Outline II

- Volatility analysis with G@RCH models
 - First generation univariate G@RCH
 - ARCH, GARCH
 - Diagnostics
 - Forecasting
 - Forecast Evaluation
 - Second generation univariate G@RCH
 - GARCH-in-mean
 - EGARCH
 - GJR GARCH
 - Leverage effects and volatility smiles

Outline III Long-Memory GARCH

- APARCH
- FIGARCH
 - FIGARCH- BBM
 - FIGARCH-Chung
 - FIEGARCH,
- Davidson's HYGARCH
- VaR

Outline IV Multivariate GARCH

- Multivariate G@RCH
 - BEKK models
 - Factor garch: OGARCH, GOGARCH
 - Dynamic correlations: CCC, DCC
- Simulations

Risk Analysis with G@RCH

- We analyze volatility of indicators and assets with G@RCH.
- What is new about G@RCH 5?
 - It contains most of the multivariate Garch models
 - One can obtain the Ox Code for the menu model just run
 - One can model outliers and predictors in the mean and variance models
 - Estimation models has been improved. Simulated annealing option included.
 - Simulation of models is now possible
 - Functions to detect high frequency jumps have been included.

Load and Examine Nasdaq Returns

Notice the 1987 crash. We construct a dummy variable for Oct 19, 1987 5

We want record of all variable constructions so I do this with the algebra code

8 Jas	sc Paint Shop Pro – Imag	ge 3							Le la
File	🖉 *OxMetrics - C:\Program Files\OxMetrics5\data\nasdaq.in7 - [*nasdaq.in7 - C:\Program Files\OxMetrics5\data\nasdaq.in7] 🛛 🔹 🖬 🔀								
-	🔢 File Edit View Mode	l Run Windov	v Help						_ 8 ×
	🖻 📇 🐻 🗐 🕯	🍋 🍋 🔂 🔲 🧰 🏊 🔩 🚔 👘 👘 🕢 🖓 nacian in 7. 🔍 🛲 🐻 🔥 🧊 🍁 🐂 🗂 💷							2 2 0
< pr		m 🧼 🚿			The sudding	7	i 🗠 🚾 🦉		-2
. E	xbeta = 80 + 81 * Lrate -	<u>, s</u> 4.				1 2 2 11 1	,		
			Algebra - nasda	ıq.in7			×		
► +		1007 00 0	// Enter Alge	bra code her	e, for example:				
- TI -	Data	1987-09-2	Ly = log(y);	DLy = diff()	Ly, 1);				
Ш т	Graphics	1987-09-2							
¥	📈 Data Plot	1987-09-2	1 crash87	= Date ==	1987-10-19 2 1: 0:		<u>~</u>		
÷	💋 Code	1987-10-0	2				Ĩ		
	🧔 Text	1987-10-0	3						
£ `	E Results	1987-10-0	4						
7 -	🕲 Modules	1987-10-0	5						P
🦽 🔻	SORCH	1987-10-0	6						
28 -	PcGive	1987-10-0	7						
_	STAMP	1987-10-0	8						
	🏶 Ox	1987-10-1:	9				_		
2-	🏶 OxDebug	1987-10-1	11				-		
🥖 🗸	·····₩ OxGauss	1987-10-1	4				×		
<u></u>		1987-10-1.							
	* Ox - interactive	1987-10-1	Run	Done	Load	Save As	Recall		¥
s No	🏶 X12arima	1987-10-1:	- Functions		atabase				
Α		1987-10-2							
		1987-10-2.	log(VAR);	*	Date Nasdan		Del		
		1987-10-2:			crash87				
đ		1987-10-2							
	-	1987-10-2	Sub-sample e	valuation					
	-	1987-10-2	Write Algebr	a Code					
	-	1987-10-2					Ren		
	-	1987-10-2							
	r i i i i i i i i i i i i i i i i i i i	1987-10-3	1007 11 00	1.50451					
	-	1987-11-02	1987-11-02	1.53471	U				
	-	1987-11-03	1987-11-03	-2.34217	0				
	Hele	1987-11-04	1987-11-04	1 00772	0				
	neip 🔺	1987-11-05	1907-11-03	1.00772	0				<u> </u>
a la abia					Model	crach97[109E	10.22]	0	

