



#### Methods for Modeling and Forecasting Volatility

By Robert A Yaffee, Ph.D. Research Scientist Silver School of Social Work New York University

Presentation at Norwegian University of Science and Technology March 2008

1

### **Primary Sources:**

- Volatility analysis with G@RCH models (Main source: Estimating and Forecasting ARCH models using G@RCH by Sebastien Laurent)
- Laurent, Sebastien (2007). Estimating and Forecast ARCH Models using G@RCH, Timberlake Consultancy, Ltd. London, UK.
- G@RCH software by Laurent, S. et. Al. OxMetrics Software, Timberlake Consultancy, Ltd. London, UK. is used owing to its outstanding variety of advanced models and options available at this time.

#### Acknowledgments

- I would like to thank Sebastien Laurent for his inspiring teaching and enlightening writing on this subject.
- A considerable amount of inspiration also came from the work of Rob Engle, Jurgen Doornik, and David Hendry as well.
- Also I need to thank Jose Fiuza and Ana Timberlake for their support.
- Finally, Sjur Westgard made this symposium possible and thanks must be given to him.

# Outline II

- First generation univariate G@RCH
  - ARCH, GARCH
  - Estimation (QML with bounds and simulated annealing)
  - Diagnostic tests
  - Model comparison
  - Forecasting (Simulated confidence intervals)
  - Forecast Evaluation
  - Simulation of confidence intervals
  - Subset models
  - Outlier modeling
  - Value-at-Risk

# Outline III

- Second generation univariate G@RCH
  - Nonstationary GARCH
    - -Riskmetrics
    - -IGARCH
  - GARCH-in-mean
  - EGARCH
  - GJR GARCH
  - APGARCH
  - Leverage effects and volatility smiles

#### **Outline IV**

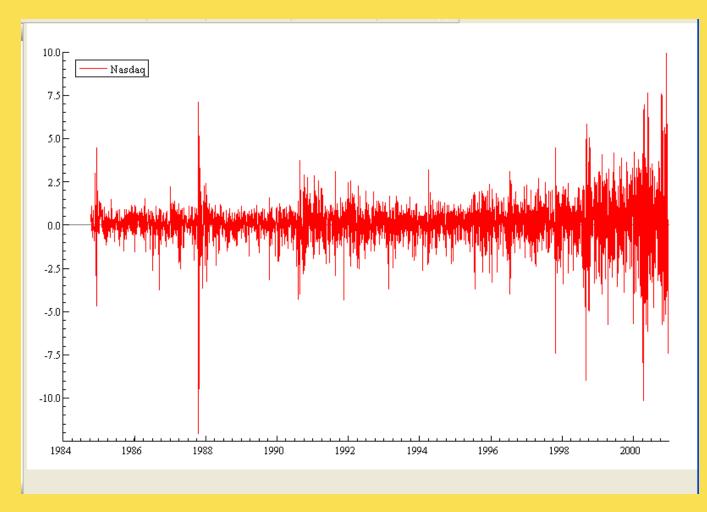
#### Continuous time Models

- Brownian Motion
- Integrated and Realized Volatility
- With Jumps
- Microstructure noise
- Long-Memory GARCH
  - APARCH
  - FIGARCH
    - FIGARCH- BBM
    - FIGARCH-Chung
    - FIEGARCH
  - FIAPARCH
    - FIAPARCH-BBM
    - FIAPARCH-Chung
  - Davidson's HYGARCH
  - VaR

#### **Outline IV**

#### - Multivariate G@RCH

- BEKK models
  - Diagonal
  - Scalar
- Factor garch:
  - OGARCH
  - GOGARCH
- Dynamic correlations:
  - Constant Conditional Correlation
  - Dynamic Conditional Correlation


# Risk Analysis with G@RCH 5

- We analyze volatility of indicators and assets with G@RCH.
- What is new about G@RCH 5?
  - It contains most of the multivariate Garch models
  - One can obtain the Ox Code for the menu model just run
  - One can model outliers and predictors in the mean and variance models
  - Estimation models has been improved. Simulated annealing option included.
  - Simulation of models is now possible
  - Functions to detect high frequency jumps have been included.

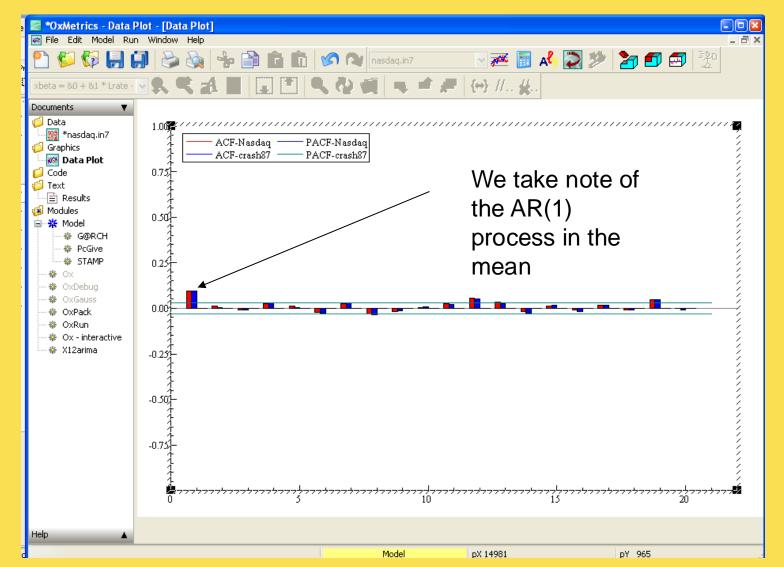
#### More G@RCH 5 new features

- Simulation capability
- Multivariate GARCH
  - BEKK models
    - Scalar
    - Diagonal
  - Factor GARCH
    - OGARCH
    - GOGARCH
- Conditional Correlations
  - CCC
  - DCC
- Programmable stochastic volatility models

