{\theta}$$

$$\begin{pmatrix} \boldsymbol{\chi}_t \\ \boldsymbol{\chi}_t^* \end{pmatrix} \sim NID \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{\theta} \end{bmatrix}, \quad \boldsymbol{\sigma}_{\psi}^2 (\boldsymbol{I} - \boldsymbol{\rho}^2) \boldsymbol{I}_2 \end{bmatrix}$$

when $\rho \rightarrow 1$, the cycle component reduces to a deterministic (but stationary) sine - cosine wave.

What are the system matrices?

Koopman, Shephard, and Doornik (2008, 9)

$$\begin{pmatrix} \boldsymbol{\alpha}_{t+1} \\ \boldsymbol{y}_t \\ m+N \times \boldsymbol{I} \end{pmatrix} = \begin{pmatrix} \boldsymbol{d}_t \\ \boldsymbol{c}_t \\ m+N \times \boldsymbol{I} \end{pmatrix} + \begin{pmatrix} \boldsymbol{T}_t \\ \boldsymbol{Z}_t \\ m+N \times \boldsymbol{m} \end{pmatrix} \boldsymbol{\alpha}_t + \begin{pmatrix} \boldsymbol{H}_t \\ \boldsymbol{G}_t \\ m+N \times \boldsymbol{r} \end{pmatrix} \boldsymbol{\varepsilon}_t$$

m = dimension of the transition equationN = dimension of the measurement model

$$\begin{pmatrix} \alpha_{t+1} \\ y_t \end{pmatrix} = state \ vector \qquad \delta = \begin{pmatrix} d_t \\ c_t \\ (m+N) \ge 1 \end{pmatrix} = constant \ vector$$

$$\Phi_{t} = \begin{pmatrix} T_{t} \\ Z_{t} \end{pmatrix}_{(m+N)x m} = transition \ matrix$$
$$u_{t} = \begin{pmatrix} H_{t} \\ G_{t} \\ (m+N)xr \end{pmatrix} \varepsilon_{t} \sim NID(\theta, \Omega_{t}) \qquad \Omega_{t} = \begin{pmatrix} HH' & HG' \\ GH' & HH' \\ (m+N)x(m+N) \end{pmatrix}$$

where n = number of observations $r = \dim ension \ of \ the \ disturbance \ vector$ R. Yaffee state space lecture 2009-Nov-26

We can define, constrain, or limit parameters in these matrices

Most matrices start with an m before their name. This is a notational convention of SsfPack.

We can decide whether these matrices will be time-varying or constant. We index these Phi, Omega, and sigma matrices by J. All elements within are = -1 except those that vary with time.

We can define whether these elements are known or unknown, to be initialized as diffuse or not.

We can insert - 1 to indicate that the element will receive diffuse initialization or not.

Input to Stsm matrix

<u>Ibid,</u> 24

mStsm				
Стр	Col 1	Col 2	Col 3	Col 4
Level	σ_{η}	0	0	0
Slope	$\sigma_{_{\zeta}}$	0	0	0
Trend	$\sigma_{_{\zeta}}$	т	0	0
Seas _dummy	$\sigma_{_{\!$	S	0	0
Cycle0	$\sigma_{_{\!\!arpsilon\!\!arpsilon}}$	λ_{c}	ρ	0
:	М	М	М	М
Cycle9	$\sigma_{\!\scriptscriptstyle \psi}$	$\lambda_{_{c}}$	ρ	0
BWCYC	$\sigma_{\!\scriptscriptstyle \psi}$	$\lambda_{_{c}}$	ρ	т
Irregular	$\sigma_{_{\xi}}$	0	0	0

Missing Values

- Missing data can be estimated by data augmentation or filtering if
- they exist in the measurement model or the data matrix.
- Periods signify missing values in Ox. In SPlus, the missing value is
- NA. Vectors with missing values are automatically reduced to
- Vectors without missing values for analysis.
- The system matrices are presumed known and given and cannot
- have missing values within them. When some matrices are not
- Relevant for the formulation of a state space, they can be left blank.

Data matrix mXt

mXt is a k by n matrix of exogenous variables.

The number of columns = sample size The number of rows= number of time-varying elements in the matrix.

If this is a time series, it is usually called mYt. Yaffee state space lecture 2009-Nov-26

A side note.

When regressors are added to a local level model, the time-varying level serves as a constant. Therefore, we do not add a column of ones to them to avoid unnecessary multicollinearity Ibid, 28.

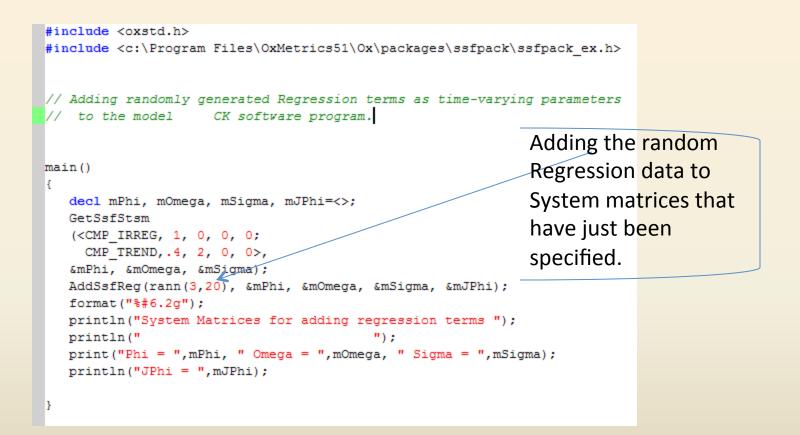
If you are adding a deterministic time trend and do not already have a local level, a constant would be acceptable so long as you did not previously center your data.

Adding Regressors to the State Space Model

GetSsfReg is the function that is used for this purpose.

When it does so, it estimates the model by recursive least

squares. This is an OLS algorithm applied to a widening


window expanding one step ahead each cycle of window

extension. Koopman et al(2008,27) suggest that the multiple linear regression analysis can be specified in state space form as

$$\alpha_{t+1} = \alpha_t$$

$$y_t = X_t \alpha_t + G_t \varepsilon_t \quad \varepsilon_t \sim NID(\theta, \sigma_{\varepsilon}^2) \quad t = 1, ..., n$$

To add regressors to a model in SsfPack

System matrices for adding regressors as time-varying parameters.

```
Ox at 22:44:03 on 09-Nov-2009 -
Ŧ
^
   Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
   System Matrices for adding regression terms
   Phi =
      1.0 0.00 0.00 0.00 0.00
     0.00 1.0 0.00 0.00 0.00
     0.00 0.00 1.0 0.00 0.00
     0.00 0.00 0.00 1.0 1.0
     0.00 0.00 0.00 0.00 1.0
     0.00 0.00 0.00
                     1.0 0.00
    Omega =
     0.00 0.00 0.00 0.00 0.00
                                0.00
     0.00 0.00 0.00 0.00 0.00 0.00
     0.00 0.00 0.00 0.00 0.00 0.00
     0.00 0.00 0.00 0.00 0.00 0.00
     0.00 0.00 0.00 0.00 0.16 0.00
     0.00 0.00 0.00 0.00 0.00
                                1.0
                                                     The Jphi matrix
    Sigma =
     -1.0 0.00 0.00 0.00 0.00
                                                     contains -1
     0.00 -1.0 0.00 0.00 0.00
     0.00 0.00 -1.0 0.00 0.00
                                                     except where
     0.00 0.00 0.00 -1.0 0.00
     0.00 0.00 0.00 0.00 -1.0
                                                     time varying
     0.00 0.00 0.00 0.00 0.00
   JPhi =
                                                     parameters are
     -1.0 -1.0 -1.0 -1.0 -1.0
     -1.0 -1.0 -1.0 -1.0 -1.0
                                                     specified.
     -1.0 -1.0 -1.0 -1.0 -1.0
     -1.0 -1.0 -1.0 -1.0 -1.0
     -1.0 -1.0 -1.0 -1.0 -1.0
     0.00 1.0 2.0 -1.0 -1.0
```

