Risk Analysis using OxMetrics ver. 5

Robert A. Yaffee, Ph.D. Timberlake Consultancy, Ltd. December 6, 2007

Developers of OxMetrics

- David F. Hendry, Oxford University, UK
- Jurgen Doornik, Oxford University, UK
- Siem Jan Koopman, Free University of the Netherlands
- Andrew C. Harvey, Cambridge University, UK
- Sebatien Laurent, Economics Department at the University of Notre-Dame de la Paix Belgium, fellow of CORE in Louvain-la_Neuve

Part I

- The OxMetrics Interface
- Importing Data
- Dates
- Exploratory Graphical Analysis
- PcGive Modeling
 - Dynamic models
 - Model diagnostics
 - Post estimation Graphics
 - Forecasting
 - Forecast Evaluation
- Automatic variable and model selection with Autometrics
 - Theory
 - Settings
 - Intervention modeling
 - Output analysis
 - For univariate and multivariate models

Part II

- Volatility analysis with G@RCH models
 - First generation univariate G@RCH
 - ARCH, GARCH
 - Estimation (QML with bounds and Simulated annealing)
 - Diagnostics
 - Forecasting (simulated confidence intervals)
 - Forecast Evaluation
 - Second generation univariate G@RCH
 - GARCH-in-mean
 - EGARCH
 - GJR GARCH
 - Leverage effects and volatility smiles

G@RCH Advances

- VaR forecasting
- Simulations
- Diffusion models (Ox)
 - Stochastic volatility assessment
 - Realized and Integrated volatility with jumps
 - Microstructure noise with jumps
- Long-Memory Models
 - IGARCH
 - APARCH Dingle, Engle, Granger
 - FIGARCH BBM, Chung
 - FIEGARCH BBM, Chung
 - HYGARCH

Multivariate GARCH

- Multivariate G@RCH
 - BEKK models
 - Factor garch:
 - OGARCH,
 - GOGARCH
- Dynamic correlations:
 - CCC,
 - DCC

The OxMetrics Interface

OxMetrics - Results - [Results]											
File Edit Search View	File Edit Search View Model Run Window Help										
🖺 🚱 🚱 📗 🕯	🞦 🕼 🕼 🕼 😓 🍇 👍 💼 🛍 🔗 🏹 📝 🚟 📓 🐴 🏠 🌮 🏹										
xbeta = 80 + 81 * Lrate · 💽 🕵 🍕 🛃 🕎 🔝 💽 💽 🍳 🆓 📢 👞 📫 🐙 {↔} // ¥											
Documents 🛛 🔻	🖹 Results										
💋 Data	OxMetrics 5.00 started at 20:36:04 on 04-Nov-2007										
Graphics											
Devt											
Results											
🔞 Modules											
🗐 🏶 Model											
👾 🏶 G@RCH											
🗰 PcGive											
STAMP											
🐨 🏶 OxDebua											
······ · · · · · · · · · · · · · · · ·											
💠 OxPack											
🐳 OxRun											
🐐 Ox - interactive											
🏧 🏶 X12arima											
Help 🔺											
	L3C1 Win										

Importing Excel data

- We download some data from Yahoo finance and create a cvs file.
- We import this data and sort it into ascending order so the data set appears set as follows.

× 1	Microsoft E	xcel - sp500	.csv															
								12	12 1	2								
1911	File Edit	View Insert	Format	Tools	Data	Window	S-PLUS	Help	Adobr	e PDE					Type a	auestion for h	elo 🗸	. . .
:				1.000	E tass	<u></u>	2.002	10				_			- 0 .00 L -		<u>р</u>	A
		3 7 7 86	Σ - Σ		🗧 Aria	1		- 10	- B	<u> </u>	= =	=	<u>-a-</u> \$	%, *	2 .00 .00 ≦		· <u>· ·</u> · <u>·</u>	<u>a</u>
1		1 🔁 🏹 🛛	5 🖄 💆	l 🖣 🖟	🗟 💖 Ri	eply with	<u>⊂</u> hanges	E <u>n</u> d R	leview									
: 🖷	. 🛪 🚓 🗌									_								
• •	A1	• fx	Date															
	Δ	B	C	П		F	F		3	Н				ĸ		M	N	-
1	Date	SP500	~			-					-					141	14	
2	1/2/1990	359.69																
3	1/3/1990	358.76																
4	1/4/1990	355.67																
5	1/5/1990	352.2																
6	1/8/1990	353.79																
7	1/9/1990	349.62																
8	1/10/1990	347.31																
9	1/11/1990	348.53																
10	1/12/1990	339.93																
11	1/15/1990	337																
12	1/16/1990	340.75																
13	1/17/1990	337.4																
14	1/18/1990	338.19																
15	1/19/1990	339.15																
16	1/22/1990	330.38																
17	1/23/1990	331.61																
18	1/24/1990	330.26																
19	1/25/1990	326.08																
20	1/26/1990	325.8																_
21	1/29/1990	325.2																_
22	1/30/1990	322.98																_
23	1/31/1990	329.08																
24	2/1/1990	328.79						_										_
25	2/2/1990	330.92																
26	l 2/5/1990	331.85																

Save the csv file

- This file should be saved in the data directory within OxMetrics5.
- OxMetrics is usually stored in the
- C:\program files\OxMetrics5 directory

Click on the open file folder icon

We click on the open file folder icon in the upper left navigation window

Find the excel file you saved in the data directory

📲 Jas	c Paint Shop Pr	o - Image5			
Eile	🖉 OxMetrics -	Results - [Result	ts]		
В	File Edit Search	n View Model Ru	un Window Help		
	Select a file			2 🔀	V 716 -
	Look in:	🗀 data	✓	G 🤌 📂 🖽 -	
		108 abdata bo7	Midowiopes vis	103 eyeb debp ip7	an an an th
Ν.		abdata.in7			
- 14	Becent	AIRLINE.BN7	B EMPL.BN7	exch debp undated.bn7	007
шт	Hecen	AIRLINE.IN7	193 EMPL.IN7	🕅 exch debp undated.in7	
革		BHS.bn7	🞇 ENERGY.BN7	Finney.bn7	
₊ ‡₊		BHS.in7	國 ENERGY.bn7.bak	🖬 Finney.bn7.bak	
	Desktop	🞇 cac40.bn7	🞇 ENERGY.IN7	💹 Finney.in7	
L! -		🔢 cac40.in7	🔤 ENERGY.IN7.bak	🔤 Finney.in7.bak	
2 -		💐 cac40.xls	ENERGYmiss.bn7	💐 grunfeld.×ls	
<i>→</i> →		data1.xls	ENERGYmiss.in7	ICEVOL.BN7	
0.0	My Documents	data.bn7	EXCH.BN7	ICEVOL.bn7.bak	
₩ 3 -	, i	💥 data.in7	EXCH.bn7.bak	ICEVOL.IN7	
N T		DHSY.bn7	EXCH.IN7	ICEVOL.IN7.bak	
			IN EXCH.IN7.Dak	100 INTEREST. BN7	
- 	My Computer		How exch_debp.bh/	124 INTEREST.IN7	
🥙 🔹		< III		>	
<i></i>		Eile weeken	1		
_⊗		File name:		Open	
•	My Network	Files of type:	All Files	Cancel	
A					
4					

Double click on the file

🖉 OxMetrics - Results - [Results]										
File Edit Search	View Model Ru	n Window	Help							
Select a file					2 🔀					
Look in:	🗀 data		S	🦻 📂 🛄 •	,					
Pecent Desktop	NILE.BN7 NILE.IN7 NLcar.bn7 NLcar.in7 NLcargrouped.t NLcargrouped.in NLcargrouped.in NLcargrouped.in NLcargrouped.in NLcargrouped.in NLcargrouped.in	n7 17	PURSE.BN7 PURSE.IN7 RAINBRAZ.BN7 RAINBRAZ.IN7 SEATBELT.BN7 SEATBELT.IN7 SEATBQ.BN7 SEATBQ.IN7	totalpc.cs TradePric TradePric TutTobit. TutTobit. TutTobit. XCH.xls UKCYP.BI	sv :es.bn7 :es.in7 bn7 in7 N7 N7					
My Documents	portsummary2.1 portsummary2.1 portsummary3.1 portsummary3.1 portsummary3.1 portsummary3.1 portsummary3.1	on7 n7 on7 on7.bak n7 n7.bak s	SP500.CSV SP500_CISCO_INTEL.bn7 SP500_CISCO_INTEL.in7 SPIRIT.BN7 SPIRIT.IN7 TELEPHON.BN7 STELEPHON.IN7	UKM1.bn UKM1.in7 UKrpiq.br UKrpiq.in UKrpiq.o: USmacrol	7 					
My Compared My Network	File name: Files of type:	sp500.csv All Files		×	Dpen Cancel					

