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Primary Sources:

• Volatility analysis with G@RCH models (Main 
source: Estimating and Forecasting ARCH 
models using G@RCH  by Sebastien Laurent)

• Laurent, Sebastien (2007).  Estimating and 
Forecast ARCH Models using G@RCH, 
Timberlake Consultancy, Ltd. London, UK.

• G@RCH software by Laurent, S. et. Al. 
OxMetrics Software, Timberlake 
Consultancy, Ltd. London, UK.  is used 
owing to its outstanding variety of advanced 
models and options available at this time.
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Outline II

– First generation univariate G@RCH

• ARCH, GARCH

• Estimation (QML with bounds and simulated 
annealing)

• Diagnostic tests

• Model comparison

• Forecasting (Simulated confidence intervals)

• Forecast Evaluation

• Simulation of confidence intervals

• Subset models

• Outlier modeling

• Value-at-Risk
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Outline III

– Second generation univariate G@RCH

• Nonstationary GARCH

–Riskmetrics

–IGARCH

• GARCH-in-mean

• EGARCH

• GJR GARCH

• APGARCH 

• Leverage effects and volatility smiles
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Outline IV

• Continuous time Models
– Brownian Motion

– Integrated and Realized Volatility

– With Jumps

– Microstructure noise

• Long-Memory GARCH 
– APARCH

– FIGARCH
• FIGARCH- BBM

• FIGARCH-Chung
• FIEGARCH

– FIAPARCH
• FIAPARCH-BBM

• FIAPARCH-Chung

– Davidson’s HYGARCH

– VaR
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Outline IV

– Multivariate G@RCH

• BEKK models

– Diagonal

– Scalar

• Factor garch: 

– OGARCH

–  GOGARCH

• Dynamic correlations: 

– Constant Conditional Correlation

–  Dynamic Conditional Correlation
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Risk Analysis with G@RCH 5

• We analyze volatility of indicators and assets 
with G@RCH.

• What is new about G@RCH 5?
• It contains most of the multivariate Garch models

• One can obtain the Ox Code for the menu model just run

• One can model outliers and predictors in the mean and 
variance models

• Estimation models has been improved.  Simulated annealing 
option included.

• Simulation of models is now possible

• Functions to detect high frequency jumps have been 
included.
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More G@RCH 5 new features

• Simulation capability

• Multivariate GARCH
– BEKK models

• Scalar 

• Diagonal

– Factor GARCH
• OGARCH

• GOGARCH

• Conditional Correlations
– CCC

– DCC

• Programmable stochastic volatility models
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Load and Examine Nasdaq 

Returns

Notice the 1987 crash.  We construct a dummy variable for Oct 19, 1987
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We want record of all variable constructions so I 

do this with the algebra code
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This constructs our dummy variable
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Correlograms reveal an AR(1) and 

possibly some seasonality

We take note of 

the AR(1) 

process in the 

mean
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Basic Pre-Model Analysis
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Select the variable

Predictor variables may be selected for mean or variance 

model.
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Define the sample
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Specify the preliminary tests
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Choose the Stationarity tests

We 

select 

ADF 

test
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Choose the Long-Memory Test

We select 

this Geweke 

Porter-

Hudak test
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Misspecification test results
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Nonstationarity and Long-Memory 

Results

Long memory 

parameter is 

weak—should 

be .between 0 

and .5 for 
persistence. 

Above .5, d is 

not stationary.

Nonstationary

ttt eyy +−= −1)1(
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Pre-Model Analysis

• The Jarque-Bera tests suggests 

nonnormality--- we should probably try a t 

distribution

• The ARCH tests suggest ARCH effects

• The Portmanteau tests suggest  

autocorrelation

• The Nasdaq returns are nonstationary and 

there is long memory  
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Variable Selection
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Baseline model parameter 

selection

AR(1) GARCH(1,1) normal distribution is our baseliine model
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Normal GARCH(1,1)

2 2 2

1 1

q p

t i t i i t j

i j

a b   − −

= =

= + + 

Impact of previous shock

Persistence of 

conditional error 

variance
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Normal GARCH(1,1) model output