Trend-cycle models

```
#include <oxstd.h>
#include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>
// Trend Cycle Model CK page 26
                                                       Order of trend
main()
{
  decl mPhi, mOmega, mSigma;
  GetSsfStsm
   (<CMP IRREG, 1.0, 0, 0, 0; // sd=1 this is the irregular component denom in q
    CMP TREND, 0.4, 3, 0, 0; // 3rd order trend sd=.4
    CMP BWCYC, .6, .9, .3, 2>, // Butterworth filter for order 2, sd=.6, damping=.9, freq=.3
  &mPhi, &mOmega, &mSigma);
  format ("%#5.2g");
  println("Trend-cycle CK p.26 ");
  print ("=======
                                             ========"):
  println("
                                        ");
  print("Phi = ",mPhi, " Omega = ",mOmega, " Sigma = ",mSigma);
```

Trend-cycle system matrices

----- Ox at 21:43:55 on 09-Nov-2009 ------

```
Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
Trend-cvcle CK p.26
  _____
Phi =
 1.0 1.0 0.00 0.00 0.00 0.00 0.00
 0.00 1.0 1.0 0.00 0.00 0.00 0.00
 0.00 0.00 1.0 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.19 0.23 1.0 0.00
 0.00 0.00 0.00-0.23 0.19 0.00 1.0
 0.00 0.00 0.00 0.00 0.00 0.19 0.23
 0.00 0.00 0.00 0.00 0.00-0.23 0.19
 1.0 0.00 0.00 1.0 0.00 0.00 0.00
 Omega =
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0
 Sigma =
 -1.0 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 -1.0 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 -1.0 0.00 0.00 0.00 0.00
 0.00 0.00 0.00 0.47 0.000.074-0.093
 0.00 0.00 0.00 0.00 0.470.0930.074
 0.00 0.00 0.000.0740.093 0.36 0.00
 0.00 0.00 0.00-0.0930.074 0.00 0.36
 0.00 0.00 0.00 0.00 0.00 0.00 0.00
                   R. Yaffee state space lecture 2009-Nov-26
```

Interventions

Just as regressors can be added to the model, so can dummy variable identifying additive outliers or level shifts. Several adjacent outliers can define outlier patches.

Adding Regressors code from Zivot and Wang,(2005), pp. 526ff

When regressors are added to a local level model, the time-varying level serves as a constant. Therefore, we do not add a column of ones to them to avoid unnecessary multicollinearity Ibid, 28.

```
X.mat = cbind(1, as.matrix(seriesData(excessReturns.ts[,"SP500"])))
  Phi.t = rbind(diag(2), rep(0,2))
   Phi.t
  Omega = diag(c((.01^2), (.05^2), (.1)^2))
  Omega
  J.Phi= matrix(-1,3,2) # time-varying parameter J matrix
  J.Phi[3,1]=1
  J.Phi[3,2]=2
  J.Phi
  Sigma= - Phi.t
  mX=X.mat
            # construction of design matrix
  mΧ
   #mapping matrices into SsfPack
  ssf.tvp.capm = list(mPhi=Phi.t,mOmega=Omega, mJPhi=J.Phi,mSigma=Sigma,
           mX=X.mat)
  ssf.tvp.capm
let's simulate the model
Simulation
 first check it
   ssf.tvp.capm
                      // This checks to see whether your code is syntactically correct.
                     R. Yaffee state space lecture 2009-Nov-26
```

Non-parametric cubic splines for smoothing

Nonparametric cubic splines are smoothers used to extract signal from noise. They are designed to capture the nonlinearity of a function. These may be added as regressors to define a function or process that serves as an explanatory variable in a model.

If we have a stationary error process, such that $y_t = \mu_t + \varepsilon_t$. We are trying to find a nonlinear or piecewise function μ_t for which

$$argmin = \sum_{t=1}^{T} (y_t - \mu_t)^2 + \lambda \sum_{t=1}^{n} (\Delta^2 \mu_t)^2$$

where

the term on the far right = penalty function(Durbin and Koopman(2001, 61).

Basic structural model

It has a level, a slope, and a seasonal component

$$y_t = \mu_t + \beta_t + \gamma_t + \psi_t$$

where

 $\mu_{t} = unobserved \ trend \ (level) \ component$ $\beta_{t} = unobserved \ slope \ component$ $\gamma_{t} = unobserved \ seasonal \ component$ $\xi_{t} = unobserved \ irregular \ component$

The GetSsfStsm function

If we provide the input of what components we wish to have in our model this function in SsfPack (in Ox or in S-Plus) will construct our system matrices for us.

The system matrices are the model matrices which stack the state equation atop the measurement equation. They are the Phi, the Omega, and the Sigma matrices.

GetSsfStsm in S-Plus

	######################################									
******	######################################									
ssf.sts	sm = GetSsfSts	m(irregular=1, l		irregular=1 and l and sigma_eta=1	evel = .5 specify	y sigma_epsilon	= 1			
names(s	ssf.stsm) ssf.stsm)			_						
	-	lays the system	matrices of the	state space loca	l level model					
	etSsfStsm) GetSsfStsm)									
<								>		
> names	s(GetSsfStsm)									
		"level"	"slope"	"trend"	"seasonalDummy"	-				
	BWcycle" cycle6"		"cycle1" "cycle8"	"cycle2" "cycle9"	"cycle3" "AR1"	"cycle4" "AR2"	"cycle5" ""			
				-1						

System matrices for local level model

J	≡ radyzer rooe - program
ļ	306 1
	<pre>ssf.stsm = GetSsfStsm(irregular=1, level=.5) # irregular=1 and level = .5 specify sigma_epsilon = 1 # and sigma_eta=1</pre>
I	class(ssf.stsm)
	names(ssf.stsm)
	<pre>ssf.stsm # displays the system matrices of the state space local level model</pre>
	args(GetSsfStsm) names(GetSsfStsm)
I	
I	ssf.stsm
I	
I	
I	
I	> ssf.stsm
I	\$mPhi: [,1]
I	[1,] 1
I	[2,] 1
I	
I	\$mOmega:
I	[,1] [,2] [1,] 0.25 0
I	[2,] 0.00 1
I	
	\$mSigma:
I	[,1] [1,] -1
	[2,] 0
r	

Local level model with stochastic regressors

(time-varying parameters)

we could treat the parameters as random walks

(Zivot and Wang, 2005, 533)

$$\alpha_{t+1} = T_t \alpha_t + H_t \eta_t$$
$$y_t = x_t \beta_t + \xi_t$$

with

$$H_{t} = \begin{bmatrix} \sigma_{\beta_{l}} \\ \sigma_{\beta_{2}} \\ M \\ \sigma_{\beta_{k}} \end{bmatrix}$$

in this case the exogenous series are treated as random walks

SO

$$\beta_{i,t+1} = \beta_{i,t} + \sigma_{i,\beta}$$
R. Yaffee state space lecture 2009-Nov-26

SsfPack code for reading the Norwegian traffic fatalities data

```
206
207 }
208
209 main()
210 {
211
      decl data:
212
       data = loadmat("NorwayFinland.txt")'; // load data, transpose
213
214
       print("\nNorway 1970-2003");
215
       print("\n-----\n");
216
       s mY = log(data[1][]); // log 1970-2003
217
       s cT = columns(s mY); // no of observations
218
219
       MaxLik();
220
       DrawComponents(s mY);
221 }
```