This loads the file

Double click on the file icon to open the loaded file

Once the file is open it appears as follows:

OxMetrics - C:\Pro	<mark>gram Fil</mark> el Rup	es <mark>\OxMetrics5</mark> Window Help	\data\sp500.	csv - [sp500).csv - C:\Pro	ogram Files∖	OxMetrics	5\dat	a\sp500.cs	v]	0	
) 🇞 😽 [) i i	10 0	sp500.csv	×	7%	A ⁸ 3	2 🌮	2	-Bo	
xbeta = 8,0 + 8,1 * Lrate -	N 🕄	* * *		R , (2) (ii 🔍 🖬	₽ ₩ ₩	} // 🙀					
Documents 🛛 🔻		Date	SP500									^
🧔 Data	1	1/2/1990	359.69									_
199 sp500.csv	2	1/3/1990	358.76									
Graphics	3	1/4/1990	355.67									
Code	4	1/5/1990	352.2									
Deculto	5	1/8/1990	353.79									
	6	1/9/1990	349.62									
• 🖶 🏶 Model	7	1/10/1990	347.31									
🐳 G@RCH	8	1/11/1990	348.53									
🐳 PcGive	9	1/12/1990	339.93									
🗰 🏶 STAMP	10	1/15/1990	337									
🏶 Ox	11	1/16/1990	340.75									
🏶 OxDebug	12	1/17/1990	337.4									
W OxGauss	13	1/18/1990	338.19									
OxRun	14	1/19/1990	339.15									
🐳 Ox - interactive	15	1/22/1990	330.38									
🔹 🕸 X12arima	16	1/23/1990	331.61									
	17	1/24/1990	330.26									
	18	1/25/1990	326.08									
1	19	1/26/1990	325.8									
	20	1/29/1990	325.2									
	21	1/30/1990	322.98									
	22	1/31/1990	329.08									
	23	2/1/1990	328.79									
	24	2/2/1990	330.92									
	25	2/5/1990	331.85									
	26	2/6/1990	329.66									
	27	2/7/1990	333.75									
	28	2/8/1990	332.96									
	29	2/9/1990	333.62									
Help 🔺	30	2/12/1990	330.08							_		¥

Graphical Preview

Click on the graphics icon

🖉 *OxMetrics - C:\Pr	ogram F	iles\OxMetrics	5\data\sp50().csv - [sp50	0.csv - C:\Pr	ogram FilesW	OxMetrics5\d	ata\sp500.csv	/]		×
🔣 File Edit View Mod	lel Run	Window Help								- 8	×
: 🎦 🗳 🕼 i] 2	🔶 🎉	🖹 💼 🛍	1	sp500.csv	<u> </u>	産 📑 🗚	s 🚬 🎾 🛛	27 🗩 🖻	建	
xbeta = &0 + &1 * Lrate -	.	₹ # ■		R (2)		{+} ,∰ {+}	Graphics				
Documents 🛛 🔻		Date	SP500								^
🧔 Data	1	1/2/1990	359.69								
👷 sp500.csv	2	1/3/1990	358.76								
🧔 Graphics	3	1/4/1990	355.67								
🔤 🚾 Data Plot	4	1/5/1990	352.2								
Code	5	1/8/1990	353.79								
P lext	6	1/9/1990	349.62								
	7	1/10/1990	347.31								
🗐 🗰 Model	8	1/11/1990	348.53								
G@RCH	9	1/12/1990	339.93								
🕂 🏶 PcGive	10	1/15/1990	337								
STAMP	11	1/16/1990	340.75								
🟶 Ox	12	1/17/1990	337.4								

This opens a graphics dialog box Select the series and move it into the graph window on the left by clicking on the arrow button

•8 Jas	sc Paint Shop Pro - Image12			Ŀ
Eile	🖉 OxMetrics - Data Plot - [Data Plo	t]	- • •	3
B	File Edit Model Run Window Help			
× n	^_ ぢ 🔂 🗐 💷 😂 👌	🛊 🛸 💼 🛍 🖍 🖓 sp500.ts	🗤 🛛 📈 🔚 🔥 💭 🎾 🎾 💷 🖅 😚	
# : *	xbeta = 80 + 81 * Lrate - 🕑 🕵 🧠			
Ν -	Documents 🔻			
h? *	🧔 Data	Graphics ap500 cev		
Ш×	Sp500.csv	Graphics - spood.csv		
每	Data Plot	Selection	Database	
	📁 Code		Date	
····] •	🧔 Text		SP500	
A -	Modules		>> Add to selection	
<i>″</i> , '				
88 -	PcGive			
N T	STAMP			
a -	····· ··························			
- -	🏶 OxGauss			
× •	* OxPack			
*	* OxRun			
<>>	X12arima			

Click on the actual series button on the lower left

Graphics - sp500.csv	🔀
Selection	
Selection SP500 Clear>> Date Date	
Actual series (separately) Scatter plot (YX) All plot	types >

Generating a time series plot

Dates

- The horizontal axis consists of observation numbers.
- To construct dates for those periods, we count the number of observations in the Excel file.
- There are 4342 observations beginning in January 2, 1990.
- We will import the data into a OxMetrics file.

Select the SP500 column in the csv file. Then click on copy

*OxMetrics - new06.in7 - [*new06.in7]									
🔢 File Edit View Mod	el Run Window	Help							
🎦 🖾 🕼 🔒 🕻	J 🕹 🍇	🔶 📄 🛛	🔒 🛍 🔗	new06.in7					
xbeta = 80 + 81 * Lrate -	A 🔳 🗔	1 🖭 🔍 🤇	2 🛒 🖛 🖻 🖉					
Documents 🛛 🔻		Date	SP500						
🧔 Data	1990-01-02	1990-01-02	359.69						
	1990-01-03	1990-01-03	358.76						
1992 *new06.in7	1990-01-04	1990-01-04	355.67						
🧔 Graphics	1990-01-05	1990-01-05	352.2						
🔤 🚾 Data Plot	1990-01-08	1990-01-08	353.79						
Code	1990-01-09	1990-01-09	349.62						
Devide	1990-01-10	1990-01-10	347.31						
™ ⊟ Results	1990-01-11	1990-01-11	348.53						
🐌 Model	1990-01-12	1990-01-12	339.93						
G@RCH	1990-01-15	1990-01-15	337						
PcGive	1990-01-16	1990-01-16	340.75						
STAMP	1990-01-17	1990-01-17	337.4						
🏶 Ox	1990-01-18	1990-01-18	338.19						
🏶 OxDebug	1990-01-19	1990-01-19	339.15						
- 🏶 OxGauss	1990-01-22	1990-01-22	330 38						
W OxPack	1990-01-23	1990-01-23	331.61						
* OXRUN	1990-01-24	1990-01-24	330.26						
A X12arima	1990-01-25	1990-01-25	326.08						
T ATEGRING	1990-01-26	1990-01-26	325.8						
	1990-01-29	1990-01-29	325.2						
	1990-01-20	1990-01-30	322 98						
	1990-01-30	1990-01-21	329 08						
	1990-01-31	1990-02-01	329.00						
	1990-02-01	1990-02-01	220.75						
	1990-02-02	1990-02-02	221 05						
	1990-02-05	1990-02-05	331.85						
	1990-02-06	TAA0-05-06	329.66						

Construction of a dated Ox file

Click on copy

Click on OK

- Click on file new and a
 - Dialog box opens
- Select OxMetrics (Data: *in7) file

	New File	\mathbf{X}
bens	Select a document type	
cs (Data: *in7) file	OxMetrics (Data: *.in7) OxMetrics (Graphics: *.gwg) Algebra (Code: *.alg) Batch (Code: *.fl) Ox (Code: *.ox) OxGauss (Code: *.src) TSP (Code: *.tsp) Results (Text: *.out)	
	OK Cancel	

A Date dialogue box opens

 Change Sample								
Current Database Sample								
1996 - 2005 Annual								
Frequency and Start Date								
Frequency Annual or undated 💌 1								
Days per week 5								
Start Date 1996								
year or 1 for undated								
Sample Size								
Observations 0								
Action Add observations at the end 😪								
OK Cancel								