You may need more 

constraints or a 

different distribution
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Selecting Post-Estimation tests
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Test Results I

Box-Pierce Q tests on 

standardized residuals 

confirm proper modeling

Engle’s ARCH LM test

Jarque Bera test
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Test Results II
Sign Bias test 

for Leverage

Nyblom Hansen stability 

tests:  Critical values 

are .75 for 1% and .47 

for 5% levels.  Null is 

parameter stability

Integrated effect

Theoretical v actual 

innovation Fit needs 

improvement



30

Test Results III

Properly modeled  

ARCH effects

Basel II Kupiec Tests

Expected 

shortfall 

amounts

Kupiec test for frequency of tail losses
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Kupiec Test

• Tests whether there is a significant difference 

between the failure rate and the nominal rate 

of failure.

0 :

ˆ ˆ ˆ1.96 (1 ) /

H failure rate f

Confidence level for f f f f T

T total number of obs

=

=  −

=
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Expected shortfall

• ES=conditional value at risk (CVAR)

• CVAR=expected (average) loss at or 

beyond the alpha-quantile or 1-alpha 

quantile.
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Dynamic Quantile Regression 

• Models the effect of the regressor on the 

alpha-th quantile of the regressand.

• The slope parameter is a function of the 

quantile.

• The slope parameter shows the effect of 

the predictor variable on the alpha-th 

quantile.
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Engle, R. and Manganelli,S. (1999) CaViaR 

Conditional Autoregressive Value at Risk

( ) ( ( ))

(1 ) ( (1 ))
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(1 ) ( )
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t t t

t t t

t t t
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The Dynamic Quantile Test Statistic

1 1

2

ˆ ( ' ) ' (0, (1 )( ' ) ),

ˆ ˆ'
( 2)

(1 )

ols

ols ols

Because X X X Hit N X X

Dynamic Quantile test Statistic

X X
p n

  

 


 

− −= −

=

+ +
−

:

:

Remember  X may = t=1,…,T

Assumption: Hits are uncorrelated and 

unbiased
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Dynamic Quantile 

Hypothesis Tests

t

t

t t

A joint test that

A1: E(Hit (α))= 0 for trading long positions

E(Hit (1- α))= 0 for trading short positions

A2 :Hit (α) or Hit (1- α) is uncorrelated with variables

in the information set
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Applications of the DQ test

Engle and Mangenelli, CaViaR, p.28

• “A model diagnostic or preliminary screening 
device to distinguish between good and bad 
models.

• An evaluation of the performance of different 
VaR methodologies.

• If test is significant, then data provide evidence 
against the model produced under those 
estimates.

• If DQ test falls into rejection reject for an out-of-
sample test, this is evidence against the model 
and its stability over time.”
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Test Results IV
Quantile Regression VAR
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Unconditional Variance

• Of a GARCH model

2

1 1

1 1

1

1 & 1

q p

i j

i j

t

q p

i j

i j

a

unconditional variance of ε is constant

if a






 

= =

= =

=

− −

 + 

 

 
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AR(1) GARCH(1,1) sk(t)

1

2 2 2

1 1

t t t

q p

t i t i i t j

i j

y y

a b

  

   

−

− −

= =

= + +

= + + 

Distribution is a skewed t distribution
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AR(1) GARCH(1,1) sk(t)
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AR(1)-GARCH(1,1) sk(t) output
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Graphical Analysis
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Graph selection
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Graphical Output
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Model Comparison
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Subset Models

• Constraining parameters to be zero.

• We perform an ARCH(12)-t on NQ.

• We find that the at-8=0

• We wish to eliminate that from the model, 

so we constrain it to be zero.
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We set up an AR(1) ARCH(12) t 

model
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We opt for Matrix form starting 

values– this lets us fix values

select
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We set ARCH(8)=0
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The Subset Model 

does not contain ARCH(8)
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Second generation GARCH

• Nonstationary GARCH

• Garch-in-mean 

• Asymmetric GARCH

– Leverage effects captured in EGARCH

– GJR GARCH

APARCH,APGARCH

• Skewed t distribution captures leverage 

effects better
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Nonstationary GARCH

• Riskmetrics

• IGARCH

2 2 2

1 1: (1 )
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t t tRiskmetrics
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Garch-in-Mean

• One can add the conditional variance or the 

conditional standard deviation to the mean 

equation.