Ox code for setting up a stochastic local level model

Commandeur and Koopman code snippet

```
👷 chapter2-1&2-2.ox - C:\Program Files\OxMetrics6\Ox\packages\ssfpack\CKbook\Chapter_2\c... 📮 🔲
       10
    #include <oxstd.h>
12
    #include <oxdraw.h>
13
    #import <maximize>
    #include <c:\Program Files\OxMetrics51\Ox\packages\ssfpack\ssfpack ex.h>
15
16 static decl s mY, s cT; // data (1 x n) and n
17 static decl s mStsm, s vVarCmp; // matrices for state space model

      static decl s_dVar;
      // scale factor

      static decl s_vPar;
      // parameter vector of model

18
19
20
                               // Determination of the level variance as stochas
21
    static decl s iLvlVar = 0; // 0 = stochastic level; -1 = deterministic level
    static decl s asCmps; // string array of component names
22
23
24
    SetStsmModel(const vP)
25
    ₹.
26
      // map to local level model
27
        s_mStsm = < CMP_LEVEL, 0.5, 0, 0;</pre>
28
                    CMP_IRREG, 1, 0, 0>;
29
      // change BFGS parameters into error variances
30
       decl vr = \exp(2.0 * vP);
31
      // s vVarCmp is used to update diagonal(Omega)
32
        if (s iLvlVar != -1)
33
            11
                      level irregular
34
            s vVarCmp = vr[0] | vr[1];
35
        else
```

Ox code for Local level model

```
InitialPar()
£
   decl dlik, dvar, vp;
   if (s_iLvlVar != -1) // diffuse prior
    {
       s asCmps = {"level ", "irregular "}; //local level model
       vp = log(<0.5; 1>);
   }
   else
    s asCmps = {"irregular "};
       vp = log(<1>);
   }
   SetStsmModel(vp); // map vP to local level model
   LogLikStsm(s mY, &dlik, &dvar);
   // scale initial estimates by scale factor
   return vp + 0.5 * log(dvar);
Likelihood(const vP, const pdLik, const pvSco, const pmHes)
                             // arguments dictated by MaxBFGS()
£
   decl ret val;
   SetStsmModel(vP); // map vP to local level model
   ret val = pvSco ? LogLikScoStsm(s mY, pdLik, pvSco)
               : LogLikStsm(s_mY, pdLik, &s_dVar);
   return ret val; // 1 indicates success, 0 failure
```

Code snippet

```
MaxLik()
{
    decl vp, dlik, ir;
   vp = InitialPar();
                              // initialise unconstrained BFGS parameters
   print("\ninitial values BFGS parameters",vp);
   print("\n");
   MaxControl (50, 1, 1); // start iterations BFGS algorithm
    ir = MaxBFGS(Likelihood, &vp, &dlik, 0, FALSE);
   println("\n", MaxConvergenceMsg(ir),
          " using analytical derivatives",
          \sqrt{n(1/n)} Log-likelihood = ", "%.8g", dlik,
          "; n = ", s cT, ";");
    // set up system matrices and compute AIC
    decl mphi, momega, msigma, daic, i;
    GetSsfStsm(s mStsm, &mphi, &momega, &msigma);
    daic = (-2*dlik*s_cT) + (2*(rows(vp)+columns(mphi)));
    println("\nAkaike Information Criterion = ", daic/s cT);
    s vPar = vp;
    print("\nparameter estimates (unconstrained)");
    for(i=0;i<=rows(vp)-1; i++)</pre>
        print("\n ", s asCmps[i], vp[i]);
    print("\n\nerror variance estimates");
    for(i=0;i<=rows(vp)-1; i++)</pre>
        print("\n ", s asCmps[i], exp(2.0 * vp[i]));
    print("\n");
    println("Printing system matrices for local level model");
```

Output of local level model for Norwegian traffic fatalities

(data from Commandeur and Koopman (2007)

	• •• •• •	Kanta Kuud	· · · · · · · · · · · · · · · · · · ·						
			3/U/MT) (C) J.A						
Norway 1970-2	Norway 1970-2003								
initial value	-	ameters							
-3.1656									
-2.4725									
1+0 E -	0.7755200	45- 0.100	0 5790	-2- 0.006215	1				
			2 e1= 0.5780		-				
			8 e1= 0.4053						
			5 e1= 0.06664		-				
			5 e1= 0.01800						
			4 e1= 0.0009332		-				
it5 f=	0.8468622	df=1.947e-008	5 e1=5.706e-005	e2=2.895e-005	step=1				
BFGS: Strong	convergence	2							
Strong conver	gence using	g analytical (derivatives						
(1/n) Log-lik									
Akaike Inform	ation Crite	erion = -1.517	725						
parameter estimates (unconstrained)									
level	-2.67982								
irregular	-2.86173								
error varianc	e estimates	з							
level	0.0047026								
irregular	0.00326838	B Vaffaa stata (inaca lactura 2000	Nov 26					

R. Yaffee state space lecture 2009-Nov-26

System Matrices

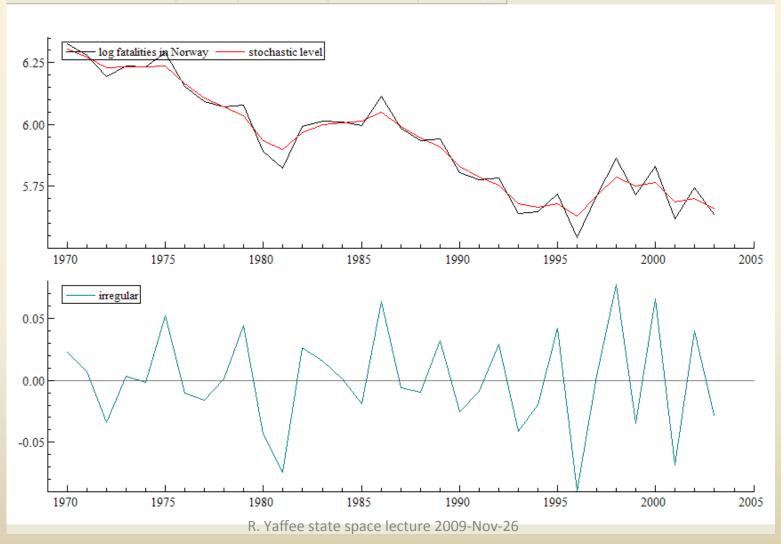
Printing syst Phi =	tem matrices fo:	r local level	model		
1.0000					
	-				
1.0000	,				
Omega =					
	0.00000				
	1.0000				
Sigma =					
-1.0000					
0.00000)				
mKF[][0:4]					
	-0.049415	-0.098486	0.010679	-0.00050003	
1.0000	0.70920	0.68234	0.67961	0.67933	
	88.973			98.114	
0.00000	1.0000	1.0000	1.0000	1.0000	
lag	autocorrelat:	ion			
1.0000	-0.12733				
2.0000	-0.012441				
3.0000	0.10949				
4.0000	-0.10540				
5.0000	-0.13824				
6.0000	-0.22535				
7.0000	-0.15301				
8.0000	-0.047786				
9.0000	0.042202				
10.000	-0.10378				
95%-confidenc	ce limit = 0.34	2997			

Initial conditions depend on prior distribution

To indicate a diffuse distribution and or a noninformative prior, the variance of the prior is flat and almost infinite. This means that the precision of such knowledge is the inverse or reciprocal of the variance. The precision -> 0 as the variance-> infinity.

Problems of estimation arise when you approach the perilous precipice (boundary) of the parameter space. Estimates tend to break down at such extremes.

Therefore, we use in our computers approximations. Infinity is therefore represented by a very large number, such as 10^7 . We suggest such a condition by assigning a value of -1 to a parameter for an initial condition. If parameters are mean-centered, the initial value of their means can easily be zero.


Time-varying parameters

Many simple models can be defined by specifying the mPhi, mOmega, and mSigma matrices.

However, sometimes parameters vary over time. They may be random coefficients.

To indicate such parameters, we use J matrices. Instead of mPhi, the matrix would be called, mJ_Phi. This would indicate the presence of a non-constant system matrix for mPhi.