This constructs our dummy variable

🖉 *OxMetrics - C:\Pro	ogram Files\Ox	Metrics5\data	Anasdaq.in7 -	[*nasdaq.in7 - C:\Pro	gr
🎇 File Edit View Mode	el Run Window	Help			
🖺 🕼 🖓 📙	J 🕹 🍇	🛉 🗎 🛛	È 🗈 🐼	nasdaq.in7	
xbeta = &0 + &1 * Lrate -	⊻\$. ₹ ;			2 🙀 🔍 🕈 #	-
Documents 🛛 🔻		Date	Nasdaq	crash87	
🧔 Data	1987-10-02	1987-10-02	.688815	0	
📲 *nasdaq.in7	1987-10-05	1987-10-05	.441892	0	
🧔 Graphics	1987-10-06	1987-10-06	-1.35392	0	
🔤 🚧 Data Plot	1987-10-07	1987-10-07	650154	0	
Code	1987-10-08	1987-10-08	-1.04003	0	
Desulta	1987-10-09	1987-10-09	364299	0	
	1987-10-12	1987-10-12	-1.2394	0	
🖕 💥 Model	1987-10-13	1987-10-13	.414843	0	
# G@RCH	1987-10-14	1987-10-14	-1.50623	0	
🕸 PcGive	1987-10-15	1987-10-15	-1.36344	0	
🗰 🏶 STAMP	1987-10-16	1987-10-16	-3.90976	0	
🏶 Ox	1987-10-19	1987-10-19	-12.0432	1	
🏶 OxDebug	1987-10-20	1987-10-20	-9.42558	0	
- · · · · · · · · · · · · · · · · · · ·	1987-10-21	1987-10-21	7.09434	0	
······································	1987-10-22	1987-10-22	-4.59383	0	
 Oxecutive 	1987-10-23	1987-10-23	-2.28719	0	
X12arima	1987-10-26	1987-10-26	-9.44278	0	
•	1987-10-27	1987-10-27	873661	0	
	1987-10-28	1987-10-28	-1.49612	0	
	1987-10-29	1987-10-29	5.07621	0	
	1987-10-30	1987-10-30	5.14073	0	
	1987-11-02	1987-11-02	1.53471	0	
	1987-11-03	1987-11-03	-2.34217	0	

Correlograms reveal an AR(1) and possibly some seasonality

8

Basic Pre-Model Analysis

📓 G@RCH	- Other models	×
All	G@RCH PCGive STAMP	
Module Category	G@RCH Other models	~
Model class	Descriptive Statistics using G@RCH	~
0	Formulate>Estimate><]
	Options Close	

Select the variable

Formulate - Descriptive Statistics - nasdag	.in7		
Selection	Lags	Database	
T Nasdaq	None	Date Nasdaq crash87	
	<< >>		
	Clear>>		
Use default status 💽 Set			
Recall a previous model]	nasdaq.in7	~
		ancel	

Define the sample

Mode: H	-eather: Create selection from:
Estimate - Descriptiv	e Statistics 🛛 🛛
Choose the estima	ation sample:
Selection sample	1984-10-12 - 2000-12-21
Estimation starts at	1984-10-12
Estimation ends at	2000-12-21
Choose the estima	ation method:
Estimation method:	Tests
	OK Cancel

Specify the preliminary tests

Model Settings - Descriptive Statistics				
Choose some tests:				
Basic Stats				
Normality Test				
LM Arch Test				
with lags :	2; 5; 10			
Box-Pierce on Raw Series				
Box-Pierce on Squared Raw Series				
with lags :	5; 10; 20; 50			
Unit Root Tests	Choose			
Long Memory Tests	Choose			
Bandwidth (1,,T/2)	2046			
	OK Cancel			

Choose the Stationarity tests

el Settings - Descriptive Stat	istics 🛛 🔀	
Choose some tests:		
Basic Stats		
Normality Test		
LM Arch Test		– We
with lags :	2; 5; 10	
Box-Pierce on Raw Series		select
Box-Pierce on Squared Raw Series		ADF
with lags :	5; 10; 20; 50	
Unit Root Tests	Choose	test
Long Memory Tests	Choose	
Bandwidth (1,,T/2)	ADF Test KPSS Test	
	OK Cancel	

Choose the Long-Memory Test

Model Settings - Descriptive Stat	istics		
Choose some tests:			
Basic Stats			
Normality Test			
LM Arch Test		vve	select
with lags :	2; 5; 10	this	Geweke
Box-Pierce on Raw Series			Cowone
Box-Pierce on Squared Raw Series		Port	er-
with lags :	5; 10; 20; 50	Hud	ak tost
Unit Root Tests	Choose	- Tuu	
Long Memory Tests	Choose	~	
	Geweke and Porter-Hudak (1983) Robinson and Henry (1998)		
	OK Cancel		