#### Load and Examine Nasdaq Returns



Notice the 1987 crash. We construct a dummy variable for Oct 19, 1987 10


# We want record of all variable constructions so I do this with the algebra code

| _         | sc Paint Shop Pro - Ima                |                                                                                                                            |    |
|-----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|
| Eile      |                                        | pgram Files\OxMetrics5\data\nasdaq.in7 - [*nasdaq.in7 - C:\Program Files\OxMetrics5\data\nasdaq.in7] 📃 🗖                   |    |
| D         | 🔛 File Edit View Mode                  |                                                                                                                            | ∃× |
| C : Pt    | 🖹 🌍 🌍 📙 🕻                              | 🗊 😂 🍇 🍁 🖆 💼 💼 🖉 🖎 nasdaq.in7 💿 🌌 📓 🖧 🌄 🌮 🎦 🖅 💱                                                                             |    |
|           |                                        |                                                                                                                            |    |
| : : *     | xbeta = &0 + &1 * Lrate -              | Algebra - nasdaq.in7                                                                                                       |    |
|           | Documents 🛛 🔻                          | // Enter Algebra code here, for example:                                                                                   | -  |
| k} ▪      | 🧔 Data                                 | 1987-09-2 Ly = log(y); DLy = diff(Ly, 1);                                                                                  |    |
| Ъ·        | - 🎆 *nasdaq.in7                        | 1987-09-2                                                                                                                  |    |
| Ħ         | Data Plot                              | 1987-09-2<br>1987-09-3 1 crash87 = Date == 1987-10-19 ? 1: 0;                                                              | c  |
| ÷         | Code                                   | 1987-10-0. 2                                                                                                               |    |
| -<br>-    | 🧔 Text                                 | 1987-10-0 3                                                                                                                | _  |
| £         | Results                                | 1987-10-0. 4                                                                                                               |    |
| 7 -       | 鑢 Modules<br>⊑− 💥 Model                | 1987-10-0 5                                                                                                                | ľ  |
| - **      | G@RCH                                  | 1987-10-0                                                                                                                  |    |
| 28 -      | 🗰 PcGive                               | 1987-10-0: 8                                                                                                               | 11 |
|           | STAMP                                  | 1987-10-0: 9                                                                                                               |    |
| 5         | 🏶 Ox<br>🏶 OxDebug                      | 1987-10-1: 10                                                                                                              | 2  |
| •         | ······ · · · · · · · · · · · · · · · · | 1987-10-1 11                                                                                                               |    |
| - 🖉       | 💠 OxPack                               | 1987-10-1                                                                                                                  |    |
| <b>%</b>  | 👾 🏶 OxRun                              | 1987-10-1. Run Done Load Save As Recall                                                                                    | Ż  |
|           | * Ox - interactive                     | 1987-10-1 Kun Done Dobbar                                                                                                  | 4  |
| Â         | 🏧 🏶 X12arima                           | 1987-10-11 Functions Database                                                                                              |    |
|           |                                        | 1987-10-2 log(VAR); V Date                                                                                                 |    |
| <b>-</b>  |                                        | 1987-10-2: Nasdaq rash87                                                                                                   |    |
| ð         |                                        | 1987-10-2                                                                                                                  |    |
| 1         |                                        | 1987-10-2 Sub-sample evaluation                                                                                            | Ě  |
|           |                                        | 1987-10-2 Write Algebra Code                                                                                               |    |
|           |                                        | 1987-10-2: Ren                                                                                                             |    |
|           |                                        | 1987-10-2                                                                                                                  |    |
|           |                                        |                                                                                                                            |    |
|           |                                        | 1987-11-02         1987-11-02         1.53471         0           1987-11-03         1987-11-03         -2.34217         0 |    |
|           |                                        | 1987-11-03         1987-11-03         -2.34217         0           1987-11-04         1987-11-04        187266         0   |    |
|           | Help 🔺                                 | 1987-11-05 1987-11-05 1.88772 0                                                                                            |    |
|           |                                        |                                                                                                                            | ×  |
| a la seco |                                        | Madal crack97[1095_10_22] 0                                                                                                |    |

#### This constructs our dummy variable

| 🖉 *OxMetrics - C:\Program Files\OxMetrics5\data\nasdaq.in7 - [*nasdaq.in7 - C:\Program |                 |            |          |           |  |  |  |
|----------------------------------------------------------------------------------------|-----------------|------------|----------|-----------|--|--|--|
| 🞇 File Edit View Mode                                                                  | el Run Window   | Help       |          |           |  |  |  |
| 睯 🚱 🛃 🛃 😂 🍇 🍁 🕋 🛍 🖍 🔗 🦄 nasdaq.in7                                                     |                 |            |          |           |  |  |  |
| xbeta = &0 + &1 * Lrate -                                                              | <b>⊻\$. €</b> a |            |          | 일 🛒 🤜 🕈 🛲 |  |  |  |
| Documents 🛛 🔻                                                                          |                 | Date       | Nasdaq   | crash87   |  |  |  |
| 🧔 Data                                                                                 | 1987-10-02      | 1987-10-02 | .688815  | 0         |  |  |  |
| 🎇 *nasdaq.in7                                                                          | 1987-10-05      | 1987-10-05 | .441892  | 0         |  |  |  |
| 🧔 Graphics                                                                             | 1987-10-06      | 1987-10-06 | -1.35392 | 0         |  |  |  |
| 🔤 🚾 Data Plot                                                                          | 1987-10-07      | 1987-10-07 | 650154   | 0         |  |  |  |
| 📁 Code                                                                                 | 1987-10-08      | 1987-10-08 | -1.04003 | 0         |  |  |  |
| Dext                                                                                   | 1987-10-09      | 1987-10-09 | 364299   | 0         |  |  |  |
|                                                                                        | 1987-10-12      | 1987-10-12 | -1.2394  | 0         |  |  |  |
| 🖼 💥 Model                                                                              | 1987-10-13      | 1987-10-13 | .414843  | 0         |  |  |  |
| G@RCH                                                                                  | 1987-10-14      | 1987-10-14 | -1.50623 | 0         |  |  |  |
| 🏶 PcGive                                                                               | 1987-10-15      | 1987-10-15 | -1.36344 | 0         |  |  |  |
| STAMP                                                                                  | 1987-10-16      | 1987-10-16 | -3.90976 | 0         |  |  |  |
| 🏶 OX                                                                                   | 1987-10-19      | 1987-10-19 | -12.0432 | 1         |  |  |  |
| 🏶 OxDebug                                                                              | 1987-10-20      | 1987-10-20 | -9.42558 | 0         |  |  |  |
| 🏶 OxGauss<br>🏶 OxPack                                                                  | 1987-10-21      | 1987-10-21 | 7.09434  | 0         |  |  |  |
|                                                                                        | 1987-10-22      | 1987-10-22 | -4.59383 | 0         |  |  |  |
| Ox - interactive                                                                       | 1987-10-23      | 1987-10-23 | -2.28719 | 0         |  |  |  |
| 🗰 🗱 X12arima                                                                           | 1987-10-26      | 1987-10-26 | -9.44278 | 0         |  |  |  |
|                                                                                        | 1987-10-27      | 1987-10-27 | 873661   | 0         |  |  |  |
|                                                                                        | 1987-10-28      | 1987-10-28 | -1.49612 | 0         |  |  |  |
|                                                                                        | 1987-10-29      | 1987-10-29 | 5.07621  | 0         |  |  |  |
|                                                                                        | 1987-10-30      | 1987-10-30 | 5.14073  | 0         |  |  |  |
|                                                                                        | 1987-11-02      | 1987-11-02 | 1.53471  | 0         |  |  |  |
|                                                                                        | 1987-11-03      | 1987-11-03 | -2.34217 | 0         |  |  |  |

# Correlograms reveal an AR(1) and possibly some seasonality



13

#### **Basic Pre-Model Analysis**

| 🖉 G@RCH            | Other models                                                                                  | × |
|--------------------|-----------------------------------------------------------------------------------------------|---|
| All                | G@RCH PCGive STAMP                                                                            |   |
| Module<br>Category | G@RCH<br>Other models                                                                         | > |
| Model class        | Descriptive Statistics using G@RCH                                                            | > |
| 0                  | >       Estimate      >         Formulate       <       Test         <       Progress       < | ] |
|                    | Options Close                                                                                 |   |

#### Select the variable

| Formulate - Descriptive Statistics - nasdac | q.in7   |                           |   |
|---------------------------------------------|---------|---------------------------|---|
| Selection                                   | Lags    | Database                  |   |
| T Nasdaq                                    | None    | Date<br>Nasdaq<br>crash87 |   |
|                                             | <<      |                           |   |
|                                             | Clear>> |                           |   |
| Use default status Set                      |         |                           |   |
| Recall a previous model                     |         | nasdaq.in7                | × |
|                                             | ж с     | Cancel                    |   |

Predictor variables may be selected for mean or variance model.