Graphical output of Model of Norwegian traffic fatalities

Local linear Trend Model

$$\mu_{t+1} = d_t + T \mu_t + \beta_t + \eta_t \qquad \eta_t \sim NID(\theta, \sigma_{\eta_t}^2) = (\theta, H_t \varepsilon_t) \\ \mu_{mxr rx1} \qquad \beta_{t+1} = \beta_t + \zeta_t \qquad \zeta_t \sim NID(\theta, \sigma_{\zeta_t}^2) = (\theta, H_t \varepsilon_t) \\ y_t = c_t + Z_t \mu_t + \xi_t \qquad \xi_t \sim NID(\theta, \sigma_{\zeta_t}^2) = (\theta, G_{Nxr} \varepsilon_t) \\ \end{pmatrix}$$

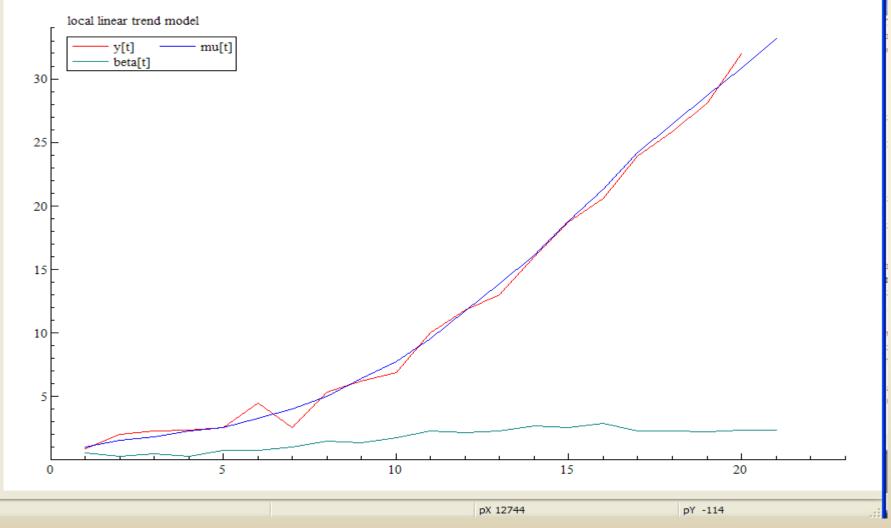
Local linear Trend model $\alpha_{t+1} = \begin{pmatrix} \mu_{t+1} \\ \beta_{t+1} \\ y_t \end{pmatrix} = state \ vector \ (unobserved \ factor)$ $\delta_t = \begin{pmatrix} d_t \\ c_t \end{pmatrix} = mean \ matrix(if \ model \ is \ not \ mean \ centered)$ $\Phi_t = \begin{pmatrix} T_t \\ Z_t \end{pmatrix} = mPhi \ matrix$ $\Sigma_{t} = \begin{pmatrix} HH' & HG' \\ GH' & GG' \end{pmatrix} = mSigma \ matrix$ assumed that covariance = 0 so mSigma matrix is defined by it's principle diagonal where

m = dimension of state vector

N = number of variables

n = *number* of observations

r = dimension of error vector


Ox Code for local linear trend model

```
1
    #include <oxstd.h>
2
    #include <oxdraw.h>
3
    #include <oxfloat.h>
4
    #include <packages/ssfpack/ssfpack ex.h>
5
6
    main()
7
    {
8
        decl mPhi = <1,1;0,1;1,0>;
9
       decl mOmega = diag(<0, 0.1, 1>);
10
       decl mSigma = <0,0;0,0;1,.5>; // Note that Q is zero
11
12
        decl mr = sqrt(mOmega) * rann(3, 21);
13
        decl md = SsfRecursion(mr, mPhi, mOmega, mSigma);
14
        decl mYt = md[2][1:] ~ M NAN; // 20 observations
15
16
        print ("Generated data (t=10) for local linear trend model",
17
            "%c", {"mu[t+1]","beta[t+1]","y[t]"}, md[][10]');
18
        DrawTitle(0, "local linear trend model");
19
        DrawTMatrix(0, mYt | md[:1][],
20
            {"y[t]", "mu[t]", "beta[t]"}, 1, 1, 1); // local linear trend model
21
        ShowDrawWindow();
22
23
```

Ox Output

----- Ox at 23:30:40 on 18-Nov-2009 -----Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009 Generated data (t=10) for local linear trend model mu[t+1] beta[t+1] y[t] 9.4880 2.2385 6.8327

Ox graphical output for local linear trend model

Defining the system matrices and specifying the model

It can be done without reference to ARIMA models, as we have already shown.

We will now provide examples of how these models may be formulated in an ARIMA framework as well.

We shall give examples of both, with Ox and S-Plus.

Ox code specifying an AR(1) model

```
#include <oxstd.h>
#include <oxstd.h>
#include <packages/ssfpack/ssfpack_ex.h>
main()
{
    decl mPhi, mOmega, mSigma;
    format("%5.1f");
    GetSsfArma
    (<0.6>, <>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
    print(" An AR(1) model ");
    print("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
}
```

AR(1) system matrix output

```
----- Ox at 23:55:19 on 18-Nov-2009 -----
Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
An AR(1) model Phi =
0.6
1.0
Omega =
0.9 0.0
0.0 0.0
Sigma =
1.4
0.0
```

Local Level model with stochastic regressors with AR(2) errors

$$\begin{pmatrix} \boldsymbol{\alpha}_{t+1} \\ \boldsymbol{y}_t \end{pmatrix} = \begin{pmatrix} T^* \\ \boldsymbol{Z}_t^* \end{pmatrix} \boldsymbol{\alpha}^* + \begin{pmatrix} H\boldsymbol{\eta}_t \\ \boldsymbol{\theta} \end{pmatrix}$$
$$T^* = \begin{pmatrix} T & \boldsymbol{\theta} \\ \boldsymbol{\theta} & \boldsymbol{I}_k \end{pmatrix}$$
$$Z_t^* = \begin{pmatrix} \mathbf{1} & \boldsymbol{\theta} & \mathbf{L} & \boldsymbol{x}_t' \end{pmatrix}$$

AR(2) Ox code

Koopman, Shephard, and Doornik (2008, 16)

```
1
   #include <oxstd.h>
2
   #include <packages/ssfpack/ssfpack ex.h>
3
4
   main()
5
   £
6
       decl mPhi, mOmega, mSigma;
7
       format("%5.1f");
8
       GetSsfArma
9
      (<0.6,0.3>, <>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
10
      print(" An AR(2) model ");
11
      print("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
12
  }
13
```

AR(2) system matrix output

```
---- Ox at 23:58:23 on 18-Nov-2009 -----
Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
An AR(2) model Phi =
 0.6 1.0
 0.3 0.0
 1.0 0.0
Omega =
 0.9 0.0 0.0
 0.0 0.0 0.0
 0.0 0.0 0.0
Sigma =
 3.7 1.0
 1.0 0.3
 0.0 0.0
```

Ox Code specifying an MA1 model

```
#include <oxstd.h>
2
3
    #include <packages/ssfpack/ssfpack ex.h>
4
    main()
5
    Ł
6
        decl mPhi, mOmega, mSigma;
7
        format("%5.1f");
8
        GetSsfArma
9
        (<>, <0.8>, sgrt(0.9), &mPhi, &mOmega, &mSigma);
10
        print(" An MA(1) model\n");
11
        print("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
```

MA 1 system matrix output

```
----- Ox at 23:58:23 on 18-Nov-2009 -----

Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009

An AR(2) model Phi =

0.6 1.0

0.3 0.0

1.0 0.0

Omega =

0.9 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

Sigma =

3.7 1.0

1.0 0.3

0.0 0.0
```

MA(2) system matrix output

```
#include <oxstd.h>
#include <oxstd.h>
main()
{
    decl mPhi, mOmega, mSigma;
    format("%5.1f");
    GetSsfArma
    (<>, <0.6,0.3>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
    print(" An MA(2) model\n");
    print("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
}
```