Obtain the results

E Eie Cat Sauch Van Mada Dur Window Hals	
	E P P
🛄 🔛 🕼 🛄 🔄 🌍 🏹 🎬 🛄 🛄 🖤 🖓 nasdaq.in7 🔄 🌌 💭 🛃 🌌 🌌 🖉	1 <u>7</u>
xbeta = 80 + 8.1 * Lrate - 💽 🛼 🎕 🛃 📰 🔛 🖭 🔍 🆓 🖗 🐗 🖷 🥵 💮 // 矣	
Documents	<u> </u>
Data Database information	
□ [2] nasdagin7 Sample: 1984-10-12 - 2000-12-21 (4093 observations)	
Graphics requiring a second se	
Results Variable #obs #miss type min mean max std.de	v
Modules Date 4093 0 date 1984-10-12 2000-12-21	
🖙 券 Model Nasdaq 4093 0 double -12.043 0.055166 9.9636 1.261	7
GORCH Constant 4093 O double 1 1 1	0
→ PCuVe Trend 4093 0 double 1 2047 4093 1181.	5
- * OxDebug	
- # OxGauss Normelity Test	
→ WVPack	
- VIXUI	
w X12arina Skewness −0.74128 19.368 1.4336e-083	
Excess Kurtosis 11.255 147.07 0.00000	
Jarque-Bera 21979NaN 0.00000	
ARCH 1-2 test: $F(2,4088) = 420.80 [0.0000]^{**}$	
$P(1 = 10 \text{ test})$ $P(10 = 4022) = 118 16 [0.0000]^{++}$	
Q-Statistics on Raw data	
Q(5) = 41.8697 [0.0000001]	
Q(10) = 50.9695 [0.0000002]	
Q(20) = 83.6251 [0.0000000]	
Q(50) = 167.368 [0.0000000]	
HO : No serial correlation ==> Accept HO when prob. is High [Q < Chisq(lag)]	
$0 \rightarrow 0 \rightarrow$	≡
0(10) = 2874.40 [0.0000000]	
0(20) = 3748.75 [0.000000]	

Nonstationarity and Long-Memory Results

🖹 File Edit Search Vie	w Model Run Window Help _ 리 ×	
🖺 🗳 🕼 🛯	📕 😓 🍇 🎭 🕋 🛍 🛍 💅 🏹 nasdaq.in7 🔍 🜌 📓 💑 💭 🎾 🗐 🗐 💆	
xbeta = &0 + &1 * Lrate -	🗣 🗣 🛃 📃 🔳 🔍 🤣 🗔 🗯 📽 🐙 💮 // 🐇	
Documents 🛛 🔻	Q(10) = 2874.40 [0.0000000]	
🧔 Data	Q(20) = 3748.75 [0.0000000]	
📲 👷 nasdaq.in7	Q(50) = 5491.27 [0.0000000]	
📁 Graphics	HO : No serial correlation ==> $Accept$ HO when prob. is High [Q < Chisq(lag)]	
📁 Code		$\mathbf{A}_{\mathbf{n}} = (\boldsymbol{\rho} 1)_{\mathbf{n}} + \mathbf{\rho}$
💋 Text		$\Delta Y_{t} = (p-1)Y_{t-1} + e_{t}$
Results	ADF Test with 2 lags	
B Modules	No intercept and no time trend	
E ☆ Model	HO: Nasdaq is I(1)	Nonctationary
* G@KCH		INUTIStationary
STAMP	ADF Statistics: -35.6643	-
- OX		
🏶 OxDebug	Asymptotic critical values, Davidson, R. and MacKinnon, J. (1993)	
🏶 OxGauss		
🐳 OxPack		
🛶 🏶 OxRun	-2.56572 -1.94093 -1.61663	
🕂 🏶 Ox - interactive		
🏎 🏶 X12arima	OLS Results	
	Coefficient t-value	
		Long momory
	uy_2^2 0.001304 0.10103	
		<i>parameter is</i>
	499.88888	
	Information Criteria (to be minimized)	weak_should
	Akaike 3.297199 Shibata 3.297198	
	Schwarz 3.301832 Hannan-Ouinn 3.298839	ha Ota Efar
	Log Periodogram Regression	persistence
	d parameter 0.0691465 (0.015793) [0.0000]	
	No of observations: 4093; no of periodogram points: 2046	