#### **Define the sample**

| Mode: F               | -eather: Create selection from: |
|-----------------------|---------------------------------|
| Estimate - Descriptiv | e Statistics 🛛 🛛                |
| Choose the estima     | ation sample:                   |
| Selection sample      | 1984-10-12 - 2000-12-21         |
| Estimation starts at  | 1984-10-12                      |
| Estimation ends at    | 2000-12-21                      |
| Choose the estimation |                                 |
| Estimation method:    |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       |                                 |
|                       | OK Cancel                       |

#### Specify the preliminary tests

| Model Settings - Descriptive Statistics |               |  |  |  |
|-----------------------------------------|---------------|--|--|--|
| Choose some tests:                      |               |  |  |  |
| Basic Stats                             |               |  |  |  |
| Normality Test                          |               |  |  |  |
| LM Arch Test                            |               |  |  |  |
| with lags :                             | 2; 5; 10      |  |  |  |
| Box-Pierce on Raw Series                |               |  |  |  |
| Box-Pierce on Squared Raw Series        |               |  |  |  |
| with lags :                             | 5; 10; 20; 50 |  |  |  |
| Unit Root Tests                         | Choose        |  |  |  |
| Long Memory Tests                       | Choose        |  |  |  |
| Bandwidth (1,,T/2)                      | 2046          |  |  |  |
|                                         |               |  |  |  |
|                                         | OK Cancel     |  |  |  |

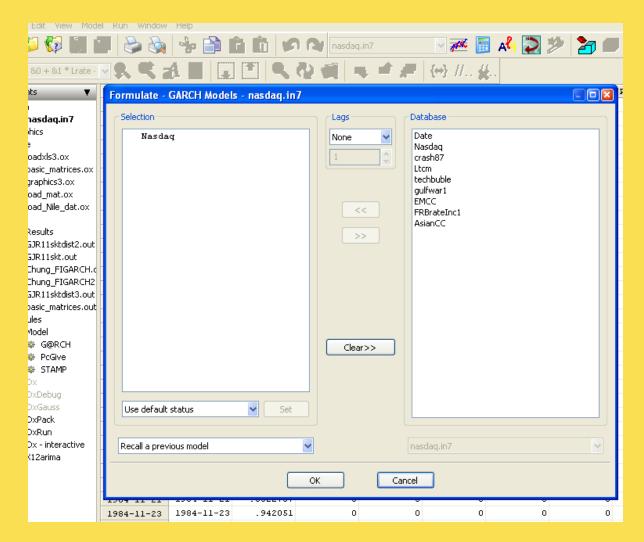
#### **Choose the Stationarity tests**

| el Settings - Descriptive Stat   | istics 🛛           | 1            |
|----------------------------------|--------------------|--------------|
| Choose some tests:               |                    |              |
| Basic Stats                      |                    |              |
| Normality Test                   |                    |              |
| LM Arch Test                     |                    | We<br>select |
| with lags :                      | 2; 5; 10           |              |
| Box-Pierce on Raw Series         |                    | selec        |
| Box-Pierce on Squared Raw Series |                    | ADF          |
| with lags :                      | 5; 10; 20; 50      |              |
| Unit Root Tests                  | Choose             | test         |
| Long Memory Tests                | Choose             |              |
| Bandwidth (1,,T/2)               | ADF Test KPS5 Test |              |
|                                  |                    |              |
|                                  | OK Cancel          |              |

#### **Choose the Long-Memory Test**

| Model Settings - Descriptive Stat | istics                                                        | ×                        |
|-----------------------------------|---------------------------------------------------------------|--------------------------|
| Choose some tests:                |                                                               |                          |
| Basic Stats                       |                                                               |                          |
| Normality Test                    |                                                               |                          |
| LM Arch Test                      |                                                               | We select                |
| with lags :                       | 2; 5; 10                                                      | tħis <mark>Geweke</mark> |
| Box-Pierce on Raw Series          |                                                               |                          |
| Box-Pierce on Squared Raw Series  |                                                               | Port <mark>er-</mark>    |
| with lags :                       | 5; 10; 20; 50                                                 | Hud <mark>ak test</mark> |
| Unit Root Tests                   | Choose                                                        | Huuak lesi               |
| Long Memory Tests                 | Choose                                                        | ×                        |
| Bandwidth (1,,T/2)                | Geweke and Porter-Hudak (1983) K<br>Robinson and Henry (1998) |                          |
|                                   | OK Cancel                                                     |                          |

#### **Misspecification test results**


#### Nonstationarity and Long-Memory Results

| l≕ File Edit Search V          | iew Model Run Window Help                                                                             |                                          |
|--------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                | 📰 😓 🍇 🎭 💼 💼 🛍 🕼 🖉 nasdaq.in7 💿 🚈 📓 🖧 🔯 🌮 🎦 🖅 💱                                                        |                                          |
| xbeta = 80 + 81 * Lrate        |                                                                                                       |                                          |
|                                |                                                                                                       |                                          |
| Documents V                    | Q(10) = 2874.40 [0.0000000]<br>Q(20) = 3748.75 [0.0000000]                                            |                                          |
| 💋 Data<br>🦾 🔯 nasdaq.in7       | Q(50) = 5491.27 [0.0000000]                                                                           |                                          |
| Graphics                       | HO : No serial correlation ==> Accept HO when prob. is High [Q < Chisq(lag)]                          |                                          |
| 💋 Code                         |                                                                                                       | $\Delta y_t = (\beta - 1) y_{t-1} + e_t$ |
| Text                           | ADF Test with 2 lags                                                                                  |                                          |
| Modules                        | No intercept and no time trend                                                                        |                                          |
| 🖃 💥 Model                      | HO: Nasdaq is I(1)                                                                                    | Nonstationary                            |
| G@RCH                          |                                                                                                       | rteriotationary                          |
| STAMP                          | ADF Statistics: -35.6643                                                                              |                                          |
| # Ox                           | Asymptotic critical values, Davidson, R. and MacKinnon, J. (1993)                                     |                                          |
| 🏶 OxDebug<br>🏶 OxGauss         |                                                                                                       |                                          |
| * OxPack                       | 1% 5% 10%                                                                                             |                                          |
| 🕂 🏶 OxRun                      | -2.56572 -1.94093 -1.61663                                                                            | Long memory                              |
| * Ox - interactive<br>X12arima | OLS Results                                                                                           | Long memory                              |
| ······ 🐭 X12arima              | Coefficient t-value                                                                                   | parameter is                             |
|                                | y_1 -0.905305 -35.664                                                                                 | parameter is                             |
|                                | dy_1 0.002191 0.10327                                                                                 | weak—should                              |
|                                | dy_2 0.007564 0.48103<br>RSS 6464.976541                                                              | weak-Should                              |
|                                | OBS 4090.000000                                                                                       | be .between 0                            |
|                                |                                                                                                       |                                          |
|                                | Information Criteria (to be minimized)                                                                | and .5 for                               |
|                                | Akaike 3.297199 Shibata 3.297198<br>Schwarz 3.301832 Hannan-Ouinn 3.298839                            | anu .5 101                               |
|                                |                                                                                                       | persistence.                             |
|                                |                                                                                                       | persistence.                             |
|                                | Log Periodogram Regression                                                                            | Above .5, d is                           |
|                                | d parameter 0.0691465 (0.015793) [0.0000]<br>No of observations: 4093; no of periodogram points: 2046 |                                          |
|                                | No of observations. 1955, no of periodogram points, 2040                                              | not stationary                           |
|                                |                                                                                                       | not stationary.                          |
|                                |                                                                                                       |                                          |

#### **Pre-Model Analysis**

- The Jarque-Bera tests suggests nonnormality--- we should probably try a t distribution
- The ARCH tests suggest ARCH effects
- The Portmanteau tests suggest autocorrelation
- The Nasdaq returns are nonstationary and there is long memory