Paste the SP500 into the new data set

📓 *OxMetrics - new0	6.in7 - [*new0	6.in7]							
🞇 File Edit View Mod	el Run Window	Help			_ = ×				
🖺 🖾 🕼 📙] 🕹 🗞	🔶 📬 💼	🕜 🔊 new06.in7	🚽 🌌 📑 🗚 🚬	🌮 🗖 🖅 💮				
xbeta = 80 + 81 * Lrate - 😪 🕵 🚓 📕 📳 🔛 🔍 🍕 🧠 🏘 👒 📫 🐙 🤲 // 🐇.									
Documents 🛛 🔻		Date SP	500						
🧔 Data	1990-01-02	1990-01-02 359	. 69						
- 192 sp500.csv	1990-01-03	1990-01-03 358	. 76						
19 *new06.in7	1990-01-04	1990-01-04 355	. 67						
Graphics	1990-01-05	1990-01-05 35	2.2						
🔤 📶 Data Plot	1990-01-08	1990-01-08 353	. 79						
	1990-01-09	1990-01-09 349	. 62						
	1990-01-10	1990-01-10 347	. 31						
Modules	1990-01-11	1990-01-11 348	. 53						
🚊 🕸 Model	1990-01-12	1990-01-12 339	.93						
🛛 🏶 G@RCH	1990-01-15	1990-01-15	337						
🕂 🏶 PcGive	1990-01-16	1990-01-16 340	. 75						
STAMP	1990-01-17	1990-01-17 33	7.4						
₩ Ox	1990-01-18	1990-01-18 338	. 19						
······································	1990-01-19	1990-01-19 339	. 15						
OxGauss OxPack	1990-01-22	1990-01-22 330	. 38						
· · · · · · · · · · · · · · · · · · ·	1990-01-23	1990-01-23 331	.61						
💠 Ox - interactive	1990-01-24	1990-01-24 330	.26						
💠 🕸 X12arima	1990-01-25	1990-01-25 326	. 08						
	1990-01-26	1990-01-26 32	5.8						
	1990-01-29	1990-01-29 32	5.2						
	1990-01-30	1990-01-30 322	. 98						
	1990-01-31	1990-01-31 329	. 08						
	1990-02-01	1990-02-01 328	. 79						
	1990-02-02	1990-02-02 330	. 92						
	1990-02-05	1990-02-05 331	.85						
	1990-02-06	1990-02-06 329	. 66						
	1990-02-07	1990-02-07 333	. 75						
	1990-02-08	1990-02-08 332	.96						
	1990-02-09	1990-02-09 333	. 62						
Help 🔺	1990-02-12	1990-02-12 330	. 08		×				
				SP500					
tart Decu	ments and Se		asc Paint Shon Pro -	*OvMetrics - pew06 i	Norton 21				

Now Graph the New Series and save the data set

Dates: frequencies/holidays

Change Sample	
Current Database Sample	
1996 - 2005 Annual	
Frequency and Start Date	
Frequency	Annual or undated 🔽 🚺
Days per week	Annual or undated Quarterly Monthly Weekly (52/year)
Start Date	Other fixed frequency Dated: daily or weekly
year or 1 for undated	
Sample Size	
Observations	0
Action	Add observations at the end 🛛 🔽
OK Cancel	

Other graphics

Paneled time series plots

Overlaid Time Series Plots

Time series Properties

ACF and PACF correlograms

Cross Correlation Function

Distributional Plots

Distributional Kernal Density Plots and Normal Quantile plots

BoxPlots

3-D rotating plots

Rotated 3-D plot

Scatterplots

Scatterplots with spline smoothing

Paneled Scatterplot with smoothers

PcGive 12 Modeling and Forecasting

- Cross-sectional
 - Discrete choice:
 - Count data
 - logit and probit model
 - Multinomial discrete choice
- Univariate dynamic modeling
 - OLS and Autoregressive error models
- ARIFIMA modeling
- Panel data analysis
 - Static
 - Dynamic (GMM)
- Multivariate dynamic modeling
 - Unrestricted VAR
 - Cointegrated VAR
 - Simultaneous equation modeling
 - Constrained sem
- Automatic Modeling
 - Automatic outlier identification and modeling
 - For univariate and multivariaate models

What's new in PcGive 12?

- Autometrics has been included
 - Autometrics can work with univariate or multivariate models, such as VAR.
 - Autometrics can handle more variables than observations, previously thought impossible
 - Can employ dummy saturation
 - Can automatically model univariate and multivariate time series models
- PcNaive has been included in the Monte Carlo methods

Estimation methods

- Estimation (OLS, IV, ALS, recursive estimation)
- Panel-GMM with robust standard errors

Autometrics demonstration

- Function: Automatic variable selection, model building, and model selection for time series or econometric data.
- Value: Crisis analysis
 - when data are available.
 - When time is short
 - When stakes are high
 - When consequences are serious
 - Autometrics may reduce the risk of improper response.
- Value: Econometric Data mining
 - Exploratory data analysis when response time is critical
 - When there are a lot of variables and modeling paths to analyze

Methodology

- Begin with a General Unrestricted Model (GUM).
- The chosen variables should be as congruent as possible.
- The GUM is subjected to a series of misspecification tests. If it passes, the reductions will also pass.
- Reduction of the model by eliminating variables with significance levels of .05 or more.
- Each reduction must pass a series of tests.
- If there are k regressors, there will be 2^k reduction paths.

Methodology II

- There may be several terminal models following reduction. The Schwartz criterion is used to determine the better of these.
- If a reduction causes the previous model to fail a misspecification test, then the variable, though possibly not significant, will be retained in the model.

Example

• We select data.in7 and load the quarterly data into the spreadsheet

🎇 data.in	7 - C:\Program	n Files\OxMe	trics5\data\d	ata.in7
	CONS	INC	INFLAT	OUTPUT
1953(1)	890.45	908.212	3.6595	1203.77
1953(2)	886.543	900.679	2.7649	1200.36
1953(3)	886.329	899.795	2.521	1193.63
1953(4)	884.885	898.482	1.717	1193.04
1954(1)	885.254	895.777	.9729	1194.11
1954(2)	884.528	894.831	.676	1191.03
1954(3)	884.436	892.741	.1739	1191.47
1954(4)	884.311	892.768	3302	1195.34
1955(1)	887.426	896.971	4645	1195.51
1955(2)	889.556	901.406	3819	1198.2
1955(3)	890.659	901.479	2016	1199.24
1955(4)	894.079	905.117	.1956	1203.88
1956(1)	896.831	908.389	. 5363	1211.27
1956(2)	894.984	906.216	1.75	1207.35
1956(3)	893.613	905.942	2.3436	1201.78
1956(4)	891.8	902.649	2.126	1200.69
1957(1)	890.252	901.933	2.0725	1200.2

Select the Module, Category and model class

🖉 PcGive - Models for time-series data 🛛 🔹 👔							×
All	G@RCH	PcGive	STAMP				
Module	PcGive						
Category	Models for time	series data					*
Model class	Single-equation	Dynamic Modelling (using PcGiv	/e			~
0		Formulate	> [< [Estimate Progress	> <	Test	
		Options		Close			

Select 2 years of data (8 lags)

Formulate - Single-equation Dynamic Mode	Formulate - Single-equation Dynamic Modelling - data.in7						
Selection	Lags Lag 0 to 👻 8	Database CONS INC INFLAT					
	<<	OUTPUT					
	Clear>>						
Use default status 💌 Set	didd 22	Constant CSeasonal Trend Seasonal					
Recall a previous model		data.in7	~				
	K Ca	ncel					

Modeling consumption

- Move the variables from the Database window to the Selection window.
- Their lags are automatically constructed and included.
- Also include a Trend variable
- Include Seasonal dummies as well

The Variable Selection

Click OK

In the Model settings dialog box, we set those settings

Mode	l Settings - Single-equati	on Dynamic Modelling	×
C	hoose a model type:		
C	Ordinary least squares	•	
I	nstrumental variables	0	
Æ	Autoregressive least squares	0	
	from lag	1	
	to lag	1	
C	hoose the Autometrics opt	ions:	
Æ	Automatic model selection		Largo Posiduale
	Target size	Default: 0.05	Large Residuals
	Outlier detection	Large residuals	
	Pre-search lag reduction		
Þ	Advanced Autometrics settings		
		OK Cancel	

Model Setting

- Leave model type on OLS
- Click Automatic model selection
- Select outlier detection to large residuals
- Click on Pre-search lag reduction
- Then click on OK

Delimiting for the estimation sample

 For validation, we set aside 3 years for validation (12 forecasts) and click OK

timate - Single-equation Dynamic Modelling			
Choose the estima	tion sample:		
Selection sample	1955(1) - 1992(3)		
Estimation starts at	1955(1)		
Estimation ends at	1992(3)		
Less forecasts	12		
Choose the estima	tion method:		
Estimation method:	Ordinary Least Squares		
Recursive estimation			
Initialization	10		
	OK Cancel		