2

2 2 2

1 1

t t t t t

q p

t t i t p

i j

y a b x

where

a b

 

   − −

= =

= + + +

= + + 
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Select conditional variance
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Testing leverage effects

• EGARCH  Exponential GARCH (Nelson)

• GJR Threshold GARCH (Glosten, 

Jagannathan, Runkle)

• APARCH  Asymmetric Power GARCH 

(Ding, Engle, and Granger) 
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Volatility Smile
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Engle and Ng

Asymmetry tests
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Asymmetry tests
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Exponential GARCH (David 

Nelson, 1991)

1 1

1 2

ln( ) ( ) ln( )

2
( ) | | | |

q p

t i t i t j

i j

t i t t

t
t

t

h g z h
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g z z z
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h

  

 




− −

= =

−

= + +

 
= + −  

 
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 

Sign effect

Magnitude effect
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Glosten, Jagannathan, and Runkle 

(1993)  (GJR) GARCH

2 2 2 2

1

1 1

( )
q p

i t t t i t i j t j

i j

S       −

− − − −

= =

= + + + 

Leverage effect
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GJR Asymmetric GARCH(1,1)
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Asymmetric Power GARCH

Ding, Granger, and Engle,1993

1 1 1 1 1 1(| | )

1

t t t t

where

power captures long memory effects when

         





− − −= + − +

= −



Leverage effect
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Model Comparison

By clicking on the progress button on the GARCH 

GUI, one can obtain the information criteria for 

preceding models to compare them for fit.
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Forecasts

• Conditional mean, with confidence 

intervals

• Conditional variance

– Intervals can be simulated

• VaR intervals serve as confidence 

intervals 
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GARCH Forecasting

• In-sample:  This is estimation.  

– These can be evaluated by forecast error measures.

• Out-of-sample: This sets aside a hold-out-

sample, over which forecasts are generated.

– These can be evaluated by forecast error measures.

• Ex Ante: This generates forecasts beyond the 

end of the sample.

– These cannot be evaluated until the real or 

comparative data are collected against which they 

can be measured.
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Types of GARCH forecasts

• The conditional mean

• The conditional error variance

• The Value-at-Risk
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Forecasting the conditional mean

1

1

1|

1|

1| 1 1
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Laurent, S. G@RCH manual, 

pp. 49-50
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Forecasting the 

Conditional Error Variance

• Suppose we had an ARCH(q) process.

2 2 2

|

1

ˆ ˆˆ
q

t h i t h i t

i

   + + −

=

= +
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Click on the test icon
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Forecast selection
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Forecasts graphed from GJR 

model
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Forecasts printed
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Forecast Evaluation
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Mean Square Error (MSE)
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
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Root mean squared error (RMSE)
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Mean Error (ME)
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Mean Absolute Error

1
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ˆ| |
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t t

t

MAE
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Mean Absolute Percentage Error 

(MAPE)

ˆ| |100 T
t t

t t

MAPE
T

 



−
= 

MAPE tends to exaggerate when the 

counts are small to begin with.



80

Adjusted (symmetric) MAPE

• Corrects for asymmetry between actual and 

forecast values

• Can be interpreted as a percentage error

1

,

1 ,

1

1 T
t n t n

t T t n t n

x f
AMAPE

T T x f

T total obs available

T T holdout sample used for forecasting

+

= +

−
=

− +

=

− =



Brooks, C.(1997).  Linear and Non-linear Non-Forecastability of High 

Frequency Exchange Rates, Journal of Forecasting, 16, 125-147.
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Symmetric MAPE caveats

• Symmetric MAPE, according to Goodwin 

and Lawton (2000)  IJF (15), 405-408  is 

not symmetric in that it treats positive and 

negative errors differently,  particularly 

where they have large absolute values.
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Theil’s U