#### **Variable Selection**



# Baseline model parameter selection

| Mod | el Settings - GARCH Models     |           | × |
|-----|--------------------------------|-----------|---|
|     | AR(FI)MA Orders (m,d,l)        |           |   |
|     | AR order (m)                   | 1         |   |
|     | MA order (I)                   | 0         |   |
|     | ARFIMA                         |           |   |
|     | GARCH Orders                   |           |   |
|     | Garch order (p)                | 1         |   |
|     | Arch order (q)                 | 1         |   |
| ÷   | Model                          |           |   |
|     | Fractionally Integrated Models |           |   |
|     | ARCH-in-Mean                   |           |   |
|     | Distribution                   |           |   |
|     | Gauss                          | •         |   |
|     | Student                        | 0         |   |
|     | GED                            | 0         |   |
|     | Skewed Student                 | 0         |   |
| ÷   | Constants                      |           |   |
|     |                                |           |   |
|     |                                |           |   |
|     |                                |           |   |
|     |                                |           |   |
|     |                                |           |   |
|     |                                |           |   |
|     |                                | OK Cancel |   |

AR(1) GARCH(1,1) normal distribution is our baseliine model

#### Normal GARCH(1,1)

 $\sigma_{t}^{2} = \omega + \sum_{i=1}^{q} a_{i} \varepsilon_{t-i}^{2} + \sum_{j=1}^{p} b_{i} \sigma_{t-j}^{2}$ Impact of previous shock

> Persistence of conditional error variance

#### Normal GARCH(1,1) model output

\*\* G@RCH( 1) SPECIFICATIONS \*\*

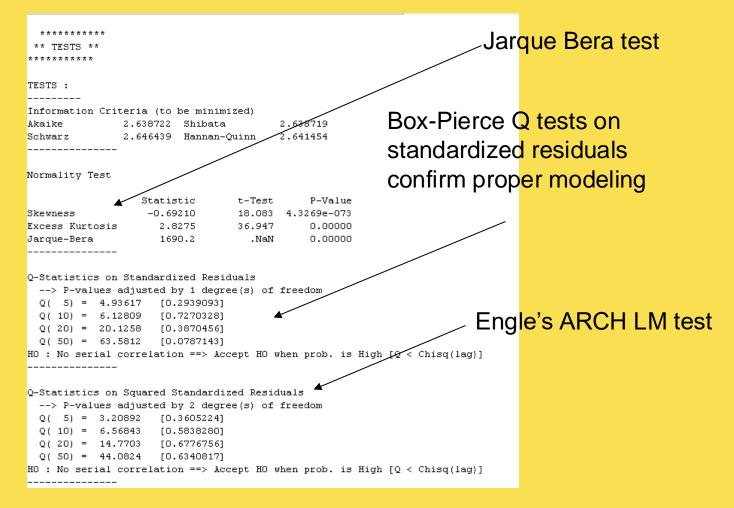
Dependent variable : Nasdaq Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : GARCH (1, 1) model. No regressor in the conditional variance Normal distribution.

Strong convergence using numerical derivatives Log-likelihood = -5395.14 Please wait : Computing the Std Errors ...

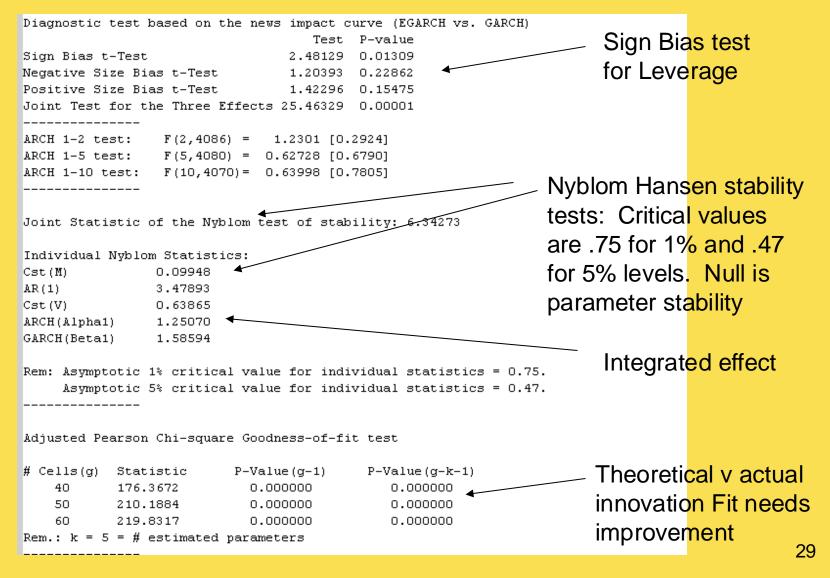
#### Robust Standard Errors (Sandwich formula)

|              | Coefficient | Std.Error | t-value | t-prob |
|--------------|-------------|-----------|---------|--------|
| Cst(M)       | 0.084113    | 0.015616  | 5.386   | 0.0000 |
| AR(1)        | 0.193052    | 0.017187  | 11.23   | 0.0000 |
| Cst (V)      | 0.025299    | 0.0071185 | 3.554   | 0.0004 |
| ARCH(Alpha1) | 0.167673    | 0.029686  | 5.648   | 0.0000 |
| GARCH(Beta1) | 0.820858    | 0.028236  | 29.07   | 0.0000 |

| No. Observations | : | 4093      | No. Parameters :             | 5        |
|------------------|---|-----------|------------------------------|----------|
| Mean (Y)         | : | 0.05517   | Variance (Y) :               | 1.59189  |
| Skewness (Y)     | : | -0.74128  | Kurtosis (Y) :               | 14.25531 |
| Log Likelihood   | : | -5395.144 | <pre>Alpha[1]+Beta[1]:</pre> | 0.98853  |


You may need more constraints or a different distribution

The sample mean of squared residuals was used to start recursion. The positivity constraint for the GARCH (1,1) is observed. This constraint is alpha[L]/[1 - beta(L)] >= 0. The unconditional variance is 2.2058 The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and alpha[i] + beta[i] >= 0. => See Doornik & Ooms (2001) for more details. The condition for existence of the fourth moment of the GARCH is not observed. The constraint equals 1.03342 and should be < 1. => See Ling & McAleer (2001) for details.


#### **Selecting Post-Estimation tests**

| Z 19 |                                                              | - (2)                            |  |  |  |  |  |
|------|--------------------------------------------------------------|----------------------------------|--|--|--|--|--|
| Test | s - GARCH Models                                             | ×                                |  |  |  |  |  |
|      | Available Tests :                                            |                                  |  |  |  |  |  |
|      | Information Criteria                                         |                                  |  |  |  |  |  |
|      | Normality Test                                               |                                  |  |  |  |  |  |
|      | Box/Pierce on Standardized Residuals                         |                                  |  |  |  |  |  |
|      | Box/Pierce on Squared Standardized Residuals                 |                                  |  |  |  |  |  |
|      | with lags :                                                  | 5; 10; 20; 50                    |  |  |  |  |  |
|      | Sign Bias Test                                               |                                  |  |  |  |  |  |
|      | Arch Test                                                    |                                  |  |  |  |  |  |
|      | with lags :                                                  | 2; 5; 10                         |  |  |  |  |  |
|      | Nyblom Stability Test                                        |                                  |  |  |  |  |  |
|      | Adjusted Pearson Chi-square Goodness-of-fit                  |                                  |  |  |  |  |  |
|      | with Cells number :                                          | 40; 50; 60                       |  |  |  |  |  |
|      | Residual-Based Diagnostic for Conditional Heteroskedasticity |                                  |  |  |  |  |  |
|      | with lags :                                                  | 2; 5; 10                         |  |  |  |  |  |
|      | VaR in-sample Tests :                                        |                                  |  |  |  |  |  |
|      | VaR levels (>0.5):                                           | 0.95; 0.975; 0.99; 0.995; 0.9975 |  |  |  |  |  |
|      | Kupiec LRT (and ESF measures)                                |                                  |  |  |  |  |  |
|      | Dynamic Quantile Test (DQT) of Engle and Manganelli (2002)   |                                  |  |  |  |  |  |
|      | Number of lags in DQT (Hit variable):                        | 7                                |  |  |  |  |  |
|      | Further Outputs :                                            |                                  |  |  |  |  |  |
|      | Print Variance-Covariance Matrix                             |                                  |  |  |  |  |  |
|      |                                                              |                                  |  |  |  |  |  |
|      |                                                              |                                  |  |  |  |  |  |
|      | ОК                                                           | Cancel                           |  |  |  |  |  |