L 2 3

MA2 system matrix output

```
----- Ox at 00:05:11 on 19-Nov-2009 ------
Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-200
An MA(2) model
Phi =
 0.0 1.0 0.0
 0.0 0.0 1.0
 0.0 0.0 0.0
 1.0 0.0 0.0
Omega =
 0.9 0.5 0.3 0.0
 0.5 0.3 0.2 0.0
 0.3 0.2 0.1 0.0
 0.0 0.0 0.0 0.0
Sigma =
 1.3 0.7 0.3
 0.7 0.4 0.2
 0.3 0.2 0.1
 0.0 0.0 0.0
```

An ARMA(2,1) model

Ox code from Koopman, Shephard, and Doornik (2008, 16)

```
1
    #include <oxstd.h>
2
    #include <packages/ssfpack/ssfpack ex.h>
3
4
    main()
5
    Ł
6
        decl mPhi, mOmega, mSigma;
7
        format("%5.1f");
8
        GetSsfArma
9
        (<0.6,0.2>, <-0.2>, sqrt(0.9), &mPhi, &mOmega, &mSigma);
10
        println(" An ARMA(2,1) model");
11
        print("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
12
   1
13
```

ARMA(2,1) model output

```
----- Ox at 00:11:43 on 19-Nov-2009 ------
Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009
An ARMA(2,1) model
Phi =
0.6 1.0
0.2 0.0
1.0 0.0
Omega =
0.9 -0.2 0.0
-0.2 0.0 0.0
0.0 0.0 0.0
Sigma =
1.6 0.0
0.0 0.1
0.0 0.0
```

ARIMA(2,1,1) model specification

Koopman, Shephard, and Doornik(2008, 18).

```
1
    #include <oxstd.h>
2
    #include <packages/ssfpack/ssfpack ex.h>
3
4
    main()
5
    ł.
6
        decl mPhi, mOmega, mSigma;
7
        GetSsfSarima
8
        (1,<0.6,0.3>,<-0.2>,sqrt(0.9), &mPhi, &mOmega, &mSigma);
9
        println("ARIMA (2,1,1) model specification");
10
        print("Phi =",mPhi, "Omega =",mOmega, "Sigma =",mSigma);
11
    }
12
```

System matrices for an ARIMA(2,1,1) model

Ox Pro	fessional	version 6.00	(Windows/U/MT)	(C) J.A.	Doornik,	1994-2009
ARIMA	(2,1,1)	model specific	ation			
Phi =	K	/				
	1.0000	1.0000	0.0000/			
	0.00000	0.60000	1.0000			
	0.00000	0.30000	0.00000			
	1.0000	1.0000	0.00000			
Omega	=					
	0.00000	0.00000	0.00000	0.00000		
	0.00000	0.90000	-0.18000	0.00000		
	0.00000	-0.18000	0.036000	0.00000		
	0.00000	0.00000	0.00000	0.00000		
Sigma	=					
	-1.0000	0.00000	0.00000			
	0.00000	2.5988	0.41112			
	0.00000	0.41112	0.26989			
	0.00000	0.00000	0.00000			

Adding data containing exogenous series to the model using SsfPack

```
Initial state: alpha = 0
#
                  P = k*I
#
#
       assumption is that prior=diffuse
#
    sigma = <-1, 0; 0, -1; 0, 0>
    code from Zivot and Wang, (2005), pp. 526ff
#
       # Construction of the system matrices for time-varying parameters
    X.mat = cbind(1, as.matrix(seriesData(excessReturns.ts[,"SP500"])))
    Phi.t = rbind(diag(2), rep(0,2))
    Phi.t
    Omega = diag(c((.01^2), (.05^2), (.1)^2))
    Omega
    J.Phi= matrix(-1,3,2) # time-varying parameter J matrix
    J.Phi[3,1]=1
    J.Phi[3,2]=2
    J.Phi
    Sigma= - Phi.t
    mX=X.mat
    mΧ
             # construction of design matrix
    #mapping matrices into SsfPack
    ssf.tvp.capm = list(mPhi=Phi.t,mOmega=Omega, mJPhi=J.Phi,mSigma=Sigma,
            mX=X.mat)
    ssf.tvp.capm
```

^

How the Kalman filter functions

- The Kalman filter evaluates moments of the state vector over time.
- Filtering is a one-step-ahead forecast of the mean and variance plus a regression on the innovation to provide a correction at one-lag of this process. Hence, there is iterative correction over time.

To estimate the mean and variance of the state vector

The Kalman filter adds the data to the structure specified by the system matrices and uses the data to recursively compute the innovations that will be used to correct the one - step - ahead expectation of the state first and second moments : the state mean and state variance :

 $\alpha_{t+1} = E(\alpha_t \mid Y_t)$ $P_{t+1} = \operatorname{cov}(\alpha_t \mid Y_t)$

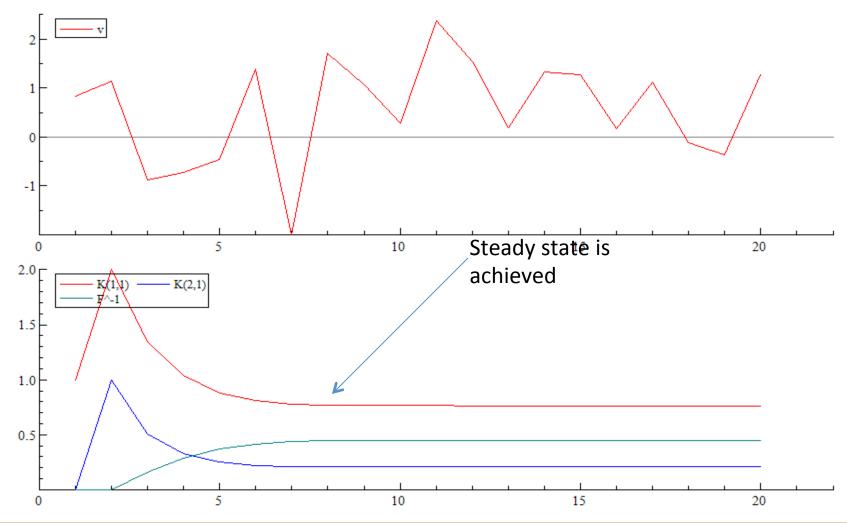
Kalman filter ALgorithm

• A recursive algorithm proceeding 1 step at a time.

 $v_t = y_t - c_t - Z_t \alpha_t$ innovations are computed $F_t = \operatorname{var}(v_t) = Z_t P_t Z_t + G_t G_t'$ innovation variance is computed; subject to eigenvalue decomposition for further analysis, so Z, P, G and G' become defined. κ = Kalman gain can be computed from $\kappa = (T_t P_t Z_t' + H_t G_t') F^{-1}$ so T is now known. $\alpha_{t+1} = d_t + T\alpha_t + \kappa v_t$ (if not mean centered; $d_t = 0$ if mean - centered) $P_t = T_t P_t T_t' + H_t H_t'$ can finally be computed. The state moments are estimated.

Convergence problems

- If |F|=0, or when there is not enough computer memory, this procedure may not converge.
- It has to be able to invert F. If F -> large, the speed will degrade.