2

1

2

1

ˆ( )
1
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t t
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t t
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Theil U
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 
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−
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


BM=baseline model may be a random walk 

model.  This uses another model as a 

baseline.  Scores less than 1.00 are good and 

those more than 1.00 not so good.
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Logarithmic Loss Function

2

2

1

1 ˆln( ) ln( )
T

T t T t

t

LL e h
T

− −

=

 = −
 

Lopez, J. (1999) Evaluating the Predictive Accuracy of 

Volatility Models, FRB of San Francisco, p.6.
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Forecasting VaR follows shortly
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Simulation of CEV confidence 

intervals

• The model just run can be simulated from 

the Ox Code.

• The simulations generates multiple 

replications.

• Means and standard errors can be 

computed.

• These CEV means and standard errors  

can be graphed.
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Simulation of GARCH models
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Simulation menu
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Simulations file created
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Alt-O invokes the Ox Code of the 

model just run
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Remainder of Ox code for 

simulation
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Graphed simulated confidence intervals 

around the Conditional Error Variance
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Outlier Modeling

• Mean model outliers

• Variance model outliers

• Outliers in both mean and variance model 

may be designated.

• These can be important in model fitting.
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Value-at-Risk

• Normal APARCH (1,1) 

• APARCH has long memory capabilities and threshold 

capabilities built in.  Leverage effects are captured.

• Is usually used with a skewed t distribution.   In this 

case I use an APARCH(1,1) with a t distribution to 

generate the Value at Risk.  It does handle the fat-tails 

but in this case there is no appreciable asymmetry.

1 1 1 1 1 1(| | )t t t ta b       − − −= + − +
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Value-at-Risk

• In-sample 

– Models are tested at α and (1- α) levels for 
both long and short positions at various VaR 
quantiles .

– Graphical output is available here.

– The failure rate is indicated by number of 
times absolute value > forecasted VaR.

– Kupiec test is available

– Dynamic regression quantile is available.

– Expected shortfall for long and short positions 
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Out-of-sample VaR

• Backtesting on the estimation sample

• Out-of-sample length defined by user

Setting the validation 

segment length
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Opt for Forecasts
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Set the VaR

 out-of-sample horizon
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Printout of VaR Forecasts
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Requesting More

 VaR levels
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Graphical Forecast of

 out-of-sample VaR
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Graphical Forecast 

of out-of-sample VaR
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Long Memory Models

• APARCH (Ding, Engle, and Granger,1993)

• FIGARCH-Baillie, Bollerslev, and 

Mikkelsen(BBM)

• FIGARCH-Chung

• FIAPARCH (Tse, 1998)

• FIAPARCH-Chung

• FIEGARCH (Bollerslev and Mikkelsen, 1996)

• Davidson’s Hyperbolic GARCH
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Long-Memory Processes

)!1()(

)1()1(

)1(
)1(

0

−=

+−+

+
=− 



=

nfunctiongamman
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L
kdk

d
L

processesmemorylongforngdifferenciFractional

k

kd

We substitute this function for (1-L) in 

FIGARCH, etc.
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Long-Memory Models

• We run the basic descriptives test on it

– And find that it has long memory with a GPH

–  d = .2885 with p = 0.0000.

– Therefore we try a long-memory model.

– A  FIGARCH - Chung model 
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Asymmetric and Long Memory 

models
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Ar(1) -Chung’s Method

 with normal distribution
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AR(1) Chung Model sk(t)
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Hyperbolic Garch (James 

Davidson) 

• The generalized hyperbolic distribution 
was discovered by Barndorff-
Neilson(1977) researching wind-blown 
sand.

• This distribution can be skewed and 
captures asymmetric effects that normal 
distributions cannot.

• This distribution describes long-memory 
processes.
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Continuous time Diffusion Models

• Brownian motion simulation

• Diffusion models

• Diffusion models with jumps

• Microstructure noise with jumps
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Ox Programs for Realized and 

Integrated Volatility diffusion 

models



111

Ox can simulate continuous time 

Brownian Motion processes
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GARCH type output



113

Mean Spot and Integrated Volatility

Mean GARCH volatility



114

Graphical Output
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Other Ox Diffusion Models

• Other diffusion models include diffusion models 

for estimation of realized volatility with jumps.