Pre-Model Analysis

- The Jarque-Bera tests suggests nonnormality--- we should probably try a t distribution
- The ARCH tests suggest ARCH effects
- The Portmanteau tests suggest autocorrelation
- The Nasdaq returns are nonstationary and there is long memory

Variable Selection

Baseline model parameter selection

Mod	el Settings - GARCH Models		×
Ē	AR(FI)MA Orders (m.d.l)		
	AR order (m)	1	
	MA order (I)	0	
	ARFIMA		
Ξ	GARCH Orders		
	Garch order (p)	1	
	Arch order (q)	1	
+	Model		
÷	Fractionally Integrated Models		
+	ARCH-in-Mean		
	Distribution		
	Gauss	©	
	Student	0	
	GED	0	
	Skewed Student	0	
+	Constants		
			_
		OK Cancel	

AR(1) GARCH(1,1) normal distribution is our baseliine model

GARCH(1,1) model output

** G@RCH(1) SPECIFICATIONS **

Dependent variable : Nasdaq Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : GARCH (1, 1) model. No regressor in the conditional variance Normal distribution.

Strong convergence using numerical derivatives Log-likelihood = -5395.14 Please wait : Computing the Std Errors ...

Robust Standard Errors (Sandwich formula)

	Coefficient	Std.Error	t-value	t-prob
Cst(M)	0.084113	0.015616	5.386	0.0000
AR(1)	0.193052	0.017187	11.23	0.0000
Cst(V)	0.025299	0.0071185	3.554	0.0004
ARCH(Alpha1)	0.167673	0.029686	5.648	0.0000
GARCH(Beta1)	0.820858	0.028236	29.07	0.0000

No. Observations	:	4093	No. Parameters :	5
Mean (Y)	:	0.05517	Variance (Y) :	1.59189
Skewness (Y)	:	-0.74128	Kurtosis (Y) :	14.25531
Log Likelihood	:	-5395.144	<pre>Alpha[1]+Beta[1]:</pre>	0.98853

The sample mean of squared residuals was used to start recursion. The positivity constraint for the GARCH (1,1) is observed. This constraint is alpha[L]/[1 - beta(L)] >= 0. The unconditional variance is 2.2058 The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and alpha[i] + beta[i] >= 0. => See Doornik & Ooms (2001) for more details. The condition for existence of the fourth moment of the GARCH is not observed. The constraint equals 1.03342 and should be < 1. => See Ling & McAleer (2001) for details.

Selecting Post-Estimation tests

Z 11		E 1924 HHF 🗰 488% 🚽 (12)
Fest	s - GARCH Models	×
	Available Tests :	
	Information Criteria	
	Normality Test	
	Box/Pierce on Standardized Residuals	
	Box/Pierce on Squared Standardized Residuals	
	with lags :	5; 10; 20; 50
	Sign Bias Test	
	Arch Test	
	with lags :	2; 5; 10
	Nyblom Stability Test	
	Adjusted Pearson Chi-square Goodness-of-fit	
	with Cells number :	40; 50; 60
	Residual-Based Diagnostic for Conditional Heteroskedasticity	
	with lags :	2; 5; 10
	VaR in-sample Tests :	
	VaR levels (>0.5):	0.95; 0.975; 0.99; 0.995; 0.9975
	Kupiec LRT (and ESF measures)	
	Dynamic Quantile Test (DQT) of Engle and Manganelli (2002)	
	Number of lags in DQT (Hit variable):	7
	Further Outputs :	
	Print Variance-Covariance Matrix	
	ОК	Cancel

Test Results I

```
*********
 ** TESTS **
********
TESTS :
_____
Information Criteria (to be minimized)
Akaike
             2.638722 Shibata
                                     2.638719
                                     2.641454
            2.646439 Hannan-Quinn
Schwarz
_____
Normality Test
                Statistic
                             t-Test
                                          P-Value
Skewness
                 -0.69210
                             18.083 4.3269e-073
                 2.8275
                             36.947
                                          0.00000
Excess Kurtosis
                                          0.00000
Jarque-Bera
                  1690.2
                              .NaN
_____
Q-Statistics on Standardized Residuals
 --> P-values adjusted by 1 degree(s) of freedom
 Q(5) = 4.93617 [0.2939093]
 Q(10) = 6.12809 [0.7270328]
 Q(20) = 20.1258 [0.3870456]
 Q(50) = 63.5812 [0.0787143]
HO : No serial correlation ==> Accept HO when prob. is High [Q < Chisq(lag)]
_____
Q-Statistics on Squared Standardized Residuals
 --> P-values adjusted by 2 degree(s) of freedom
 Q(5) = 3.20892 [0.3605224]
 Q(10) = 6.56843 [0.5838280]
 Q(20) = 14.7703 [0.6776756]
 Q(50) = 44.0824 [0.6340817]
```