Autometrics yields an optimal model

 In less than 1 minute, Autometrics generates the model with results of misspecification tests up front

p-values of	diagnostic	checks	for	model va	alidity			
II	nitial GUM	cut-	off	Final	GUM	cut-off	Fina	al model
AR(5)	0.94162	0.01	.000	0.6:	1142	0.01000		0.53842
ARCH(4)	0.43715	0.01	.000	0.25	5648	0.01000		0.51872
Normality	0.53256	0.01	.000	0.79	9925	0.01000		0.93163
Hetero	0.99898	0.01	.000	0.58	3323	0.01000		0.45873
Chow(70%)	0.05426	0.01	.000	0.00	5419	0.01000		0.04416
Summary of <i>i</i>	Autometrics	search						
initial seam	ch space	2^40	fir	hal seard	ch space	≘ 2′	11	
no. estimate	ed models	208	no.	termina	al mode.	ls	4	
test form		LR-F	tar	get size	e 1	Default:0.	.05	
outlier dete	ection	0.025	pre	esearch m	reduction	on la	ags	
backtesting		GUMO	tie	e-breaker	5		sc	
diagnostics	p-value	0.01	sea	arch effo	ort	standa	ard	
time		0.85	Aut	cometrics	s versi	on 1	ι.5	

Weta = 80 + 81 * Lrate- 	File Edit Search View Model Run Window Help					
Instability tests: Image: Constant of the consta	🖺 🗳 🖏 🛄 🕯	📕 😂 🍇 👆 🖆 🛍 🕼 🔗 🖎 🔤 🖬 📝 🤁 🔁				
Documents Picesults Data wixesp00b.in7 Graphics The detaset is: C:\Program Files\OXMetrics\data\data.in7 The detaset is: C:\Program Files\OXMetrics\data\data.in7 The estimation sample is: 1955(1) - 1989(3) Code Model Coefficient Std.Error t-value t-prob Part.R^2 Code Data Model Coefficient Std.Error t-value t-prob Part.R^2 Code Data/Mejdet.ox Coefficient Std.Error t-value t-prob Part.R^2 Dota Data/Mejdet.ox NC 0.482387 NC 0.482387 0.022687 Data/Mejdet.ox NC 0.482387 Tot 0.03744 0.0000 0.6673 Tot 0.0482387 0.02943 1.6.4 0.0000 0.6673 GRIIskdist.out INC_1 -0.314234 0.03374 -9.31 0.0000 0.4448 GRIIskdist.out sigma 1.07068 RSS 155.164728 GRIIskdist.out sigma 1.07068 SS 155.164728 GRIIskdist.out Ingeliktiets Yariance 0.53710* 2.04 Model Yariance 0.53710* 2.04 Yariance 0.53710* <th>xbeta = &0 + &1 * Lrate -</th> <th>🗨 😪 🏕 🔄 🔚 🏝 🥙 🍫 🌠 🗮 🤷 🌮 🚱 // 🗶</th>	xbeta = &0 + &1 * Lrate -	🗨 😪 🏕 🔄 🔚 🏝 🥙 🍫 🌠 🗮 🤷 🌮 🚱 // 🗶				
Deta Figs0b.in7 Wixsp500b.in7 EQ(2) Modelling CONS by OLS Graphics The dataset is: C:\Program Files\0xMetrics5\data\data.in7 Graphics The dataset is: Sisteror t-value t-prob Part.R^2 Code Cons_1 0.874432 0.02687 32.5 0.0000 0.8877 paphics.ox CONS_1 0.874432 0.02687 32.5 0.0000 0.6673 Ioad, Nic_data.ox INC 0.482387 0.02243 16.4 0.0000 0.6673 Ioad, Nic_data.ox INC 0.482387 0.02374 -9.31 0.0000 0.6473 Ioad, Nic_data.ox INC 1 -0.314234 0.03374 -9.31 0.0000 0.6473 Instability casts: ingma 1.07608 SS 155.164728 10g-11kelihod -204.878 DW 2.04 GRIIskKids2.out ing=likelihood -204.878 DW 2.04 no. of observations 139 no. of parameters 5 GRIIskKids2.out Instability tests: Variance 0.53710* Variance	Documents 🛛 🔻	🖹 Results				
Bit Wisspiele Bit C(2) Modelling CONS by OLS Graphics The dataset is: C:\Program Files\OxMetricsS\data\data.in7 Graphics The estimation sample is: 1955(1) - 1989(3) Code Coefficient Std.Error t-value t-prob Part.R^2 backmarkers.ox CONS_1 0.874432 0.02687 32.5 0.0000 0.8877 graphics CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 graphics INC 0.482387 0.02943 16.4 0.0000 0.6877 graphics INC_1 -0.314234 0.03374 -9.31 0.0000 0.3929 Faxt INFLAT -0.911402 0.0877 -10.4 0.0000 0.4488 GRN1isktdst2.out sigma 1.07608 RSS 155.164728 -0.911400 GChung_FIGARCH.out Instability tests: Model 2.04 -0.91400 -0.91400 GChung_FIGARCH.out Instability tests: 0.061948 -0.91400 -0.9142 -0.91400 GChung_FIGARCH.out Instability tests: -0.91942 </td <td>🕽 Data</td> <td></td>	🕽 Data					
Image: State Stat	vixsp500b.in7	EO(2) Modelling CONS by OLS				
Graphics The estimation sample is: 1955(1) - 1989(3) Code Coefficient Std.Error t-value t-prob Part.R^2 Diskingtries.ox CONS_1 0.874432 0.02687 32.5 0.0000 0.8877 Diskingtries.ox CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 Diskingtries.ox CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 Diskingtries.ox INC_1 0.482387 0.02943 16.4 0.0000 0.6673 Isst INTLAT -0.911402 0.08797 -10.4 0.0000 0.4448 Results sigma 1.07608 RS 155.164728 Chung_FIGARCH.ou no. of observations 139 no. of parameters 5 Meadules variance 0.53710* 2.04 Model joint 0.91942 181.815 Model joint 0.91942 10.002.10 0.082496 Cons_1 0.082426 0.083334 10.073546 OxAun INFLA	- 🞇 data.in7	The dataset is: C:\Program Files\OxMetrics5\data\data.in7				
Code Coefficient Std.Error t-value t-prob Part.R^2 badx83.ox CONS_1 0.874432 0.02687 32.5 0.0000 0.8877 graphics.ox CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 bad_mat.ox INC 0.482387 0.02943 16.4 0.0000 0.6673 Totd INC_1 -0.314234 0.0374 -9.31 0.0000 0.3929 Totd INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 GRN1skdst2.out sigma 1.07608 RSS 155.164728 GGR1skdst3.out log-likelihood -204.878 DW 2.04 no. of observations 139 no. of parameters 5 mean(CONS) 876.668 var(CONS) 181.815 Wodels variance 0.53710* * Model joint 0.91942 * Model joint 0.92496 * OX6us INC 0.082496 * OXPack INFLAT 0.073546	Graphics	The estimation sample is: $1955(1) - 1989(3)$				
Code Codeficient Std.Error t-value t-prob Part.R^2 basic_matrices.ox CONS_1 0.874432 0.02687 32.5 0.0000 0.8877 graphicS.ox CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 hoad_mat.ox INC 0.482387 0.02943 16.4 0.0000 0.6673 toad_Mle_dat.ox INC_1 -0.314234 0.03374 -9.31 0.0000 0.4448 Results INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 Results sigma 1.07608 RSS 155.164728 GR11sktost.out log-likelihood -204.878 DW 2.04 no. of observations 139 no. of parameters 5 mean (CONS) 876.668 var (CONS) 181.815 Wodules Variance 0.53710* Variance 0.054496 Vox CONS_5 0.083334 - - Model joint 0.0825	Model					
Production CONS_1 0.874432 0.02687 32.5 0.0000 0.8877 Production CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 Production CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 Production CONS_1 -0.314234 0.0374 -9.31 0.0000 0.3929 Text INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 Results sigma 1.07608 RSS 155.164728 109-11kelinood -204.878 DW 2.04 Chung_FIGARCH.out no. of observations 139 no. of parameters 5 mean (CONS) 876.668 var(CONS) 181.815 Modules Variance 0.53710* 0.91942 -0.9142 <td< th=""><th>P code</th><th>Coefficient Std.Error t-value t-prob Part.R^2</th></td<>	P code	Coefficient Std.Error t-value t-prob Part.R^2				
Woodputtion CONS_5 -0.0438114 0.01760 -2.49 0.0140 0.0442 bad_mat.ox INC_1 -0.314234 0.03374 -9.31 0.0000 0.3929 Text INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 GRIIsktdist.out sigma 1.07608 RSS 155.164728 GRIIsktdist.out log-likelihood -204.878 DW 2.04 mo. of observations 139 no. of parameters 5 mean(CONS) 876.668 var(CONS) 181.815 Modules variance 0.53710* Wariance 0.91942 Individual instability tests: Variance 0.082496 Stamp CONS_1 0.082496 Oxobus INC_1 0.082523 VOCuston INC_1 0.082720 INC 1.073546 INFLAT OxPack INFLAT 0.073546 Variance 1.506 0.2696] OxPack INFLAT 0.073546		CONS 1 0.874432 0.02687 32.5 0.0000 0.8877				