Kalman filter without diffuse initialization Md->md-> Recursion

```
#include <oxstd.h>
#include <oxdraw.h>
#include <oxfloat.h>
#include <packages/ssfpack/ssfpack ex.h>
                                                      // Kalman filter
                                                      // withhout diffuse initialization
main()
                                                      // as our dgp is stationary
£
    decl mPhi = <1,1;0,1;1,0>;
    decl mOmega = diag(<0, 0.1, 1>);
    decl mSigma = <0,0;0,0;1,.5>; // Note that 0 is zero
    decl mr = sqrt(mOmega) * rann(3, 21); // mr is designed to input into md for recursion
    decl md = SsfRecursion(mr, mPhi, mOmega, mSigma);
    println("mr = ",mr);
    println("md = ",md);
                              // 20 observations of data
    decl mYt = md[2][1:];
    println("mYt = ",mYt);
    decl mKF = KalmanFil(mYt, mPhi, mOmega);
    print ("mKF\' (t=10)", "%c", {"v", "K(1,1)", "K(2,1)", "F^-1"},
           mKF[][9]');
    DrawTMatrix(0, mKF[0][], {"v"},1,1,1);
    DrawTMatrix(1, mKF[1:][], {"K(1,1)", "K(2,1)", "F^-1"},1,1,1);
    ShowDrawWindow();
```

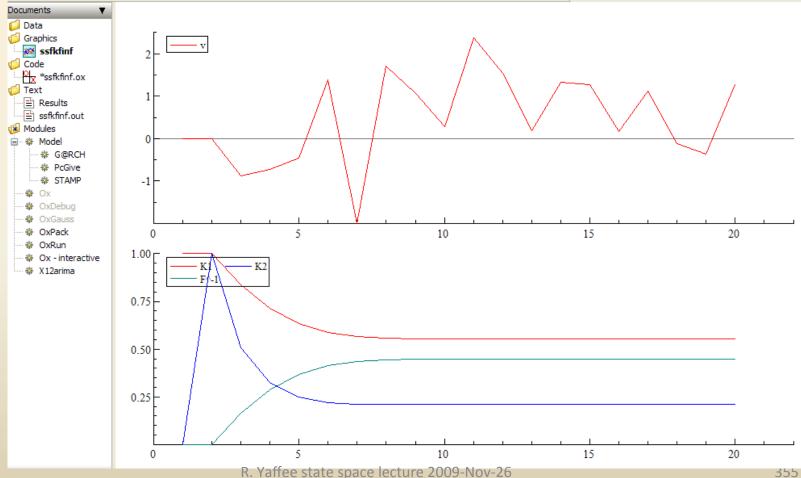
Data matrix and Kalman Filter output at t=10

mYt :	-					
	0.83317	1.9783	2.2372	2.3553	2.5553	4.4531
	2.5337	5.3342	6.2209	6.8327	9.9575	11.804
	13.006	15.987	18.685	20.571	23.932	25.869
	28.095	31.990				
mKF'	(t=10)					
	v	K(1,1)	K(2,1)	F^-1		
	0.27618	0.76491	0.21161	0.44669		

Conventional Kalman filter output

R. Yaffee state space lecture 2009-Nov-26

Kalman filter with diffuse initialization


```
1
   #include <oxstd.h>
2
   #include <oxdraw.h>
3
   #include <oxfloat.h>
4
   #include <packages/ssfpack/ssfpack ex.h>
5
6
   main()
7
   {
8
       decl mphi = <1,1;0,1;1,0>;
9
       decl momega = diag(<0,0.1,1>);
10
       decl msigma = <0,0;0,0;1,.5>; // Note that Q is zero
11
12
       decl mr = sqrt(momega) * rann(3, 21);
13
       decl md = SsfRecursion(mr, mphi, momega, msigma);
14
       decl myt = md[2][1:]; // 20 observations
15
16
       decl mkf = KalmanFilEx (mif, myt, mphi, momega); // nonstationary time series model
17
18
19
       print("mif\'", "%c", {"v", "K1", "K2", "F^-1", "j"}, mif');
       print("mkf\' (t=10)", "%c", {"v", "K1", "K2", "F^-1", "j"}, mkf[][9]');
20
21
22
       DrawTMatrix(0, mkf[0][], {"v"}, 1, 1, 1);
23
       DrawTMatrix(1, mkf[1:3][], {"K1", "K2", "F^-1"}, 1, 1, 1);
24
       ShowDrawWindow();
25
```

26

Output from diffuse initialization

CxMetrics - Results - [ssfkfinf.out]						
E Eile Edit Search View Model Run Window Help						
🔽 📨 📰 🖧 🔛 🎾 🖅 🖅 😥						
💽 🗣 📽 🛃 🔄 📰 🔍 🍳 🔯 🗮 # 🖉 🚱 // ¥						
Documents v Ox at 10:01:45 on 20-Nov-2009						
📁 Data						
Graphics	Ox Professional	version 6.00	(Windows/U/MT)	(C) J.A. Do	ornik, 1994-2009	
📈 ssfkfinf	mif'					
🧔 Code	v	K1	K2	F^-1	j	
Or State Not	0.00000	1.0000	0.00000	1.0000	0.00000	
🧔 Text	0.00000	1.0000	1.0000	1.0000	0.00000	
Results	mkf' (t=10)					
🖹 ssfkfinf.out	v	K1	K2	F^-1	j	
Modules	0.27618	0.55331	0.21161	0.44669	1.0000	

Graphical output from diffuse initialization applied to nonstationary data

355

Displaying the state vector

A function called mstate will generate the state vector after

After the data and mpred and the system matrices are combined in

Kalman Smoother

For signal extraction, for residual analysis, and auxiliary residual analysis, we need to

- 1. smooth the moments,
- 2. smooth the disturbances,
- 3. and smooth the states.

Moment Smoothing

ibid, 40; Durbin and Koopman, 2001,15-23

All smoothing equations depend on backward recursions based on:

 $e_{t} = F_{t}^{-1}v_{t} - \kappa_{t}'r_{t} \quad (Nx1) \quad smoothing \ error \quad e_{t} = \sigma_{\varepsilon_{t}}^{2}u_{t}$ $D_{t} = F_{t}^{-1} - \kappa_{t}'N_{t}\kappa_{t} \quad (NxN) \quad smoothing \ variance$ $r_{t-1} = Z_{t}'F_{t}^{-1}v_{t} + L_{t}'r_{t} \quad (mx1) \quad Var(r_{t}) = N_{t}$ $N_{t-1} = Z_{t}'F_{t}^{-1}Z_{t} + L_{t}'N_{t}L_{t} \quad (mxm)$

$$L_t = T_t - K_t Z_t = \mathbf{1} - K_t = \frac{\sigma_{\varepsilon}^2}{F}$$

with initialization that $r_n = 0$ and $N_n = 0$ for t = n, ..., 1

Disturbance smoothing

Koopman, Shephard, and Doornik, 2008, 43

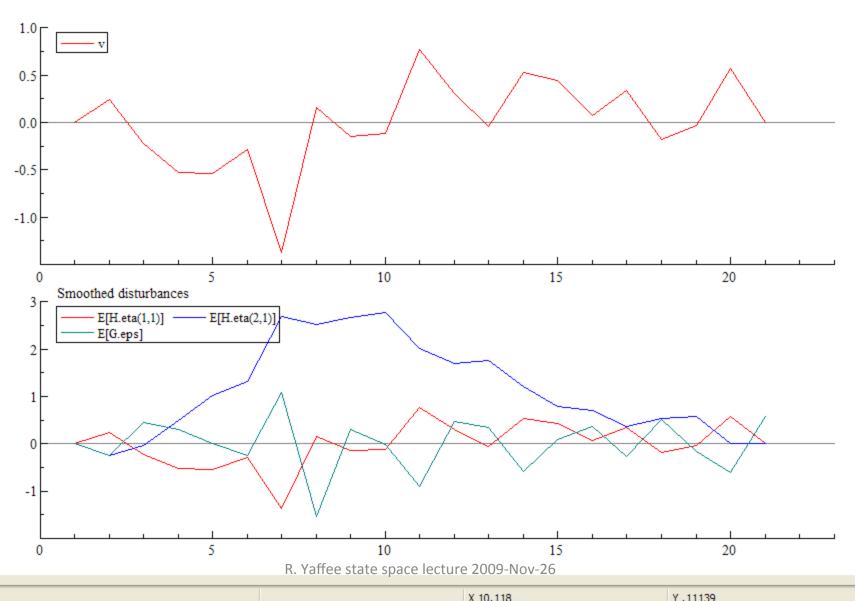
 $E(\eta_{t|} | Y_{t}) = \sigma_{\eta}^{2} r_{t} = smoothed mean of state disturbance$ $Var(\eta_{t|} | Y_{t}) = \sigma_{\eta}^{2} - \sigma_{\eta}^{4} N_{t} \quad smoothed \ variance \ of \ state$ disturbance $E(u_{t} | Y_{n}) = E(H_{t}\varepsilon_{t} | Y_{n}) = H_{t}H_{t}'r_{t}$ $E(G_{t}\varepsilon_{t} | Y_{n}) = G_{t}G_{t}'e_{t}$