HO : No serial correlation ==> Accept HO when prob. is High [Q < Chisq(lag)]

Test Results II

Diagnostic test based on the news impact curve (EGARCH vs. GARCH) Test P-value 2.48129 0.01309 Sign Bias t-Test Negative Size Bias t-Test 1.20393 0.22862 Positive Size Bias t-Test 1.42296 0.15475 Joint Test for the Three Effects 25.46329 0.00001 _____ ARCH 1-2 test: F(2,4086) = 1.2301 [0.2924]ARCH 1-5 test: F(5,4080) = 0.62728 [0.6790]ARCH 1-10 test: F(10,4070) = 0.63998 [0.7805] _____ Joint Statistic of the Nyblom test of stability: 6.34273 Individual Nyblom Statistics: Cst(M) 0.09948 3.47893 AR(1) Cst(V) 0.63865 ARCH(Alpha1) 1.25070 GARCH(Beta1) 1.58594 Rem: Asymptotic 1% critical value for individual statistics = 0.75. Asymptotic 5% critical value for individual statistics = 0.47. _____ Adjusted Pearson Chi-square Goodness-of-fit test # Cells(q) Statistic P-Value(q-1) P-Value(q-k-1) 40 176.3672 0.000000 0.000000 50 0.00000 210.1884 0.000000 60 219.8317 0.000000 0.000000 Rem.: k = 5 = # estimated parameters _____

Test Results III

Residual-Based Diagnostic for Conditional Heteroskedasticity of Tse (2002)

- RBD(2) = -6.40705 [1.0000000]
- RBD(5) = 0.485674 [0.9926385]
- RBD(10) = 4.53051 [0.9202588]

P-values in brackets

In-sample Value-at-Risk Backtesting

Kupiec LR test

		- Short po	ositions -		
Quantile	Failure rate	Kupiec LR	Γ P-value	ESF1	ESF2
0.95000	0.96628	25.679	4.0322e-007	2,4334	1.2525
0.97500	0.98534	21.040	4.4975e-006	2.7129	1.2327
0.99000	0.99365	6.3191	0.011945	3.3298	1.2057
0.99500	0.99682	3.1457	0.076125	3.7132	1.2360
0.99750	0.99780	0.15517	0.69364	4.2753	1.2153
		- Long po	ositions -		
Quantile	Failure rate	Kupiec LR	Γ P-value	ESF1	ESF2
0.050000	0.058881	6.4458	0.011121	-2.3226	1.4410
0.025000	0.035915	17.662	2.6386e-005	-2.5715	1.3855
0.010000	0.019301	28.117	1.1419e-007	-2.9948	1.3767
0.0050000	0.013926	44.033	3.2289e-011	-3.2095	1.3548
0.0025000	0.0092841	44.368	2.7216e-011	-3.6826	1.3830

Test Results IV

Dynamic Quantile Test of Engle and Manganelli (2002)

- Shor	t position	s -
Quantile	Stat.	P-value
0.95000	25.551	0.0012532
0.97500	20.863	0.0075214
0.99000	8.8216	0.35757
0.99500	2.9260	0.93892
0.99750	0.27316	0.99999
- Lon	g position	s -
Quantile	Stat.	P-value
0.050000	13.109	0.10814
0.025000	36.600	1.3629e-005
0.010000	48.500	7.9279e-008
0.0050000	77.972	1.2501e-013
0.0025000	90.662	3.3307e-016

Remark: In the Dynamic Quantile Regression, p=7.

AR(1) GARCH(1,1) sk(t)

Mod	el Settings - GARCH Models		×
	GARCH	•	
	EGARCH	0	
	GJR	0	
	APARCH	0	
	IGARCH	0	
	FIGARCH-BBM	0	
	FIGARCH-CHUNG	0	
	FIEGARCH	0	
	FIAPARCH-BBM	0	
	FIAPARCH-CHUNG	0	
	HYGARCH	0	
	RISKMETRICS	0	
	with lambda :	0.94	
+	Fractionally Integrated Models		
+	ARCH-in-Mean		
Ξ	Distribution		
	Gauss	0	
	Student	0	
	GED	0	
	Skewed Student	\odot	
+	Constants		
		OK Cancel	

AR(1)-GARCH(1,1) sk(t) output

Dependent variable : Nasdaq Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : GARCH (1, 1) model. No regressor in the conditional variance Skewed Student distribution, with 6.36561 degrees of freedom. and asymmetry coefficient (log xi) -0.176807.