• Lee-Mykland’s statistical test for detecting jumps 

at ultra-high-frequency.

• Estimation of integrated volatility with jumps.

• estimation of microstructure noise.

• Estimation of intraday seasonality with flexible 

Fourier functional form filter.
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Multivariate GARCH

• Engle and Kroner (1995) Vec Model

• Baba,Engle, Kraft, Kroner (BEKK) models
– Scalar

– Diagonal

• RiskMetrics MGARCH

• Factor GARCH
– Carol Alexander’s Orthogonal GARCH

– GOGARCH  Generalized Orthogonal GARCH 
(ML, NLS)



117

Vec Model

(Engle and Kroner, 1995)

1 1 1

2 2

( ) ( ) ( ') ( )

( ) ( ) ( )

1
( ')

t t t t

t

t t

t

Vec H vec Avec r r Bvec H

where A and B are n xn matrices with structure

following from symmetry of H

vec column stacking operator

with variance targeting, vec I A B vec S

where S r r
T

− − −=  + +

=

 = − −

= 
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Multivariate GARCH menu
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BEKK(p,q) Model

Baba, Engle, Kraft, and Kroner 

(1995)

j

p

j

jtjit

q

i

tit GHGAACCH 
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−−

=

− ++=
1

/'

1

1

1
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C,A, and G are nxn, but C is upper triangular
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Problem-number of parameters

• ARCH and GARCH BEKK(1,1) models 

have N(5*N+1)/2 parameters.  This is a lot.

• To reduce the number of parameters, 

constraints have to be imposed.

• The curse of dimensionality can slow 

down or cause the model to fail converge.
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Assumptions

,
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2 2
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1 1
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Kronecker product
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Kronecker Product
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 =  

 
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Variance Targeting (Engle and 

Mezrich, 1996)

• An estimate of the unconditional covariance 

matrix was obtained by variance targeting.  

• This reduces the number of parameters that 

needs to be estimated.

• In the BEKK model, we replace C’C by

2

1 1

ˆ[ ( ) ' ( ) ']

ˆ

q p

N
t t

t

unvec I A A G G

where

unvec is the column unstacking operator

unconditional vcv of 

= =

−  −  

 =

 
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Diagonal BEKK

• Matrices C and G are diagonal to restrict 

the number of parameters.
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Scalar BEKK

• Another way to reduce the number of 

parameters is to run a Scalar BEKK.

• Matrices A and G are matrices of ones 

multiplied by a scalar.
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RiskMetrics MGARCH 

(J.P. Morgan, 1996)
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“Orthogonal GARCH” 

by Carol Alexander(2001), Orthogonal GARCH in 

Alexander, Carol. (ed). Mastering Risk Vol. 2: 

Applications,  Financial Times, pp.24-38

• Suppose you have: T obs, K asset or risk factors 
is summarized by TxK matrix Y.

• You can generate factor GARCH where the 
components are univariate GARCH models.  We 
begin with Principal Components Analysis.

• PCA will yield up to k components.

• Procedure 
– 1 standardize the series in TxK matrix X.
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Orthogonal GARCH

 procedure-cont’d

• X represents the same variables in Y.

• Standardize the columns in X so that they 

have mean=0 and std dev=1, so if ith

• Risk factor or asset return in system is y, then 

the normalized variables are 

( ) /

.

i i i ix y

where mean

std dev of i

 





= −

=

=
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Orthogonal GARCH

 procedure-cont’d

• Construct the Sum of squares and cross-

products matrix, R=X’X.

• Solve Canonical equation of (R- ΛI)W=0 

for eigenvalue-eigenvector decomposition.

• Solve for W = eigenvectors of X’X

• Solve for Λ=diagonal  matrix  of  

eigenvalues,  ordered by decreasing 

magnitude.
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Orthogonal GARCH

procedure-cont’d

• The principal components of Y are given 
by the TxK matrix  P = XW.