#### **Test Results I**



#### **Test Results II**



#### Test Results III

| Residual-Based Diagnostic for Conditional Heteroskedasticity of Tse (2002)<br>RBD(2) = -6.40705 [1.0000000]<br>RBD(5) = 0.485674 [0.9926385]<br>RBD(10) = 4.53051 [0.9202588]<br> |                 |                 |           |             |         |               |                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------|-------------|---------|---------------|-------------------|--|
|                                                                                                                                                                                   | P-values in bra | ARCH effe       | cts       |             |         |               |                   |  |
|                                                                                                                                                                                   |                 |                 |           |             |         |               |                   |  |
|                                                                                                                                                                                   | In-sample Value | -ot-Dick Poakts | ating     |             |         |               |                   |  |
|                                                                                                                                                                                   | in-sample value | -at-RISK backte | scing     |             |         |               |                   |  |
|                                                                                                                                                                                   | Kupiec LR test  | •               |           |             | — Basel | II Kupiec Tes | st <mark>s</mark> |  |
|                                                                                                                                                                                   |                 |                 |           |             |         |               |                   |  |
|                                                                                                                                                                                   |                 |                 | -         | caitions -  | •       |               |                   |  |
|                                                                                                                                                                                   | Quantile        | Failure rate    | Kupiec LR | T P-value   | ESF1    | ESF2          |                   |  |
|                                                                                                                                                                                   | 0.95000         | 0.96628         | 25.679    | 4.0322e-007 | 2.4334  | 1.2525        |                   |  |
|                                                                                                                                                                                   | 0.93000         | 0.98534         |           | 4.4975e-007 | 2.4334  | 1.2323        |                   |  |
|                                                                                                                                                                                   |                 |                 |           |             |         |               |                   |  |
|                                                                                                                                                                                   | 0.99000         | 0.99365         | 6.3191    | 0.011945    | 3.3298  | 1.2057        |                   |  |
|                                                                                                                                                                                   | 0.99500         | 0.99682         | 3.1457    |             | 3.7132  | 1.2360        |                   |  |
|                                                                                                                                                                                   | 0.99750         | 0.99780         | 0.15517   | 0.69364     | 4.2753  | 1.2153        | _                 |  |
|                                                                                                                                                                                   |                 |                 | - Long p  |             |         | Expected      |                   |  |
|                                                                                                                                                                                   | Quantile        | Failure rate    | Kupiec LR | T P-value   | ESF1    | ESF2          |                   |  |
|                                                                                                                                                                                   |                 |                 |           |             |         |               | shortfall         |  |
|                                                                                                                                                                                   | 0.050000        | 0.058881        | 6.4458    | 0.011121    | -2.3226 | 1.4410        |                   |  |
|                                                                                                                                                                                   | 0.025000        | 0.035915        | 17.662    | 2.6386e-005 | -2.5715 | 1.3855        | amounts           |  |
|                                                                                                                                                                                   | 0.010000        | 0.019301        | 28.117    | 1.1419e-007 | -2.9948 | 1.3767        |                   |  |
|                                                                                                                                                                                   | 0.0050000       | 0.013926        | 44.033    | 3.2289e-011 | -3.2095 | 1.3548        |                   |  |
|                                                                                                                                                                                   | 0.0025000       | 0.0092841       | 44.368    | 2.7216e-011 | -3.6826 | 1.3830        |                   |  |
|                                                                                                                                                                                   |                 |                 |           |             |         |               |                   |  |

Kupiec test for frequency of tail losses

#### **Kupiec Test**

 Tests whether there is a significant difference between the failure rate and the nominal rate of failure.

> $H_0$ : failure rate  $f = \alpha$ Confidence level for  $f = \hat{f} \pm 1.96\sqrt{\hat{f}(1-\hat{f})/T}$ T = total number of obs

#### **Expected shortfall**

- ES=conditional value at risk (CVAR)
- CVAR=expected (average) loss at or beyond the alpha-quantile or 1-alpha quantile.

#### **Dynamic Quantile Regression**

- Models the effect of the regressor on the alpha-th quantile of the regressand.
- The slope parameter is a function of the quantile.
- The slope parameter shows the effect of the predictor variable on the alpha-th quantile.

#### Engle, R. and Manganelli, S. (1999) CaViaR Conditional Autoregressive Value at Risk

Dynamic Quantile test  $Hit_t(\alpha) = I(y_t < VaR_t(\alpha)) - \alpha$   $Hit_t(1-\alpha) = I(y_t > VaR_t(1-\alpha)) - \alpha$  $Hit_t = X\delta + u_t$   $u_t = \begin{cases} -\alpha \quad prob(1-\alpha) \\ (1-\alpha) \quad prob(\alpha) \end{cases}$ 

such that  $E(u_t) = 0$ ,

where

 $Hit_t(y_t, x_t, \theta) \equiv Hit_{\alpha t} \equiv (y_t < -VaR_t) - \alpha$ where

X = Txk matrix whose first column is col of ones and next are  $Hit_{t-1}, ..., Hit_{t-p}$ 

#### The Dynamic Quantile Test Statistic

Because  $\hat{\delta}_{ols} = (X'X)^{-1}X'Hit : N(0, \alpha(1-\alpha)(X'X)^{-1}),$ Dynamic Quantile test Statistic =

$$\frac{\hat{\delta}_{ols} X X \hat{\delta}_{ols}}{\alpha(1-\alpha)} : \chi^2(p+n+2)$$

Remember X may = t=1,...,T

Assumption: Hits are uncorrelated and unbiased

#### Dynamic Quantile Hypothesis Tests

A joint test that  $A1: E(Hit_t(\alpha)) = 0$  for trading long positions  $E(Hit_t(1-\alpha)) = 0$  for trading short positions  $A2: Hit_t(\alpha)$  or  $Hit_t(1-\alpha)$  is uncorrelated with variables in the information set Applications of the DQ test Engle and Mangenelli, CaViaR, p.28

- "A model diagnostic or preliminary screening device to distinguish between good and bad models.
- An evaluation of the performance of different VaR methodologies.
- If test is significant, then data provide evidence against the model produced under those estimates.
- If DQ test falls into rejection reject for an out-ofsample test, this is evidence against the model and its stability over time."

#### **Test Results IV**

\_\_\_\_\_

Dynamic Quantile Test of Engle and Manganelli (2002)

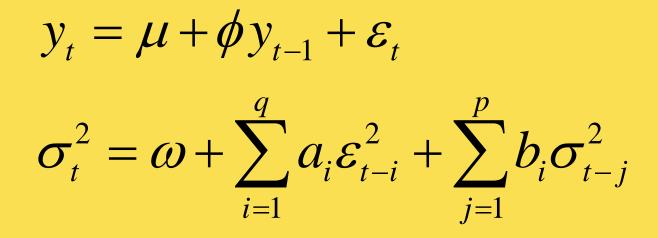
\_\_\_\_\_

| - Short   | t position | s -         |
|-----------|------------|-------------|
| Quantile  | Stat.      | P-value     |
| 0.95000   | 25.551     | 0.0012532   |
| 0.97500   | 20.863     | 0.0075214   |
| 0.99000   | 8.8216     | 0.35757     |
| 0.99500   | 2.9260     | 0.93892     |
| 0.99750   | 0.27316    | 0.99999     |
| - Long    | g position | s -         |
| Quantile  | Stat.      | P-value     |
| 0.050000  | 13.109     | 0.10814     |
| 0.025000  | 36.600     | 1.3629e-005 |
| 0.010000  | 48.500     | 7.9279e-008 |
| 0.0050000 | 77.972     | 1.2501e-013 |
| 0.0025000 | 90.662     | 3.3307e-016 |

Remark: In the Dynamic Quantile Regression, p=7.