Strong convergence using numerical derivatives Log-likelihood = -5228.77 Please wait : Computing the Std Errors ...

Robust Standard Errors (Sandwich formula)

Cst(M)	0.074547	0.013749	5.422	0.0000	
AR(1)	0.172029	0.015928	10.80	0.0000	
Cst (V)	0.013518	0.0041361	3.268	0.0011	
ARCH(Alpha1)	0.135317	0.022145	6.111	0.0000	
GARCH(Beta1)	0.862093	0.021804	39.54	0.0000	
Asymmetry	-0.176807	0.022959	-7.701	0.0000	
Tail	6.365606	0.62455	10.19	0.0000	
No. Observations :	4093	No. Paramete	ers :	7	
Mean (Y) :	0.05517	Variance (Y)	:	1.59189	
Skewness (Y) :	-0.74128	Kurtosis (Y)) : 1	4.25531	
Log Likelihood :	-5228.772	Alpha[1]+Bet	ta[1]:	0.99741	
The sample mean of	squared rea	siduals was w	used to s	tart recursi	ion.

Coefficient Std.Error t-value t-prob

The positivity constraint for the GARCH (1,1) is observed. This constraint is alpha[L]/[1 - beta(L)] >= 0. The unconditional variance is 5.21841 The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and alpha[i] + beta[i] >= 0. => See Doornik & Coms (2001) for more details.

Graphical Analysis

Test Menu	8
Test Menu	
Tests	
Graphic Analysis	
Forecast	
Exclusion Restrictions	
Linear Restrictions	
Store	
	OK Cancel

Graph selection

Gra	phics - GARCH Models	
	Series	
	Raw Series (Y)	
	Residuals	
	Squared Residuals	
	Standardized Residuals	
	Conditional Variance	
	Histogram	
	Standardized Residuals vs. Fitted Density	
Ξ	In-Sample VaR Forecasts	
	None	\odot
	Empirical Quantiles	0
	Theoretical Quantiles	0
	with the following quantiles :	0.025; 0.975
		OK Cancel

Graphical Output

30

Model Comparison

Pro	ogr	ess - G	ARC	нм	o d	els				×
	G	GRCH (2)	7	x	4093	-5228.	77	BFCS	
	G	@RCH(1)	5	х	4093	-5395.	14	BFGS	
	G	GRCH (0)	7	х	4093	-5367.	13	BFGS	
					_			_		
	<		Del			[>]		Ν	Mark Specific to General 🔰 Mark General to Specific	
										_
								0	K Cancel	

Simulation of CEV confidence intervals

 Demonstrate Simulation of CEV confidence intervals

Volatility Smile

Asymmetry tests

- Sign bias tests
- Positive
- Negative
- Joint

GJR Asymmetric GARCH(1,1)

** G@RCH(3) SPECIFICATIONS ** ********* Dependent variable : Nasdag Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : GJR (1, 1) model. No regressor in the conditional variance Skewed Student distribution, with 6.54157 degrees of freedom. and asymmetry coefficient (log xi) -0.17954. Strong convergence using numerical derivatives Log-likelihood = -5184.52Please wait : Computing the Std Errors ... Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value t-prob Cst(M) 0.062393 0.014353 4.347 0.0000 AR(1) 0.185970 0.016883 11.02 0.0000 Cst(V) 0.017264 0.0052401 3.295 0.0010 ARCH(Alpha1) 0.096650 0.015176 6.369 0.0000 GARCH(Beta1) 0.850005 0.023975 35.45 0.0000 0.092444 0.030406 3.040 0.0024 GJR (Gamma1) Asymmetry -0.179540 0.023111 -7.769 0.0000 Tail 6.541571 0.66287 9.869 0.0000 No. Observations : 4081 No. Parameters : 8 Mean (Y) : 0.06050 Variance (Y) : 1.55316 Skewness (Y) : -0.72562 Kurtosis (Y) : 14.49309 Log Likelihood : -5184.518 The sample mean of squared residuals was used to start recursion. The condition for existence of the second moment of the GJR is not observed. This condition is alpha(1) + beta(1) + k qamma(1) < 1 (with k = 0.588818 with this distributio In this estimation, this sum equals 1.00109. The condition for existence of the fourth moment of the GJR is not observed. The constraint equals 1.12247 (should be < 1). => See Ling & McAleer (2001) for details. > .