Waynetwide INC 0.482387 0.02943 16.4 0.0000 0.6673 INC_1 -0.314234 0.03374 -9.31 0.0000 0.3929 Text INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 Results sigma 1.07608 RSS 155.164728 GRI1skt.out log-likelihood -204.878 DW 2.04 no. of observations 139 no. of parameters 5 mean(CONS) 876.668 var(CONS) 181.815 Modules variance 0.53710* Voriance 0.53710* 10.082496 SGRCH Individual instability tests: variance VOX 0.082523 INC_1 0.082720 INC 0.082720 INC 0.073546 OxPack INFLAT 0.073546 OxPack 1-step (ex post) forecast analysis 1989(4) - 1992(3)	graphics3.ox	CONS 5 -0.0438114 0.01760 -2.49 0.0140 0.0442				
Note_Index INC_1 -0.314234 0.03374 -9.31 0.0000 0.3929 Text INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 Results sigma 1.07608 RSS 155.164728 GR11skdist2out sigma 1.07608 RSS 155.164728 Chung_FIGARCH.out no. of observations 139 no. of parameters 5 Modules variance 0.53710* 181.815 181.815 Modules variance 0.53710* 10002000000000000000000000000000000000		INC 0.482387 0.02943 16.4 0.0000 0.6673				
Text INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448 GR11skt.out sigma 1.07608 RSS 155.164728 GGR11skt.out log-likelihood -204.878 DW 2.04 mo. of observations 139 no. of parameters 5 mean (CONS) 876.668 var (CONS) 181.815 Modules Variance 0.53710* Modules Variance 0.53710* Modules Variance 0.082496 Vorsi 0.082496 0.082523 Modules INC 0.082496 OxDebug INC 0.082720 NC 0.082523 INFLAT OxPack INFLAT 0.073546 OxPack INFLAT 0.073546 Variance 1-step (ex post) forecast analysis 1989(4) - 1992(3) Parameter constancy forecast tests: Forecast Chi^2(12) = 14.506	load Nile dat.ox	INC 1 -0.314234 0.03374 -9.31 0.0000 0.3929				
Results sigma 1.07608 RSS 155.164728 GR11sktdst2.out log-likelihood -204.878 DW 2.04 GR11sktdst2.out no. of observations 139 no. of parameters 5 GLMung_FIGARCH2.ou mean (CONS) 876.668 var (CONS) 181.815 Modules variance 0.53710* Modules variance 0.53710* Modules variance 0.82496 CONS_5 0.082496 CONS_5 0.083334 Module INC 0.082720 SoxRun INFLAT 0.073546 Ox-interactive 1-step (ex post) forecast analysis 1989(4) - 1992(3) Parameter constancy forecast tests: Forecast Chi^2(12) = 14.506 [0.2696]	J Text	INFLAT -0.911402 0.08797 -10.4 0.0000 0.4448				
GR11sktdist2.out sigma 1.07608 RSS 155.164728 GR11skt.out log-likelihood -204.878 DW 2.04 Chung_FIGARCH.out no. of observations 139 no. of parameters 5 GR11sktdist3.out mean(CONS) 876.668 var(CONS) 181.815 Modules variance 0.53710* Watiance 0.53710* variance 0.53710* % G@RCH joint 0.91942 1000000000000000000000000000000000000	- 🖹 Results					
GR11skt.outlog-likelihood-204.878 DW2.04Chung_FIGARCH2.otno. of observations139 no. of parameters5GR11sktdist3.outGR11sktdist3.outs76.668 var (CONS)181.815basic_matrices.outInstability tests:Instability tests:Modelesvariance0.53710*\$G@RCHjoint0.91942\$GN210.082496CONS_10.082496CONS_50.083334\$GX6aussINC_10.082523\$GXeusINC_10.082720\$GXeusINC_10.073546\$GXeusInstab forecast analysis 1989(4) - 1992(3)\$GXeus1-step (ex post) forecast tests: Forecast Chi^2(12) = 14.506 [0.2696]	🗄 GJR11sktdist2.out	sigma 1.07608 RSS 155.164728				
<pre>Chung_FIGARCH.out no. of observations 139 no. of parameters 5 Chung_FIGARCH2.ou GUR11sktdist3.out GUR11sktdist3.out Modules Modules Modules Modules Modules Module Instability tests: Modul GUR1 GUR2 GUR2 CONS_1 0.082496 CONS_1 0.082496 CONS_5 0.08334 CONS_5 0.08334 CONS_5 0.082523 CONS_5 0.082523 CONS_5 0.082720 CONS_6 NC_1 0.082720 CONS_6 NC_1 0.082720 CONS_6 CONS_6</pre>	GJR11skt.out	log-likelihood -204.878 DW 2.04				
Chung_FIGARCH2.ot mean(CONS) 876.668 var(CONS) 181.815 GJR11skdist3.out Instability tests: Instability tests: Models variance 0.53710* Model joint 0.91942 PGRve Individual instability tests: STAMP CONS_1 0.082496 StaMP CONS_5 0.083334 Vocbebug INC 0.082523 NCL 0.082720 Vockauss INFLAT 0.073546 Vocknu Instep (ex post) forecast analysis 1989(4) - 1992(3) Water constancy forecast tests: Forecast Chi^2(12) = 14.506 [0.2696]	E Chung_FIGARCH.out	no. of observations 139 no. of parameters 5				
GJR11sktdist3.out Instability tests: Modules variance 0.53710* Modules joint 0.91942 Model joint 0.91942 PcGive Individual instability tests: STAMP CONS_1 0.082496 CONS_5 0.083334 Models INC 0.082523 Mocauss INC_1 0.082720 Workack INFLAT 0.073546 OxNun -step (ex post) forecast analysis 1989(4) - 1992(3) Wareter constancy forecast tests: Forecast Chi^2(12) = 14.506 [0.2696]	E Chung_FIGARCH2.ou	mean(CONS) 876.668 var(CONS) 181.815				
<pre>Basic_matrices.out Modules Module</pre>	<u>∃</u> GJR11sktdist3.out					
Modules variance 0.53710* → ※ Model joint 0.91942 → ※ G@RCH Individual instability tests: → ※ PrGive Individual instability tests: → ※ STAMP CONS_1 0.082496 → ※ Ox CONS_5 0.083334 → ◎ Ox INC 0.082523 → ◎ OxGauss INC_1 0.082720 → ◎ OxPack INFLAT 0.073546 → ◎ OxRun	Ei basic_matrices.out	Instability tests:				
>** Model joint 0.91942 -** G@RCH Individual instability tests: -** ProGive Individual instability tests: -** STAMP CONS_1 0.082496 -** Ox CONS_5 0.083334 -** Ox INC 0.082523 -** OxGauss INC_1 0.082720 -** OxPack INFLAT 0.073546 -** OxAun		variance 0.53710*				
W Gukch Individual instability tests: * Progive Individual instability tests: * STAMP CONS_1 0.082496 * Ox CONS_5 0.083334 * OxDebug INC 0.082523 * OxGauss INC_1 0.082720 * OxPack INFLAT 0.073546 * OxAun		joint 0.91942				
* Forwer CONS_1 0.082496 ** Ox CONS_5 0.083334 ** OxDebug INC 0.082523 ** OxGauss INC_1 0.082720 ** OxPack INFLAT 0.073546 ** Ox-interactive 1-step (ex post) forecast analysis 1989(4) - 1992(3) ** X12arima Parameter constancy forecast tests: ** Forecast Chi^2(12) = 14.506 [0.2696]		Individual instability tests:				
* Ox CONS_5 0.083334 ** OxDebug INC 0.082523 ** OxGauss INC_1 0.082720 ** OxPack INFLAT 0.073546 ** OxRun	STAMP	CONS 1 0.082496				
** OxDebug INC 0.082523 ** OxGauss INC_1 0.082720 ** OxPack INFLAT 0.073546 ** OxRun		CONS_5 0.083334				
* OxGauss INC_1 0.082720 * OxPack INFLAT 0.073546 ** OxRun	🏶 OxDebug	INC 0.082523				
** OxPack INFLAT 0.073546 *** OxRun *** 1-step (ex post) forecast analysis 1989(4) - 1992(3) *** X12arima Parameter constancy forecast tests: *** Forecast Chi^2(12) = 14.506 [0.2696]	🏶 OxGauss	INC_1 0.082720				
<pre></pre>	🏶 OxPack	INFLAT 0.073546				
<pre># Ox-interactive 1-step (ex post) forecast analysis 1989(4) - 1992(3) # X12arima # X12arima Forecast Chi^2(12) = 14.506 [0.2696] # The parameter constance is the parameter consta</pre>	🏶 OxRun					
** X12arima Parameter constancy forecast tests: Forecast Chi ² (12) = 14.506 [0.2696]	🏶 Ox - interactive	1-step (ex post) forecast analysis 1989(4) - 1992(3)				
Forecast $Chi^2(12) = 14.506 [0.2696]$	🏶 X12arima	Parameter constancy forecast tests:				
		Forecast Chi [^] 2(12) = 14.506 [0.2696]				
Chow $F(12, 134) = 1.1773 [0.3055]$		Chow $F(12, 134) = 1.1773 [0.3055]$				