#### Quantile Regression VAR

#### **Unconditional Variance**


• Of a GARCH model

$$\sigma^2 = \frac{\omega}{1 - \sum_{i=1}^q a_i - \sum_{j=1}^p \beta_j}$$

unconditional variance of  $\varepsilon_t$  is constant

*if* 
$$\omega > 1 \& \sum_{i=1}^{q} a_i + \sum_{j=1}^{p} \beta_j < 1$$

# AR(1) GARCH(1,1) sk(t)



Distribution is a skewed t distribution

# AR(1) GARCH(1,1) sk(t)

| Mod | el Settings - GARCH Models     |           | × |
|-----|--------------------------------|-----------|---|
|     | GARCH                          | •         |   |
|     | EGARCH                         | 0         |   |
|     | GJR                            | 0         |   |
|     | APARCH                         | Ŏ         |   |
|     | IGARCH                         | 0         |   |
|     | FIGARCH-BBM                    | 0         |   |
|     | FIGARCH-CHUNG                  | 0         |   |
|     | FIEGARCH                       | 0         |   |
|     | FIAPARCH-BBM                   | 0         |   |
|     | FIAPARCH-CHUNG                 | 0         |   |
|     | HYGARCH                        | 0         |   |
|     | RISKMETRICS                    | 0         |   |
|     | with lambda :                  | 0.94      |   |
| +   | Fractionally Integrated Models |           |   |
| ÷   | ARCH-in-Mean                   |           |   |
| Ξ   | Distribution                   |           |   |
|     | Gauss                          | 0         |   |
|     | Student                        | 0         |   |
|     | GED                            | 0         |   |
|     | Skewed Student                 | $\odot$   |   |
| +   | Constants                      |           | - |
|     |                                |           |   |
|     |                                |           |   |
|     |                                | OK Cancel |   |

# AR(1)-GARCH(1,1) sk(t) output

#### 

#### 

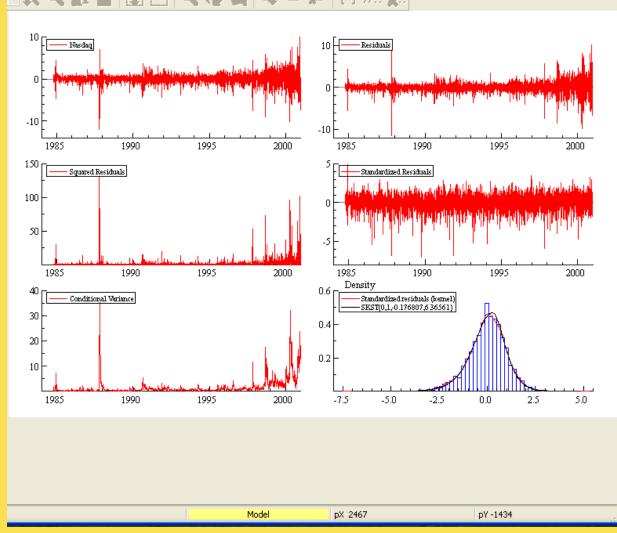
Dependent variable : Nasdaq Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : GARCH (1, 1) model. No regressor in the conditional variance Skewed Student distribution, with 6.36561 degrees of freedom. and asymmetry coefficient (log xi) -0.176807.

Strong convergence using numerical derivatives Log-likelihood = -5228.77 Please wait : Computing the Std Errors ...

Robust Standard Errors (Sandwich formula)

|                  |   | Coefficient | Std.Error   | t-value | t-prob   |
|------------------|---|-------------|-------------|---------|----------|
| Cst(M)           |   | 0.074547    | 0.013749    | 5.422   | 0.0000   |
| AR(1)            |   | 0.172029    | 0.015928    | 10.80   | 0.0000   |
| Cst(V)           |   | 0.013518    | 0.0041361   | 3.268   | 0.0011   |
| ARCH(Alpha1)     |   | 0.135317    | 0.022145    | 6.111   | 0.0000   |
| GARCH(Beta1)     |   | 0.862093    | 0.021804    | 39.54   | 0.0000   |
| Asymmetry        |   | -0.176807   | 0.022959    | -7.701  | 0.0000   |
| Tail             |   | 6.365606    | 0.62455     | 10.19   | 0.0000   |
|                  |   |             |             |         |          |
| No. Observations | : | 4093        | No. Paramet | ers :   | 7        |
| Mean (Y)         | : | 0.05517     | Variance (Y | ) :     | 1.59189  |
| Skewness (Y)     | : | -0.74128    | Kurtosis (Y | ) :     | 14.25531 |
| Log Likelihood   | : | -5228.772   | Alpha[1]+Be | ta[1]:  | 0.99741  |

```
The sample mean of squared residuals was used to start recursion.
The positivity constraint for the GARCH (1,1) is observed.
This constraint is alpha[L]/[1 - beta(L)] >= 0.
The unconditional variance is 5.21841
The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and alpha[i] + beta[i] >= 0.
=> See Doornik & Ooms (2001) for more details.
```


# **Graphical Analysis**

| Test Menu              |           |
|------------------------|-----------|
| Test Menu              |           |
| Tests                  |           |
| Graphic Analysis       |           |
| Forecast               |           |
| Exclusion Restrictions |           |
| Linear Restrictions    |           |
| Store                  |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        | OK Cancel |

# **Graph selection**

| Gra | phics - GARCH Models                      |              |
|-----|-------------------------------------------|--------------|
|     | Series                                    |              |
|     | Raw Series (Y)                            |              |
|     | Residuals                                 |              |
|     | Squared Residuals                         |              |
|     | Standardized Residuals                    |              |
|     | Conditional Variance                      |              |
|     | Histogram                                 |              |
|     | Standardized Residuals vs. Fitted Density |              |
|     | In-Sample VaR Forecasts                   |              |
|     | None                                      | $\odot$      |
|     | Empirical Quantiles                       | 0            |
|     | Theoretical Quantiles                     | 0            |
|     | with the following quantiles :            | 0.025; 0.975 |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           |              |
|     |                                           | OK Cancel    |

#### **Graphical Output**



45

# **Model Comparison**

| Progress - GARCH Models                  |                                                   |
|------------------------------------------|---------------------------------------------------|
| ✓ G@RCH(2) 7 x 4093<br>G@RCH(1) 5 x 4093 |                                                   |
| G@RCH( 0) 7 x 4093                       |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
|                                          |                                                   |
| < Del >                                  | Mark Specific to General Mark General to Specific |
|                                          | OK Cancel                                         |
|                                          |                                                   |

# **Subset Models**

- Constraining parameters to be zero.
- We perform an ARCH(12)-t on NQ.
- We find that the  $a_{t-8}=0$
- We wish to eliminate that from the model, so we constrain it to be zero.