Model Comparison

Progress to	o date						
Model	Т	р		log-likelihood	SC	HQ	AIC
G@RCH(O)	4093	7	BFGS	-5367.1337	2.6368	2.6298	2.6260
G@RCH(1)	4093	5	BFGS	-5395.1442	2.6464	2.6415	2.6387
G@RCH(2)	4093	7	BFGS	-5228.7723	2.5692	2.5622	2.5584
G@RCH(3)	4081	8	BFGS	-5184.5175	2.5571<	2.5491<	2.5447<

Tests of model reduction (please ensure models are nested for test validity) G@RCH(0) --> G@RCH(1): Chi²(2) = 56.021 [0.0000] **

Forecasts

- Conditional mean, with confidence intervals
- Conditional variance
 - Intervals can be simulated
- VaR intervals serve as confidence intervals

Click on the test icon

Test Menu	2
Test Menu	
Tests	
Graphic Analysis	
Forecast	
Exclusion Restrictions	
Linear Restrictions	
Store	
	OK Cancel

Forecast selection

For	ecast - GARCH Models	×
	Forecasting	
_	Number of forecasts	12
E	Options	
	Print Forecasts Errors Measures	
	Print Forecasts	
	Plot Forecasts	
	Add sample average of conditional variance	
	Number of pre-observations	49
Ξ	Confidence Interval	
	None	0
	Error Bands	0
	Error Bars	0
	Error Fans	\odot
	Critical Value	2
Ξ	VaR Forecasts	
	Print VaR Forecasts	
	Plot VaR Forecasts	
	VaR levels:	0.05; 0.95
	ſ	OK Cancel
	l	

Forecasts graphed from GJR model

🚧 G@RCH Forecasting

Forecasts printed

* * * * * * * * * * * * * * * * * * * *

** VaR FORECASTS **

* * * * * * * * * * * * * * * * * * * *

Number of Forecasts: 12

Horizon	0.05	0.95
1	-5.716	8.482
2	-7.222	6.989
3	-7.508	6.717
4	-7.567	6.671
5	-7.584	6.668
6	-7.594	6.673
7	-7.601	6.679
8	-7.609	6.685
9	-7.616	6.692
10	-7.624	6.698
11	-7.631	6.705
12	-7.639	6.711

Forecast Evaluation

Forecast Evaluation Measures

	Mean	Variance
Mean Squared Error(MSE)	18.41	674
Median Squared Error(MedSE)	10.85	33.91
Mean Error(ME)	-0.5271	4.921
Mean Absolute Error(MAE)	3.664	13.71
Root Mean Squared Error(RMSE)	4.291	25.96
Mean Absolute Percentage Error(MAPE)	.NaN	2.144
Adjusted Mean Absolute Percentage Error(AMAPE)	.NaN	0.3743
Percentage Correct Sign(PCS)	0.25	.NaN
Theil Inequality Coefficient(TIC)	0.9714	0.5777
Logarithmic Loss Function(LL)	.NaN	1.559

Long Memory Models

- APARCH
- FIGARCH-BBM
- FIGARCH-Chung
- FIAPARCH-BBM
- FIAPARCH-Chung
- FIEGARCH
- Davidson's Hyperbolic GARCH

Long-Memory Models

- We run the basic descriptives test on it
 - And find that it has long memory with a GPH
 - d = .2885 with p = 0.0000.
 - Therefore we try a long-memory model.
 - A FIGARCH Chung model

The Long Memory Model Menu

Mod	el Settings - GARCH Models		×
Ξ	AR(FI)MA Orders (m,d,l)		
	AR order (m)	1	
	MA order (l)	0	
	ARFIMA		
Ξ	GARCH Orders		
	Garch order (p)	1	
	Arch order (q)	1	
Ξ	Model		
	GARCH	0	
	EGARCH	0	
	GJR	0	
	APARCH	0	
	IGARCH	0	
	FIGARCH-BBM	0	
	FIGARCH-CHUNG	\odot	
	FIEGARCH	0	
	FIAPARCH-BBM	0	
	FIAPARCH-CHUNG	0	
	HYGARCH	0	
	RISKMETRICS	0	
	with lambda :	0.94	
	Exactionally Integrated Models		
		OK Cancel	