• X’XW=WΛ.

• P’P=W’X’XW=W’W Λ but because 
W=orthogonal matrix, W’W=I so

• P’P= Λ,the diagonal matrix of eigenvalues,
Variance of the ith component equals the 
ith eigenvalue of X’X.

• The standardized residuals  1( )H yt t t −= −
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Orthogonal GARCH 

procedure cont’d

1/2 1/2

1( ) 't t t tH Var V VV−= =
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OGARCH(1,1,m)

Alexander and Chibumba(1997)

1/2
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Laurent, S. (2007) Estimating and Forecasting ARCH models 

using G@RCH, Timberlake Consultants, Ltd.,p. 177.
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Orthogonal GARCH-cont’d

it
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OGARCH-cont’d

• Alexander warns that high dimensional 

factor estimation can grind to a halt.

• She suggests low order dimensional 

component extraction. She extracts 2 

components from 12 series.

• QMLE is used.

• ARFIMA can be specified in the mean 

model.
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Select OGARCH
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OGARCH
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Select AR(1)-GJR-GARCH(1,1)

with scree plot and standard 

GARCH output for 2 components
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Select 2 components
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Scree plot suggests 1 component
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Mean model estimates
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Mean model estimates-cont’d
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PCA I
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PCA II
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Univariate GARCH model for PC(1)
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Univariate GARCH model for PC(2)
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Graphs of the Raw Series
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Graphs of Standardized Residuals
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Conditional Variances
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Graph of the Conditional 

Correlations



150

Forecasts

• Prints conditional mean forecasts

• Prints conditional variance forecasts

• Prints v-c forecasts

• Prints conditional correlation forecasts
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Printed forecasts
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Printed forecasts-cont’d.
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Multivariate tests 
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Generalized OGARCH

(van der Weide, 2002)
• One can test whether the correlations between the 

components are really zero.

• This model outperforms the OGARCH sometimes,  

generating a log-likelihood may be lower.

• The orthogonality assumption between OGARCH 

components is relaxed.  Rather the Z matrix in 

• is assumed to be square and invertible only. 

• (Laurent, 2007, class notes). 

tt Zfu =
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GOGARCH -  (Laurent notes, 

con’td)

   where P and L are defined as the eigenvectors 

and eigenvalues,

 and

   U is the product of N(N-1)/2 rotation matrices:

njiGU ij

ji

ijij ,...,2,1,,),( =−=




 UPLZ  ZN,m 1/2

m ===
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Generalized Orthogonal GARCH

1/2( ) '

( )
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t t

-1 -1

t t t
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R implied correlation matrix

J V I an

R =

d V Z Z

Hadamard element by eleme

J V J

nt product

=

= = 

=

e

e



157

Specification tests (Laurent notes 

cont’d).

• The specification tests (univariate and 
multivariate) are used to assess the fit and 
specification of the model.

• Univariate tests are applied to each u it 

• Univariate tests are applied to each z it.
Univariate tests are applied to each uitu jt to 
assess the covariance specification.

• Multivariate tests are applied to the vector 
zt as a whole.
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Rotation matrices
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For the trivariate case, the rotation matrices are  

There are N(N-1)/2 rotation angles are the parameters to be

Estimated.
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Conditional Correlation Models

• Bollerslev(1990)  introduced constant conditional 
correlation estimator.  

• The Dynamic conditional Correlation  between 
the conditional variances is made time-varying 
by Engle.

• Forecasts are possible

• Graphs of conditional correlations are possible

• Application: Better for computing time-varying 
hedge ratios than a linear regression model.

• Takes into account conditional 
heteroskedasticity in the spot market.
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Conditional Correlation Models

• Bollerslev’s (1990) Constant Conditional 

Correlation

• Tse and Tsui(2002) Dynamic Conditional 

Correlation

• Engle(2002) Dynamic Conditional 

Correlation
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Constant Conditional correlation 

(Bollerslev, 1990)
• Two or more univariate GARCH models are estimated.