 $Var(u_t | Y_n) = Var(G_t \varepsilon_t | Y_n) = G_t G_t D_t G_t G_t'$ $Var(H_t \varepsilon_t | Y_n) = H_t H_t N_t H_t H_t'$

State Smoothing

```
2
    #include <oxdraw.h>
3
    #include <oxfloat.h>
4
    #include <packages/ssfpack/ssfpack ex.h>
5
6
   main()
7
    {
8
        decl mPhi = <1,1;0,1;1,0>;
9
        decl mOmega = diag(<0, 0.1, 1>);
10
        decl mSigma = <0.0:0.0:1..5>: // Note that 0 is zero
11
12
        decl mr = sqrt(mOmega) * rann(3, 21);
13
        decl md = SsfRecursion(mr, mPhi, mOmega, mSigma);
14
15
        decl mYt = md[2][1:];
                                   // 20 observations
16
        decl mKF = KalmanFil(mYt, mPhi, mOmega);
17
        decl mKS = KalmanSmo(mKF, mPhi, mOmega);
18
        print("Basic smoother output: mKS\' (t=10)",
19
            "%c", {"r(1,1)", "r(2,1)", "e", "N(1,1)", "N(2,2)", "D"},
20
            mKS[][10]');
21
        decl msmodist = mKS[0:2][0] ~ mOmega * mKS[0:2][1:];
22
        print("Smoothed disturbances (t=10)",
                                                                    // Smoothed disturbances
23
            "%c", {"E[H.eta](1,1)", "E[H.eta](2,1)", "E[G.eps]"},
24
            msmodist[][10]');
25
        decl msmostat = SsfRecursion(msmodist, mPhi, mOmega); // smoothed states
26
        print("Smoothed states (t=10)", "%c",
            {"muhat[t+1]","betahat[t+1]","y[t]"}, msmostat[][10]');
27
28
29
        DrawTMatrix(0, msmodist[1:2][],
30
            {"E[H.eta](2,1)[t]","E[G.eps][t]"}, 0, 1, 1);
                                                            // smoothed disturbances
31
        DrawTMatrix(1, msmostat[0:1][:columns(mYt)-1] | mYt ,
32
            {"muhat[t]","betahat[t]","y[t]"}, 0, 1, 1);
                                                               // smoothed states
33
        ShowDrawWindow();
34
                                  R. Yaffee state space lecture 2009-Nov-26
35
```

State smoothing output


Kalman smoothing with diffuse initialization

```
#include <oxstd.h>
#include <oxdraw.h>
#include <packages/ssfpack/ssfpack ex.h>
                            // Kalman smoother with diffuse initialization
main()
{
    decl mphi = <1,1;0,1;1,0>;
    decl momega = diag(<0,0.1,1>);
    decl msigma = <0,0;0,0;1,.5>; // Note that Q is zero
    decl mr = sqrt(momega) * rann(3, 21);
    decl md = SsfRecursion(mr, mphi, momega, msigma);
    decl myt = md[2][1:]; // 20 observations
    decl mif = KalmanInit(myt, mphi, momega);
    decl mkf = KalmanFilEx(mif, myt, mphi, momega);
    decl mks = KalmanSmoEx(mkf, mphi, momega);
    print("Basic smoother output: mks\' (t=10)",
        "%c", {"r(1,1)","r(2,1)","e","N(1,1)","N(2,2)","D"}, mks[][10]');
    decl msmodist = mks[0:2][0] ~ momega * mks[0:2][1:];
    print("Smoothed disturbances (t=10)",
        "%c", {"E[H.eta](1,1)","E[H.eta](2,1)","E[G.eps]"}, msmodist[][10]');
    DrawTitle(1, "Smoothed disturbances");
    DrawTMatrix(0, mks[0][], {"v"}, 1, 1, 1);
    DrawTMatrix(1, mks[0:2][], {"E[H.eta(1,1)]", "E[H.eta(2,1)]", "E[G.eps]"}, 1, 1, 1);
    ShowDrawWindow();
```

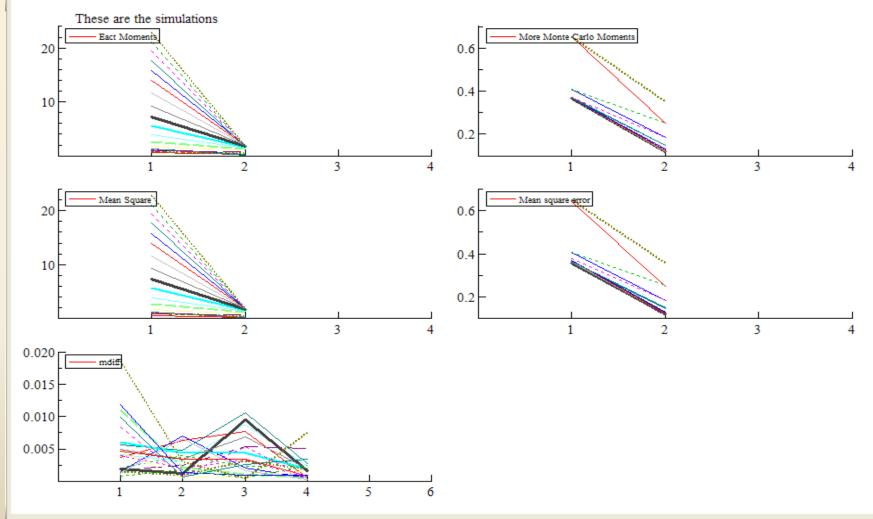
Output of Kalman smoothing with diffuse intialization

Documents 💎	Ox at 10:18:11 on 20-Nov-2009						
📁 Data							
🧔 Graphics	Ox Professional version 6.00 (Windows/U/MT) (C) J.A. Doornik, 1994-2009						
💋 Code	Code Basic smoother output: mks' (t=10)						
ssfkfinf.ox	r(1,1) r(2,1) e N(1,1) N(2,2) D						
ssfsmoinf.ox	0.77454 2.0120 -0.89484 0.60208 2.0578 0.79365						
📁 Text							
E Results	E[H.eta] (1,1)E[H.eta] (2,1) E[G.eps]						
ssfkfinf.out	0.00000 0.20120 -0.89484						
🖹 ssfsmoinf.out							
(1) Modules							

Smoothing with diffuse initialization

Simulation smoothing with MCMC

```
main()
£
                                                           Koopman's code snippet :
    decl mphi = <1,1;0,1;1,0>;
    decl momega = diag(\langle .5, .1, 1 \rangle);
                                                           Ssfsimmc4.ox
    decl msigma = diag(\langle -1, -1 \rangle) | 0;
    decl cst = columns(mphi), csy = rows(mphi);
    decl myt = SsfSimObs(sqrt(momega) * rann(3, 21), mphi,
        momega, <0,0;0,0;1,.5>);
    decl ct = columns(mvt);
    decl mif = KalmanInit(myt, mphi, momega, msigma);
    decl mkf = KalmanFilEx(mif, myt, mphi, momega, msigma);
    // monte carlo study
    decl i, imc = 10000, md, mdcum, mdcum2;
    mdcum = mdcum2 = zeros(columns(mphi), ct);
    for (i=0; i<imc; i++)</pre>
    ł
       md = SsfCondDens(DS SIM, myt, mphi, momega, msigma);
        md = SimStSmoDraw(rann(3, 21), mkf, myt, mphi, momega, msigma);
        mdcum += md;
        mdcum2 += sqr(md);
    3
    mdcum ./= imc; mdcum2 ./= imc; // Mean, Mean squared
    mdcum2 -= sgr(mdcum); // Variance
// mdcum2 = diagonal(momega[:cst-1][:cst-1])' - mdcum2; // Cond Variance
    decl mmom;
    SsfMomentEstEx(ST SMO, &mmom, myt, mphi, momega, msigma);
    println("Exact moments:");
                   -----mean-----",
    println("
        mmom[:1][]' ~ mmom[3:4][]');
   println("Monte Carlo moments:");
R. Vaffee state space lecture 2009-Nov-26
mean square error--",
```