Chung's Method

********** ** G@RCH(5) SPECIFICATIONS ** ********** Dependent variable : Nasdaq Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : FIGARCH (1, d, 1) model estimated with Chung's method. No regressor in the conditional variance Normal distribution. Strong convergence using numerical derivatives Log-likelihood = -5385.77Please wait : Computing the Std Errors ... Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value t-prob Cst(M) 0.088338 0.016143 5.472 0.0000 AR(1) 0.197900 0.018280 10.83 0.0000 Cst(V) 0.821616 0.27665 2.970 0.0030 d-Figarch 0.358937 0.048296 7.432 0.0000 ARCH(Phi1) 0.045390 0.16180 0.2805 0.7791 GARCH(Beta1) 0.240098 0.18513 1.297 0.1947 No. Observations : 4093 No. Parameters : 6 Mean (Y) : 0.05517 Variance (Y) : 1.59189 Skewness (Y) : -0.74128 Kurtosis (Y) : 14.25531 Log Likelihood : -5385.775 The sample mean of squared residuals was used to start recursion. The positivity constraint for the FIGARCH (1,d,1) is observed. => See Chung (1999), Appendix A, for more details.

Chung's Model after some trimming

🖹 File Edit Search Vie	ew Model Run Window Help	>		
🎦 🕼 🖗 🚺	🗍 😂 🍇 🍁 🖆 💼 💼 🕢 🗤 🔤 nasdaq.in7 💿 쨷 📓 🕺 🎾 🎾 🗐 🗐 💱			
xbeta = &0 + &1 * Lrate -	🛛 🕵 🔍 🏭 🔲 🎦 🔍 🤣 🕵 🗮 📽 🐙 💮 // 🔐.			
Documents 🛛 🔻		-		
ta	************			
*nasdaq.in7	** G@RCH(3) SPECIFICATIONS **			
aphics	************			
G@RCH Forecasting	Dependent variable : Nasdaq			
Data Plot	Mean Equation : ARMA (1, 0) model.			
de	No regressor in the conditional mean			
×t	Variance Equation : FIGARCH (1, d, 1) model estimated with Chung's method.			
Results	No regressor in the conditional variance			
GJR11sktdist2.out	Skewed Student distribution, with 7.28811 degrees of freedom.			
GJR11skt.out	and asymmetry coefficient (log xi) -0.172222.			
Chung_FIGARCH.out				
CIUNY_FIGARCH2.000	Strong convergence using numerical derivatives			
basic matrices out	Log-likelihood = -5191.14			
dules	Please wait : Computing the Std Errors			
Model				
- # G@RCH	Robust Standard Errors (Sandwich formula)			
- * PcGive	Coefficient Std.Error t-value t-prob			
* STAMP	Cst(M) 0.082381 0.013617 6.050 0.0000			
Ox	AR(1) 0.174820 0.016583 10.54 0.0000			
OxDebug	Cst(V) 0.565073 0.18343 3.081 0.0021			
OxGauss	d-Figarch 0.410681 0.042187 9.735 0.0000			
OxPack	ARCH(Phi1) 0.110219 0.086098 1.280 0.2006			
OxRun	GARCH(Beta1) 0.396601 0.10643 3.726 0.0002			
Ox - interactive	Asymmetry -0.172222 0.022033 -7.817 0.0000			
X12arima	Tail 7.288110 0.68609 10.62 0.0000			
	No. Observations : 4083 No. Parameters : 8			
	Mean (Y) : 0.05928 Variance (Y) : 1.55579			
	Skewness (Y) : -0.72576 Kurtosis (Y) : 14.44751			
	Log Likelihood : -5191.143			
	The sample mean of squared residuals was used to start recursion.			
	The positivity constraint for the FIGARCH (1,d,1) is			
	opservea.			
< <u> </u>	=> See Chung (1999), Appendix A, for more details.			

Multivariate GARCH

- BEKK
 - Diagonal
 - Scalar
- RiskMetrics
- Factor GARCH
 - Carol Alexander's OGARCH
 - GOGARCH

Conditional Correlation Models

- Bollerslev's Constant Conditional Correlation
- Tse and Tsui(2002) Dynamic Conditional Correlation
- Engle(2002) Dynamic Conditional Correlation

Outlier Modeling

- Mean model outliers
- Variance model outliers
- Cross-model outliers