#### We set up an AR(1) ARCH(12) t model

| Mod | el Settings - GARCH Models     |           |
|-----|--------------------------------|-----------|
| Ξ   | AR(FI)MA Orders (m,d,l)        |           |
| _   | AR order (m)                   | 1         |
|     | MA order (I)                   | 0         |
|     | ARFIMA                         |           |
| Ξ   | GARCH Orders                   |           |
|     | Garch order (p)                | 0         |
|     | Arch order (q)                 | 12        |
| Ξ   | Model                          |           |
|     | GARCH                          | $\odot$   |
|     | EGARCH                         | 0         |
|     | GJR                            | 0         |
|     | APARCH                         | 0         |
|     | IGARCH                         | 0         |
|     | FIGARCH-BBM                    | 0         |
|     | FIGARCH-CHUNG                  | 0         |
|     | FIEGARCH                       | 0         |
|     | FIAPARCH-BBM                   | 0         |
|     | FIAPARCH-CHUNG                 | 0         |
|     | HYGARCH                        | 0         |
|     | RISKMETRICS                    | 0         |
|     | with lambda :                  | 0.94      |
| +   | Fractionally Integrated Models |           |
| +   | ARCH-in-Mean                   |           |
| Ξ   | Distribution                   |           |
|     | Gauss                          | 0         |
|     |                                |           |
|     |                                | OK Cancel |

# We opt for Matrix form starting values—this lets us fix values

| arting Values - GARCH Models    | E Contraction of the second |       |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|
| Starting Values                 |                                                                                                                 |       |
| Choose the way the starting     | values are fixed :                                                                                              |       |
| Default (chosen by the program) | 0                                                                                                               | selec |
| Select (Individual Form)        | 0                                                                                                               |       |
| Select (Matrix Form)            | •                                                                                                               |       |
|                                 |                                                                                                                 |       |
|                                 |                                                                                                                 |       |
|                                 | OK Cancel                                                                                                       |       |

# We set ARCH(8)=0

#### Starting values - GARCH Models

Edit, load or save parameter values. Use FIX to fix parameters at their starting value.

|              | FIX          | Value |                    |
|--------------|--------------|-------|--------------------|
| st (M)       |              | .01   |                    |
| R(1)         |              | .01   |                    |
| st(V)        |              | .05   |                    |
| RCH(Alphal)  |              | . 1   |                    |
| RCH(Alpha2)  |              | . 1   |                    |
| RCH(Alpha3)  |              | . 1   |                    |
| RCH(Alpha4)  |              | . 1   |                    |
| RCH(Alpha5)  |              | . 1   |                    |
| RCH(Alpha6)  |              | .1    |                    |
| RCH(Alpha7)  |              | . 1   |                    |
| RCH(Alpha8)  | $\checkmark$ | 0     |                    |
| RCH(Alpha9)  |              | . 1   |                    |
| RCH(Alphal0) |              | . 1   |                    |
| RCH(Alphall) |              | . 1   |                    |
| RCH(Alphal2) |              | . 1   |                    |
| tudent (DF)  |              | 6     |                    |
|              |              |       |                    |
|              |              |       |                    |
|              |              |       |                    |
|              |              |       |                    |
|              |              |       | < >                |
|              |              |       |                    |
|              | ок ] С       | ancel | Load Save As Reset |
|              | ок с         | ancel | Load Save As Reset |

X

# The Subset Model does not contain ARCH(8)

| 🖹 Results                |                                    |         |         |  | - • 🛛    |  |  |  |
|--------------------------|------------------------------------|---------|---------|--|----------|--|--|--|
| Dependent variable : NQ  |                                    |         |         |  | <u>^</u> |  |  |  |
| Mean Equation : ARMA (1, | Mean Equation : ARMA (1, 0) model. |         |         |  |          |  |  |  |
| No regressor in the cond | litional mean                      |         |         |  |          |  |  |  |
| Variance Equation : GARC | CH (O, 12) model.                  |         |         |  |          |  |  |  |
| No regressor in the cond | itional variance                   |         |         |  |          |  |  |  |
| Student distribution, wi | ith 6.92557 degrees o              | of free | dom.    |  |          |  |  |  |
|                          |                                    |         |         |  |          |  |  |  |
| Strong convergence using | -                                  | 7es     |         |  |          |  |  |  |
| Log-likelihood = -6204.4 |                                    |         |         |  |          |  |  |  |
| Please wait : Computing  | the Std Errors                     |         |         |  |          |  |  |  |
|                          |                                    |         |         |  |          |  |  |  |
| Robust Standard Errors   | • •                                |         |         |  |          |  |  |  |
|                          | icient Std.Error t-                |         | -       |  |          |  |  |  |
|                          |                                    |         | 0.0000  |  |          |  |  |  |
|                          | 0.015528                           |         |         |  |          |  |  |  |
|                          | 226498 0.028271                    |         |         |  |          |  |  |  |
|                          | 0.020706                           |         |         |  |          |  |  |  |
|                          | 181228 0.026585                    |         |         |  |          |  |  |  |
|                          |                                    |         | 0.0002  |  |          |  |  |  |
|                          | 121771 0.023721                    |         |         |  |          |  |  |  |
|                          |                                    |         | 0.0000  |  |          |  |  |  |
|                          |                                    |         | 0.0000  |  |          |  |  |  |
|                          |                                    |         | 0.0081  |  |          |  |  |  |
|                          |                                    |         | 0.0285  |  |          |  |  |  |
|                          | 046155 0.026043                    |         |         |  |          |  |  |  |
|                          |                                    |         | 0.0192  |  |          |  |  |  |
| ARCH(Alpha12) 0.0        |                                    |         | 0.0038  |  |          |  |  |  |
| Student(DF) 6.9          |                                    | 8.761   | 0.0000  |  |          |  |  |  |
| ARCH(Alpha8) 0.0         | 00000                              |         |         |  |          |  |  |  |
|                          |                                    |         |         |  |          |  |  |  |
| No. Observations :       | 3901 No. Parameters                |         | 15      |  |          |  |  |  |
|                          | 03552 Variance (Y)                 |         | 2.38613 |  |          |  |  |  |
| Skewness (Y) : -0.0      |                                    |         |         |  | _        |  |  |  |
|                          | 4.486 Alpha[1]+Beta[               | [1]:    | 0.96762 |  | ¥        |  |  |  |
| ( <b>&lt;</b> )          |                                    |         |         |  | >        |  |  |  |

# Second generation GARCH

- Nonstationary GARCH
- Garch-in-mean
- Asymmetric GARCH
  - Leverage effects captured in EGARCH
  - GJR GARCH APARCH, APGARCH
- Skewed t distribution captures leverage effects better

### **Nonstationary GARCH**

Riskmetrics

*Riskmetrics* :  $\sigma_t^2 = \omega + (1 - \lambda)\varepsilon_{t-1}^2 + \lambda\sigma_{t-1}^2$ *where*  $\lambda = .94$  *for daily data and .97 for monthly data.* 

• IGARCH

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{q} a_{i} \varepsilon_{t-1}^{2} + \sum_{j=1}^{p} b_{i} \sigma_{t-1}^{2}$$
where
$$\bigcup \text{Usually set at .97}$$

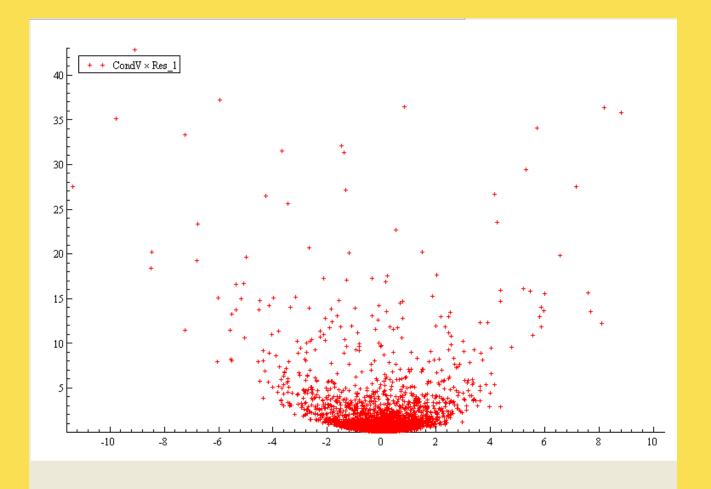
$$\sum_{i=1}^{q} a_{i} \varepsilon_{t-1}^{2} + \sum_{j=1}^{p} b_{i} \sigma_{t-1}^{2} \approx 1$$