Collinearity diagnostics, parameter constancy tests, and a summary of misspecification tests are generated

1-step (ex post) forecast analysis 1989(4) - 1992(3) Parameter constancy forecast tests: Forecast Chi²(12) = 14.506 [0.2696] Chow F(12, 134) = 1.1773 [0.3055]Descriptive statistics of variables used in the model: Means CONS CONS 1 CONS 5 INC INC 1 INFLAT 876.67 876.83 877.48 892.40 892.53 1.7908 Standard deviations (using T-1) CONS CONS 1 CONS 5 INC INC 1 INFLAT 13.488 13.313 10.670 10.555 13.533 1.3219 Correlation matrix: CONS 5 INC 1 CONS CONS 1 INC CONS 1.0000 0.98675 0.87823 0.94106 0.91444 CONS 1 0.98675 1.0000 0.91055 0.93138 0.94063 CONS 5 0.87823 0.91055 0.86143 0.88359 1.0000 INC 0.94106 0.93138 0.86143 1.0000 0.95412 INC 1 0.91444 0.94063 0.88359 0.95412 1.0000 INFLAT -0.35465-0.27388 -0.11480-0.13230-0.074755INFLAT CONS -0.35465CONS 1 -0.27388CONS 5 -0.11480INC -0.13230-0.074755 INC 1 INFLAT 1.0000 AR 1-5 test: F(5, 129) = 0.81877 [0.5384]ARCH 1-4 test: F(4, 126) = 0.81365 [0.5187] $Chi^{2}(2) = 0.14163 [0.9316]$ Normality test: F(10, 123) = 0.98657 [0.4587]Hetero test: Hetero-X test: F(20, 113) = 0.88671 [0.6039]RESET test: F(1, 133) = 2.0920 [0.1504]

Dynamic Analysis is available

Dynamic Analysis - Single-equation Dynamic Modelling				
	Dynamic Analysis			
	Static long-run solution			
	Lag structure analysis			
	Roots of lag polynomials			
	Test for common factors			
Ξ	Lag weights			
	Graph normalized lag weights			
	Graph cumulative normalized lag weights			
	Write lag weights			
		OK Cancel		

Output of dynamic analysis

Solved static long-run equation for CONS Coefficient Std.Error t-value t-prob INC 0.992759 0.001339 741. 0.0000 INFLAT -5.380820.6321 -8.51 0.0000 Long-run sigma = 6.35306 ECM = CONS - 0.992759*INC + 5.38082*INFLAT; WALD test: Chi²(2) = 2.60735e+006 [0.0000] ** Analysis of lag structure, coefficients: SE (Sum) Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Sum CONS -1 0.874 -0 -0.0438-0.1690.0223 -0 -0 INC 0.482 -0.3140 0.168 0.022 Ο. 0 Ο. INFLAT -0.9110 0 0 0 0 -0.9110.088 Tests on the significance of each variable Variable F-test Value [Prob] Unit-root t-test CONS F(2, 134) =717.54 [0.0000] ** -7.6108** INC F(2, 134) =147.19 [0.0000] ** 7.6586 INFLAT F(1, 134) =107.34 [0.0000] ** -10.361Tests on the significance of each lag Lag 5 F(1, 134) =6.1943 [0.0140]* Lag 1 F(2, 134) =533.55 [0.0000] ** Tests on the significance of all lags up to 5 F(1, 134) =Lag 5 - 5 6.1943 [0.0140]* Lag 4 - 5 F(1, 134) =6.1943 [0.0140]* Lag 3 - 5 F(1,134) = 6.1943 [0.0140]* Lag 2 - 5 F(1, 134) =6.1943 [0.0140]* Lag 1 - 5 F(3, 134) =518.77 [0.0000] **

More dynamic analysis output

Variable	F-test	Value	[Prob]	Unit-root t-test
CONS	F(2,134) =	717.54	[0.0000]**	-7.6108**
INC	F(2,134) =	147.19	[0.0000]**	7.6586
INFLAT	F(1,134) =	107.34	[0.0000]**	-10.361
Tests on the	significance	of each	lag	
Lag 5	F(1,134) =	6.1943	[0.0140]*	
Lag 1	F(2,134) =	533.55	[0.0000]**	
Tests on the	significance	of all .	lags up to 5	
Lag 5 - 5	F(1,134) =	6.1943	[0.0140]*	
Lag 4 - 5	F(1,134) =	6.1943	[0.0140]*	
Lag 3 - 5	F(1,134) =	6.1943	[0.0140]*	
Lag 2 - 5	F(1,134) =	6.1943	[0.0140]*	
Lag 1 - 5	F(3,134) =	518.77	[0.0000]**	
Tests on the	significance	of all .	lags up to 4	
Lag 1 - 4	F(2, 134) =	533.55	[0.0000]**	
Tests on the	significance	of all .	lags up to 3	
Lag 1 - 3	F(2,134) =	533.55	[0.0000]**	
Tests on the	significance	of all .	lags up to 2	
Lag 1 - 2	F(2, 134) =	533.55	[0.0000]**	
D	~			
ROOTS OF CON:	5 lag polynomi	.al:		
rea.	1 1mag	f m	Daulus	
0.7027	2 0.047116	, U	.70429	
0.7027		, U	.70429	
-0.05138	0 0.45123	; U	.45415	
-0.05138	0 -0.45123	, 0	.45415	
-0.42824	4 U.UUUUU	, U	.42824	
ROOTS OF INC	lag polynomia	a1:]]	
rea.	1 1mag	y mo	oaulus	
0.6514	1 0.00000	, ,	.03141	

You can request information criteria and output in equation format

Fur	Further Output - Single-equation Dynamic Modelling				
	Further results and reports				
	Information criteria				
	Heteroscedasticity consistent standard errors				
	R^2 relative to difference and seasonals				
	Correlation matrix of regressors				
	Covariance matrix of estimated parameters				
	Reduced form estimates				
	Static (1-step) forecasts				
	Print large residuals				
	Exceeding standard error by factor	3.5			
Ξ	Write model results				
	Equation format				
	LaTeX format				
	Non-linear model format				
	Significant digits for parameters:	4			
	Significant digits for std.errors:	3			
		OK Cancel			

Information criteria and equation format

When	the	log-likelihood co:	nsta	nt is	NOT	included:	
AIC		0.181	956	sc			0.287512
HQ		0.224	351	FPE			1.19960
When	the	log-likelihood co:	nsta	nt is	inc.	luded:	
AIC		3.01	983	sc			3.12539
HQ		3.06	273	FPE			20.4885
No re CONS (SE)	No residuals exceed 3.5 standard errors CONS = + 0.8744*CONS_1 - 0.04381*CONS_5 + 0.4824*INC - 0.3142*INC_1 (SE) (0.0269) (0.0176) (0.0294) (0.0337)						
	-	- 0.9114*INFLAT (0.088)					

A Vast variety of tests may be requested

Test - Single-equation Dynamic Modelling	N 2010
Test	
Residual autocorrelations and Portmanteau statistic	
with length	12
Error autocorrelation test	
from lag	1
to lag	5
Normality test	
Heteroscedasticity test (using squares)	
Heteroscedasticity test (using squares and cross products)	
ARCH test	
with order	4
RESET test (using squares)	
Instability tests	
Encompassing tests	
ОК	Cancel

Heteroskedasticity tests for individual variables

*OxMetrics - Results - [Results]						
🖹 File Edit Search View Model Run Window Help						
🞦 ぢ 🕼 🛄 🎒 🌭 🍇 🍁 🕋 💼 💼 🕼 🔗 🖓 🔤 data.in7 🛛 💌 🌌 📓 🖧 🦉						
xbeta = 8.0 + 8.1 * Lrate · 🖌 🕵 🍂 👔 📳 📰 🔛 🦓 🍫 🧔 💷 📽 🐙 🙌 // 挨						
Documents v Heteroscedasticity coefficients:						
🕽 Data		Coefficient	Std.Error	t-value		
- 199 vixsp500b.in7	CONS_1	1.0095	3.3437	0.30190		
- 1997 data.in7	CONS_5	-1.8339	2.3927	-0.76644		
Graphics	INC	3.8138	3.9656	0.96171		
🚾 Model	INC_1	-0.92414	4.5435	-0.20340		
📈 Forecasts	INFLAT	0.36530	0.27526	1.3271		
Code	CONS 1^2	-0.00055919	0.0019149	-0.29203		
	CONS 5^2	0.0010317	0.0013676	0.75443		
	INC ²	-0.0021432	0.0022196	-0.96556		
graphics3.ox	INC 1^2	0.00050604	0.0025454	0.19881		
	INFLAT ²	-0.066640	0.049688	-1.3412		
Text Results	RSS = 315.274 Regression in	sigma = 1.601 deviation from	effective no. mean	of paramete	rs = 11	
GJR11sktdist2.out						