3

)

2

3

Convergence of distribution under simulation

Simulation smoothing output

Exact moments:

		mean	mean square	error
	0.62080	0.25966	0.65215	0.24967
	1.1948	0.19680	0.40750	0.18349
	1.2778	0.15669	0.37147	0.14786
	1.0354	0.19640	0.36913	0.13103
	0.85005	0.31246	0.36903	0.12381
	1.0021	0.46060	0.36824	0.12094
	0.93074	0.71513	0.36737	0.11987
	1.7458	0.94967	0.36679	0.11950
	2.6431	1.1947	0.36647	0.11938
	3.8615	1.4350	0.36634	0.11935
	5.6175	1.6111	0.36634	0.11938
	7.2890	1.7751	0.36647	0.11950
	9.2294	1.9060	0.36679	0.11987
	11.646	1.9348	0.36737	0.12094
	13.917	1.8963	0.36824	0.12381
	15.809	1.8587	0.36903	0.13103
	17.662	1.8222	0.36913	0.14786
	19.456	1.7914	0.37147	0.18349
	21.065	1.7970	0.40750	0.24967
	22.890	1.7970	0.65215	0.34967
Monte	Carlo mo			
	mean		mean square	error
	0.62446	0.25338	0.64441	0.25021
	1.1963	0.18978	0.40544	0.18404
	1.2722	0.15188	0.36087	0.14509
	1.0315	0.19428	0.36585	0.13160
	0.84797	0.31643	0.36666	0.12130
	1.0036	0.46153	0.36503	0.11900
	0.92894	0.71756	0.36198	0.11485
	1.7504	0.94910	0.36603	0.11790
	2.6541	R. Ya tfeestā te sp	ac e lectase 2009-	N@1/12095
	3.8656	1.4318	0.35747	0.12171

Interventions

The data are smoothed with backward recursions condition not just on the previous observation, but on the whole dataset. The result is a smoother signal. Then a residual diagnosis can reveal outliers and level shifts which can seriously bias estimation of a model. Unless these structural breaks are modeled, their effects will be in the error term. Intervention dummy variables can be constructed to model these outliers or level shifts to remove them from the aggregate error.

Identifiability

- According to Andrew Harvey, the order condition is necessary and sufficient for identification of a structural time series model (Harvey, 1989,209).
- Under the condition of normality assumption, identifiability depends upon the nature of the covariance matrix(ibid,206). If this is stationary, so is the autocovariance. To attain stationarity, It may be necessary to place restrictions on the structural model.
- Harvey notes that Hotta (1983) has shown that an order condition is both necessary and sufficient for identifiability (Ibid).

Identifiability-contd.

- For each of the variances of the innovations, we need a separate independent equation to solve for them. These elements constitute the main diagonal of the Ω_t system matrix.
- Also, each of the polynomials must be stationary and of order p_m.
- Each of the parameters of Φ_t and of θ_t must be invertible.
- Any nonstationary polynomial must have no common factor.
- Each error must sum to zero.
- The errors should be normally distributed and independent of the others.
- If the model had an ARIMA configuration of ARIMA(p,d,q), then p+d > q + 1 would be sufficient for identification. For example, an ARMA(2,1) is identified if both autocorrelations > 0.
- For more detail, consult Harvey (1989,208).

Diagnostic tests

- Diagnostic tests are applied to identify the components and parameters of the model.
- Diagnostic tests are performed to test the independence, normality, heteroskedasticity, and serial correlation of the residuals.
- These tests are applied to the models to demonstrate that the assumptions are not violated. They are tests of the validity of the model.
- These tests may be applied to filtered or smoothed moments of the model.

Kalman Smoothing

Smoothing for state space models is used for signal extraction and maximum likelihood estimation.

It is used for missing value interpolation (Ansley and Kohn, 1986), cross-validation (Ansley and Kohn, 1987).

Kitagawa (1987) dealt with smoothing for nonlinear processes.

Moment smoothing

Simulation smoothing

Disturbance smoothing

Spline smoothing

Multivariate State Space Models

Multiple time series analysis

Common trends levels slopes

Common trends and cycles

cointegration

Dynamic factor analysis

Practical Modeling issues

Assessment problems

Non-constant innovations problem

Non-constant variance problems

Prior problems

Infinite variance problems

Convergence to zero problems

Gaussianity problems: Conditional Gaussianity

Data irregularities

Different sampling frequencies

delayed observations

Outlier problems

Level shift problems

Convergence problems

Multi-modal problems

Convergence to zero problems

Nonlinearity

Time-varying parameters

Diagnostic Checking of the model

The auxiliary residuals should be used for diagnosing the model. They examine the state residuals as by dividing them by the square root of their variance to provide an effective t-test of the significance of the signal.

These tests are performed on the smoothed residuals and dividing them by their std error.

The auxiliary residuals are functions of the innovations and therefore might be serially correlated. Check to be sure that they are not correlated with the measurement error, which is not supposed to be serially correlated. If there is a cross-correlation here, it may bias estimation in the model (Harvey and Koopman, 2005, 77).

Diagnostic checking of the model

Examine the residuals for nonnormality, serial correlation and lack of independence, homoskedasticity, and excess kurtosis Look for outliers and level shifts that could render increase the aggregate error and bias the significance test results

downward.

References

Athens, M. (1974) The Importance of Kalman Filtering Methods for Economic Systems, Annals of Economic and Social Measurement, V3, no1.

- Carlin and Lewis, T. (2009). Bayesian Methods for Data Analysis, 3rd ed. New York: CRC/Chapman and Hall, 17ff.
- Commandeur, J.J.F. and Koopman, S.J. (2008). An Introduction to State Space Time Series Analysis. Oxford: Oxford University Press.
- DeJong, P. (1988). The Likelihood for a State Space Model. Biometrika, v75. No.1, 165-169.
- DeJong, P. (1989). Smoothing and Interpolation with the state Space model. JASA. V84. no.408, 1085-1088.
- DeJong, P. (1991). The Diffuse Kalman filter. The Annals of Statistics, v19, No.2., 1073-1083..
- Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford, U.K.: Oxford University Press, 16-22.

References-ctd.

Harvey, A. C. (1989). Forecasting, Structural Time Series and the Kalman Filter. New York: Cambridge University Press.
Harvey, A. C. and Proietti, T. (2005). Readings in Unobserved Components Models, Diagnostic checking in Unobserved Components State Space Models.
Hyndman, R. J., Koehler, A.B., Ord, J. K., and Snyder, R.D. (2008).

Forecasting with Exponential Smoothing: The State Space Approach. New York: Springer.

Kim, C.-J. and Nelson, C. R. (1999). State-Space Models with Regime Switching. Boston: MIT Press.

 Koopman, S.J. (2005). Exact Initial Kalman Filtering and Smoothing in Nonstationary Time Series Models, in Harvey, A.C. and Proietti, T. (2005). Readings in Unobserved Component Models. Oxford, U.K. : Oxford University Press, 55.

Koopman, S.J., Shephard, N., and Doornik, J. (2008). SsfPack 3.0. London: Timberlake Consultants, Ltd., 22

References—contd.

- Lutkepohl, H. (2008). Multiple Time Series Analysis. 2nd ed. Berlin: Springer.
- Reinsel, G. (1997) Elements of multivariate time series analysis. 2nd ed. Springer: New York, Chapter 7.
- Tsay, R. (2005). Analysis of Financial Time Series 2nd ed. New York : Wiley., Chapter 11.
- Watson, M. (2008). NBER lecture 5 on the Kalman filter, Nonlinear
- Filtering, and MCMC at NBER summer institute. July 15, 2008.