• Nonlinear combinations of conditional variances from different GARCH 

models

1/2 1/2 1/2

11 22

( )

( , ,..., )

( 1,

t t t ij iit jjt

t t t NNt

iit

ij ij

H D RD h h

where

D diag h h h

h any univariate GARCH model

R a symmetric positive definite matrix with i



 

= =

=

=

= = 
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Constant conditional correlation-

cont’d

1,

2

1, −− ++= tiiitiiiiit hh 

Originally, the  CCC model had a GARCH(1,1) specification for each 

Conditional variance in Dt:

The CCC model has N(N+5)/2 parameters.   Ht is positive 

definite if and only if all N conditional variances are positive 

and R is positive definite.  The unconditional variances are 

easy to obtain but unconditional covariances are difficult to 

calculate because of nonlinearity (Laurent,S. G@RCH manual 
192).
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Dynamic Conditional Correlations: 

A new class of MGARCH
• “Rob Engle (1999) in “Dynamic Conditional Correlation—

A Simple Class of Multivariate GARCH Modles, has 
written that, “Time-varying correlations are often 
estimated with MGARCH that are linear in their squares 
and cross-products.”

• “They have flexibility of univariate GARCH models….”

•  “They do not have the complexity of MGARCCH.”

• “They have parsimonious parametric models for the 
correlations.”

• They perform well in a variety of situations and provide 
sensible empirical results.”
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DCC models

• Advantages:

– The number of parameters to be estimated is 

independent of the number of series to be 

correlated.

– Potentially very large correlation matrices can 

be estimated.

– The rolling correlation estimator can be 

computed.
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Dynamic Conditional Correlation 

(Tse and Tsui, 2002)
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Tse and Tsui’s Dynamic Conditional 

Correlation

make R time dependent
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Tse and Tsui’s DCC
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Dynamic Conditional Correlation 

(Engle, 2002)
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Engle’s DCC

( ) ( )1 1 1'1 t tt tQ R Q    − − −= − − + +

1/ 2 1/ 2 1/ 2 1/ 2

11, , ... , , 11, , ... , ,

1/ 2

11,

( ) ( ),

( )

t t NN t t t NN t

t t

R diag q q Q diag q q
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=

Equation borrowed from Rob Engle’s presentation 

on DCC, ISF2007.
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Parsimony prevails

• If the individual processes are 

GARCH(1,1), the DCC has only 

(N+1)(N+4)/2 parameters.
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Two-step Quasi-Maximum 

Likelihood Estimation

• Engle and Sheppard (2001) show that in the DCC case, 

the log-likelihood can be written as the sum of the mean 

and volatility part.

• Step 1and 2: QML function corresponds to the sum of 

the LL functions of N univariate models.
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Engle DCC output
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Engle’s DCC
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Engle’s Dynamic Conditional 

Correlation

Alpha

Beta

df
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Forecasts
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Forecasts of conditional correlation
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Graphical Conditional Correlation
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Diagnostic Tests for Conditional 

Correlations

• Testing for misspecification of the conditional 

mean or variance equation:  

• Hosking’s (1980) Multivariate Box-Ljung Q 

statistics:
2 1

0

1 1 '
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Testing Misspecification

 in mean model

• Qing Li and Dennis McLeod’s(1981) 

Multivariate Portmanteau test of residuals and 

squared residuals (Li, W.K.(2004) Diagnostic Checks in 

Time Series, p.10)

2
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This test is applied to z to test misspecification in variance model.
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We opt for the tests 

in the Test Menu
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Select both univariate and 

multivariate tests
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Univariate test output
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Multivariate test output
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Recapitulation of New Features

• Autometrics
– Automatic variable and model selection

– Outlier and level shift detection and modeling

– For univariate and multivariate models

• G@RCH
– Wide variety of vanilla GARCH

– VaR backtesting
• Kupiec tests

• Dynamic Quantile regression

• Expected shortfall

– Wide variety of Long-Memory GARCH

– Ox Code is generated from ALT-O
– Diffusion modeling for continuous time analysis

– Simulated confidence intervals are CEV forecasts

– Multivariate GARCH

– Conditional Correlations
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