White's test with Squares and Cross-products

Unterrogendenti	aita acefficien	+-·			
neteroscedasticity coefficients:					
20112 4		Stu.Effor	C-Value		
	-5.5165	0.0225	-0.80888		
CONS_5	0.35170	3.4720	0.10130		
INC	8.8870	4.8902	1.8173		
INC_1	0.18354	7.0257	0.026125		
INFLAT	-1.6414	18.487	-0.088782		
CONS_1^2	-0.014014	0.011420	-1.2271		
CONS_5^2	0.0037279	0.0052004	0.71685		
INC ²	-0.022690	0.013895	-1.6329		
INC_1 [^] 2	-0.020476	0.015845	-1.2923		
INFLAT ²	-0.043740	0.091384	-0.47864		
CONS_1*CONS_5	0.0011317	0.010481	0.10798		
CONS_5*INC	-0.014104	0.0096119	-1.4673		
INC*INC_1	0.026377	0.027445	0.96109		
INC_1*INFLAT	-0.044168	0.060444	-0.73073		
CONS_1*INC	0.023204	0.016234	1.4293		
CONS_5*INC_1	0.0052349	0.010645	0.49177		
INC * INFLAT	0.048572	0.045915	1.0579		
CONS_1*INC_1	0.0094504	0.023285	0.40585		
CONS_5*INFLAT	0.0075926	0.036289	0.20923		
CONS_1*INFLAT	-0.0099337	0.054494	-0.18229		
DGG = 204.265	aicome = 1.614	offortive n	o of noremete		

```
RSS = 294.365 sigma = 1.614 effective no. of parameters = 21
Regression in deviation from mean
```

Testing for heteroscedasticity using squares and cross products Chi²(20) = 18.855 [0.5312] and F-form F(20,113) = 0.88671 [0.6039]

Robust Standard errors: White's, Newey-West, and Jacknifed

Heteroscedasticity consistent standard errors

	Coefficients	SE	HACSE	HCSE	JHCSE
CONS_1	0.87443	0.026869	0.020131	0.024021	0.024825
CONS_5	-0.043811	0.017603	0.015224	0.017811	0.018201
INC	0.48239	0.029428	0.025429	0.026583	0.027186
INC_1	-0.31423	0.033742	0.026054	0.030809	0.031688
INFLAT	-0.91140	0.087969	0.071854	0.080678	0.084607
	Coefficients	t-SE	t-HACSE	t-HCSE	t-JHCSE
CONS_1	0.87443	32.544	43.437	36.403	35.224
CONS_5	-0.043811	-2.4888	-2.8779	-2.4597	-2.4071
INC	0.48239	16.392	18.970	18.147	17.744
INC_1	-0.31423	-9.3128	-12.061	-10.199	-9.9166
INFLAT	-0.91140	-10.361	-12.684	-11.297	-10.772

Graphical Residual Analysis

Model Graphics can be paneled

Out-of-Sample Forecasting (Or Generated Individually)

Or Customized to your needs

Residuals, Fitted values, and forecasts may be stored for future analysis.

Stor	e in Database - Single-e	quation Dynamic Modelling	×
	Store in database		
	Residuals		
	Fitted values		
	Structural residuals		
	Forecasts		
	Dynamic simulations		
+	Recursive results		
+	Non-linear estimation		
		OK Cancel	

Dummy Saturation is another outlier detection option

Model Settings - Single-equati	on Dynamic Modelling		
Choose a model type:			
Ordinary least squares	۲		
Instrumental variables	0		
Autoregressive least squares	0		
from lag	1		
to lag	1		
		Outlier dete	ction with
Choose the Autometrics op	tions:	dummy satu	ration
Automatic model selection			
Target size	Default: 0.05		
Outlier detection	Dummy saturation		
Pre-search lag reduction			
Advanced Autometrics settings			
	OK Cancel		

The Dummy Saturation Option

 Opting for dummy saturation will automatically reveal additive outliers in the data.

The dataset is: C:\Program Files\OxMetrics5\data\data.in7						
The estimation sample is: 1955(1) - 1992(3)						
	Coefficient	Std.Error	t-value	t-prob	Part.R [^] 2	
CONS_1	0.835649	0.02154	38.8	0.0000	0.9127	
INC	0.497909	0.02722	18.3	0.0000	0.6992	
INC_1	-0.297895	0.03336	-8.93	0.0000	0.3564	
INFLAT	-0.947522	0.08393	-11.3	0.0000	0.4695	
OUTPUT_3	-0.0275453	0.01317	-2.09	0.0383	0.0295	
I:1976(2)	-2.84717	1.070	-2.66	0.0087	0.0469	
I:1987(3)	3.30161	1.057	3.12	0.0022	0.0634	
sigma	1.04351	RSS		156.8049	968	
log-likelihood	-217.108	DW		1	.97	
no. of observation	s 151	no. of par	ameters		7	
mean(CONS)	875.415	var(CONS)		186.3	147	
Comparative Model Analysis (progress)

rogress - Single-equation Dynamic Modelling 🛛 🛛
✓ BQ(3) 5 x 154 -227.140 OLS
EQ(2) 5 x 139 -204.878 OLS GUM(1) not estimated
< Del > Mark Specific to General Mark General to Specific
OK Cancel

Autometrics can also model multivariate models

- Unrestricted Vector Autoregression
- Automatic outlier identification and modeling
- Blockwise modeling allows models with observations < # variables
 - For omitted regressors
 - For lag reduction
 - For specification criteria
 - For outlier detection and modeling

An Unrestricted Vector Autoregression

Formulate - Multiple-equation Dynamic Mo	delling - MulTut1.i	in7	
Selection	Lags	Database	
Y Ya U Constant Ya_1 Ya_2 Ya_3	Lag 0 to 💌 4	Ya Yb Yc Yd	
Ya_4 Y Yb Yb_1 Yb_2 Yb_3 Yb_4	<<		
Yc Yc_1 Yc_2 Yc_3 Yc_4			
Yd_1 Yd_2 Yd_3 Yd_4	Clear>>	Constant CSeasonal Trend	
Z: regressor Set		Seasonal MulTut1.in7	
	к Са	ncel	

Check the Autometrics selection

Mod	lel Settings - Multiple-equation Dyn	amic Modelling	×
	Choose a model type:		
	Unrestricted system	•	
	Cointegrated VAR	0	
	Simultaneous equations model	0	
	Constrained simultaneous equations model	0	
	Choose the Autometrics options:		
	Automatic model selection		
	Target size	Default: 0.05	
	Outlier detection	None	
	Pre-search lag reduction		
	Advanced Autometrics settings		

Define the estimation sample

Estimate - Multiple-eq	juation Dynamic Modelling 🛛 🛛 🔀
Choose the estima	tion sample:
Selection sample	1951(1) - 2004(4)
Estimation starts at	1951(1)
Estimation ends at	2004(4)
Less forecasts	8
Choose the estima	tion method:
Estimation method:	Ordinary Least Squares
Recursive estimation	
Initialization	10
	OK Cancel

Vector Autoregression output

0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111 12 RSS = 0.02 1279.03305 .56288247e-008 0.999999 ions 208	0.1089 0.1175 0.05911 0.06987 0.05576 107593279 -T/2log Ome log Y'Y/T R^2(LM) no. of para	0.1033 0.1189 0.07263 0.07986 0.05069 ga 18 -3. meters	-3.58 3.19 1.41 -3.20 1.56 669.31148 66896302 0.999002 18	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111 12 RSS = 0.02 1279.03305 .56288247e-008 0.999999 ions 208	0.1089 0.1175 0.05911 0.06987 0.05576 107593279 -T/2log Ome log Y'Y/T R^2(LM) no. of para	0.1033 0.1189 0.07263 0.07986 0.05069 ga 18 -3. meters	-3.58 3.19 1.41 -3.20 1.56 669.31148 66896302 0.999002 18	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111 12 RSS = 0.02 1279.03305 .56288247e-008 0.999999	0.1089 0.1175 0.05911 0.06987 0.05576 107593279 -T/2log Ome log Y'Y/T R^2(LM)	0.1033 0.1189 0.07263 0.07986 0.05069 ga 18 -3.	-3.58 3.19 1.41 -3.20 1.56 669.31148 66896302 0.999002	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111 12 RSS = 0.02 1279.03305 .56288247e-008	0.1089 0.1175 0.05911 0.06987 0.05576 107593279 -T/210g Ome log Y'Y/T	0.1033 0.1189 0.07263 0.07986 0.05069 ga 18 -3.	-3.58 3.19 1.41 -3.20 1.56 669.31148 66896302	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111 12 RSS = 0.02 1279.03305	0.1089 0.1175 0.05911 0.06987 0.05576 107593279 -T/2log Ome	0.1033 0.1189 0.07263 0.07986 0.05069 ga 18	-3.58 3.19 1.41 -3.20 1.56	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111 12 RSS = 0.02	0.1089 0.1175 0.05911 0.06987 0.05576	0.1033 0.1189 0.07263 0.07986 0.05069	-3.58 3.19 1.41 -3.20 1.56	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820 0.0791111	0.1089 0.1175 0.05911 0.06987 0.05576	0.1033 0.1189 0.07263 0.07986 0.05069	-3.58 3.19 1.41 -3.20 1.56	0.0004 0.0017 0.1595 0.0016 0.1202		
0.168830 -0.369900 0.379201 0.102550 -0.255820	0.1089 0.1175 0.05911 0.06987	0.1033 0.1189 0.07263 0.07986	-3.58 3.19 1.41 -3.20	0.0004 0.0017 0.1595 0.0016		
0.168830 -0.369900 0.379201 0.102550	0.1089 0.1175 0.05911	0.1033 0.1189 0.07263	-3.58 3.19 1.41	0.0004 0.0017 0.1595		
0.168830 -0.369900 0.379201	0.1089 0.1175	0.1033 0.1189	-3.58 3.19	0.0004 0.0017		
0.168830 -0.369900	0.1089	0.1033	-3.58	0.0004		
0.168830						
	0.06740	0.06426	2.63	0.0093		
0.843141	0.06635	0.06285	13.4	0.0000		
-0.00553180	0.04860	0.04348	-0.127	0.8989		
-0.0122296	0.05299	0.04804	-0.255	0.7993		
Coefficient	Std.Error	HACSE	t-HACSE	t-prob		
c: Yb						
38 RSS = 0.03	211594175					
0.06/130/	0.06883	0.05665	1.18	0.2375		
-0.232570	0.08625	0.08749	-2.66	0.0085		
-0.523929	0.07297	0.07766	-6.75	0.0000		
0.176671	0.1450	0.1478	1.20	0.2332		
-0.905628	0.1345	0.1279	-7.08	0.0000		
-0.191287	0.08320	0.07687	-2.49	0.0137		
0.295147	0.08190	0.07584	3.89	0.0001		
0.286423	0.05999	0.05640	5.08	0.0000		
0.606263	0.06542	0.06185	9.80	0.0000		
Coefficient	Std.Error	HACSE	t-HACSE	t-prob		
c: Ya						
Indefon Sample	15. 1551(1)	2002(1)				
metion comple	/gram files(∪ ia• 1051/1)	_ 2002(4)	uacayMull	uc1.117		
anat in. C.\Dwa	man Files		detel No.17			
:: i	<pre>xset is: C:\Pro imation sample Coefficient</pre>	<pre>iset is: C:\Program Files\0 imation sample is: 1951(1) :: Ya Coefficient Std.Error 0.606263 0.06542 0.286423 0.05999 0.295147 0.08190 -0.191287 0.08320 -0.905628 0.1345 0.176671 0.1450 -0.523929 0.07297 -0.232570 0.08625 0.0671307 0.06883</pre>	<pre>set is: C:\Program Files\OxMetrics5\ imation sample is: 1951(1) - 2002(4) :: Ya Coefficient Std.Error HACSE 0.606263 0.06542 0.06185 0.286423 0.05999 0.05640 0.295147 0.08190 0.07584 -0.191287 0.08320 0.07687 -0.905628 0.1345 0.1279 0.176671 0.1450 0.1478 -0.523929 0.07297 0.07766 -0.232570 0.08625 0.08749 0.0671307 0.06883 0.05665 </pre>	<pre>iset is: C:\Program Files\OxMetricsS\data\MulT imation sample is: 1951(1) - 2002(4) :: Ya Coefficient Std.Error HACSE t-HACSE 0.606263 0.06542 0.06185 9.80 0.286423 0.05999 0.05640 5.08 0.295147 0.08190 0.07584 3.89 -0.191287 0.08320 0.07687 -2.49 -0.905628 0.1345 0.1279 -7.08 0.176671 0.1450 0.1478 1.20 -0.523929 0.07297 0.07766 -6.75 -0.232570 0.08625 0.08749 -2.66 0.0671307 0.06883 0.05665 1.18</pre>	<pre>aset is: C:\Program Files\OxMetrics5\data\MulTut1.in7 imation sample is: 1951(1) - 2002(4) :: Ya Coefficient Std.Error HACSE t-HACSE t-prob 0.606263 0.06542 0.06185 9.80 0.0000 0.286423 0.05999 0.05640 5.08 0.0000 0.295147 0.08190 0.07584 3.89 0.0011 -0.191287 0.08320 0.07687 -2.49 0.0137 -0.905628 0.1345 0.1279 -7.08 0.0000 0.176671 0.1450 0.1478 1.20 0.2332 -0.523929 0.07297 0.07766 -6.75 0.0000 -0.232570 0.08625 0.08749 -2.66 0.0085 0.0671307 0.06883 0.05665 1.18 0.2375 </pre>	<pre>iset 1s: C:\Program Files()XMetricsS(data(Mullut1.1h7) imation sample is: 1951(1) - 2002(4) :: Ya Coefficient Std.Error HACSE t-HACSE t-prob</pre>

Misspecification test output

F-test on regressors except unrestricted: F(16,396) = 31591.2 [0.0000] ** F-tests on retained regressors, F(2,198) = Ya 1 42.7338 [0.000] ** Ya 2 11.3421 [0.000]** 88.3598 [0.000] ** Yb 2 5.57155 [0.004] ** Yb 1 6.05194 [0.003]** Yc 29.0741 [0.000] ** Yc 1 Yd 26.7710 [0.000] ** Yd 1 10.6148 [0.000]** Constant U 1.52068 [0.221] correlation of URF residuals (standard deviations on diagonal) Ya Yb 0.012704 -0.032341Ya. Vh. -0.032341 0.010291 correlation between actual and fitted Ya Yh 0.99977 0.99954 1-step (ex post) forecast analysis 2003(1) - 2004(4) Parameter constancy forecast tests: using Omega $Chi^{2}(16) = 13.829 [0.6115] F(16,199) = 0.86430 [0.6111]$ using V[e] Chi²(16) = 12.877 [0.6817] F(16,199) = 0.80482 [0.6792] using V[E] Chi²(16) = 13.567 [0.6310] F(16,199) = 0.84791 [0.6300] Ya : Portmanteau(12): 5.98075 : Portmanteau(12): 5.69824 Yb. : AR 1-5 test: Ya. F(5, 194) = 0.94690 [0.4518]Yb. : AR 1-5 test: F(5, 194) = 0.43524 [0.8236]: Normality test: Chi²(2) = 0.16233 [0.9220] Ya : Normality test: Chi^2(2) = 0.11950 [0.9420] Yb. Ya : ARCH 1-4 test: F(4, 191) = 0.27419 [0.8944]: ARCH 1-4 test: F(4,191) = 1.8443 [0.1220] Yb. Ya : Hetero test: F(16, 182) = 1.4975 [0.1045]: Hetero test: F(16, 182) = 0.67227 [0.8188]Yb. Ya. : Hetero-X test: F(44,154) = 1.4901 [0.0402]* ٧h : Hetero-X test: F(44,154) = 1.1106 [0.3150]

Multivariate and cointegration tests

Vector Portmanteau(12): 30.8591 Vector AR 1-5 test: F(20, 376) =1.0451 [0.4076] Vector Normality test: Chi^2(4) = 0.30101 [0.9897] Vector Hetero test: F(48,536) = 1.1607 [0.2199]Vector Hetero-X test: F(132,456)= 1.2253 [0.0662] I(1) cointegration analysis, 1951(1) - 2002(4) eigenvalue loglik for rank 1141.543 0 1269.711 0.70840 1 0.085735 1279.033 2 rank Trace test [Prob] Max test [Prob] Trace test (T-nm) Max test (T-nm) 274.98 [0.000] ** 256.34 [0.000] ** 0 269.69 [0.000] ** 251.41 [0.000] ** 18.64 [0.000]** 18.64 [0.000]** 18.29 [0.000] ** 18.29 [0.000] ** 1

Graphical forecasts from VAR