### Garch-in-Mean

One can add the conditional variance or the conditional standard deviation to the mean equation.

$$y_{t} = a + b_{t}x_{t} + \delta\sigma_{t}^{2} + \varepsilon_{t}$$
where

$$\sigma_t^2 = \omega + a \sum_{i=1}^q \varepsilon_{t-i}^2 + b \sum_{j=1}^p \sigma_{t-p}^2$$


### Select conditional variance

| Mod | el Settings - GARCH Models     |           | × |  |  |  |
|-----|--------------------------------|-----------|---|--|--|--|
| Ξ   | Model                          |           | ~ |  |  |  |
|     | GARCH                          | 0         |   |  |  |  |
|     | EGARCH                         | 0         |   |  |  |  |
|     | GJR                            | 0         |   |  |  |  |
|     | APARCH                         | 0         |   |  |  |  |
|     | IGARCH                         | 0         |   |  |  |  |
|     | FIGARCH-BBM                    | 0         |   |  |  |  |
|     | FIGARCH-CHUNG                  | $\odot$   |   |  |  |  |
|     | FIEGARCH                       | 0         |   |  |  |  |
|     | FIAPARCH-BBM                   | 0         |   |  |  |  |
|     | FIAPARCH-CHUNG                 | 0         |   |  |  |  |
|     | HYGARCH                        | 0         |   |  |  |  |
|     | RISKMETRICS                    | 0         |   |  |  |  |
|     | with lambda :                  | 0.94      |   |  |  |  |
| +   | Fractionally Integrated Models |           |   |  |  |  |
| Ξ   | ARCH-in-Mean                   |           |   |  |  |  |
|     | No ARCH-in-Mean                | 0         |   |  |  |  |
|     | Add the conditional variance   | $\odot$   |   |  |  |  |
|     | Add the conditional std.       | $\circ$   |   |  |  |  |
| +   | Distribution                   |           |   |  |  |  |
| +   | Constants                      |           | ~ |  |  |  |
|     |                                |           |   |  |  |  |
|     |                                | OK Cancel |   |  |  |  |

#### **Testing leverage effects**

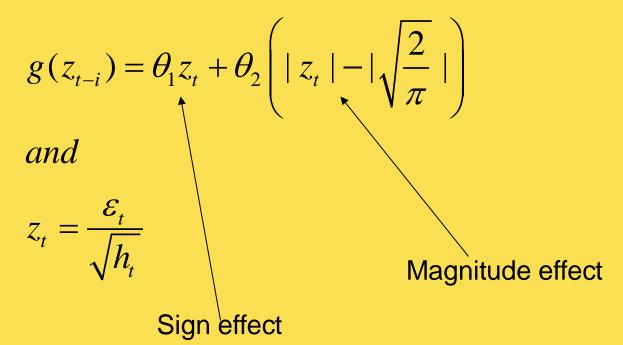
- EGARCH Exponential GARCH (Nelson)
- GJR Threshold GARCH (Glosten, Jagannathan, Runkle)
- APARCH Asymmetric Power GARCH (Ding, Engle, and Granger)

# **Volatility Smile**

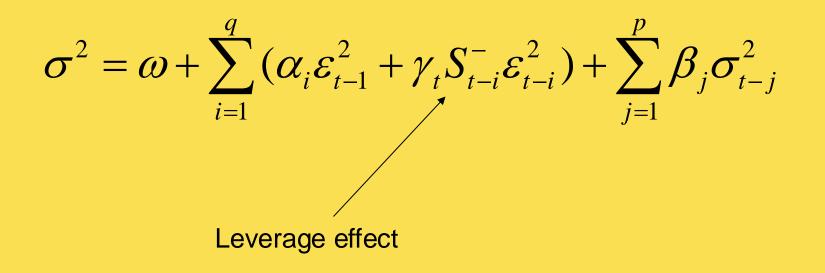


### Engle and Ng Asymmetry tests

Sign bias test:  $\hat{\varepsilon}_{t}^{2} = a_{0} + a_{1}S_{t-1}^{-} + u_{t}$ - Sign bias test:  $\hat{\varepsilon}_{t}^{2} = b_{0} + b_{1}S_{t-1}^{-}\hat{\varepsilon}_{t-1} + u_{t}$ + Sign bias test:  $\hat{\varepsilon}_{t}^{2} = c_{0} + c_{1}S_{t-1}^{+}\hat{\varepsilon}_{t-1} + u_{t}$ Joint Sign bias test:  $\hat{\varepsilon}_{t}^{2} = d_{0} + d_{1}S_{t-1}^{-} + d_{2}S_{t-1}^{-}\hat{\varepsilon}_{t-1} + S_{t-1}^{+}\hat{\varepsilon}_{t-1} + u_{t}$ 


#### Asymmetry tests

| TESTS :<br>                       |         |                                    |
|-----------------------------------|---------|------------------------------------|
| Diagnostic test based on the new: | -       | urve (EGARCH vs. GARCH)<br>P-value |
| Siqn Bias t-Test                  |         | 0.00230                            |
| -                                 | 0.06642 |                                    |
| Positive Size Bias t-Test         |         |                                    |
| Joint Test for the Three Effects  |         |                                    |
|                                   |         |                                    |


Exponential GARCH (David Nelson, 1991)

$$\ln(h_{t}) = \omega + \sum_{i=1}^{q} \alpha_{i} g(z_{t-i}) + \sum_{j=1}^{p} \beta \ln(h_{t-j})$$

where



#### Glosten, Jagannathan, and Runkle (1993) (GJR) GARCH



## GJR Asymmetric GARCH(1,1)

#### \*\* G@RCH( 3) SPECIFICATIONS \*\*

Strong convergence using numerical derivatives Log-likelihood = -5184.52 Please wait : Computing the Std Errors ...

Robust Standard Errors (Sandwich formula)

<

|              | Coefficient | Std.Error | t-value | t-prob |
|--------------|-------------|-----------|---------|--------|
| Cst(M)       | 0.062393    | 0.014353  | 4.347   | 0.0000 |
| AR(1)        | 0.185970    | 0.016883  | 11.02   | 0.0000 |
| Cst(V)       | 0.017264    | 0.0052401 | 3.295   | 0.0010 |
| ARCH(Alpha1) | 0.096650    | 0.015176  | 6.369   | 0.0000 |
| GARCH(Beta1) | 0.850005    | 0.023975  | 35.45   | 0.0000 |
| GJR (Gamma1) | 0.092444    | 0.030406  | 3.040   | 0.0024 |
| Asymmetry    | -0.179540   | 0.023111  | -7.769  | 0.0000 |
| Tail         | 6.541571    | 0.66287   | 9.869   | 0.0000 |

No. Observations : 4081 No. Parameters : 8 Mean (Y) : 0.06050 Variance (Y) : 1.55316 Skewness (Y) : -0.72562 Kurtosis (Y) : 14.49309 Log Likelihood : -5184.518

The sample mean of squared residuals was used to start recursion. The condition for existence of the second moment of the GJR is not observed. This condition is alpha(1) + beta(1) + k gamma(1) < 1 (with k = 0.588818 with this distributio: In this estimation, this sum equals 1.00109. The condition for existence of the fourth moment of the GJR is not observed. The constraint equals 1.12247 (should be < 1). => See Ling & McAleer (2001) for details.

62

>

Asymmetric Power GARCH Ding, Granger, and Engle, 1993

$$\sigma_{t}^{\delta} = \omega + \alpha_{1}(|\varepsilon_{t-1}| - \gamma_{1}\varepsilon_{t-1})^{\delta} + \beta_{1}\sigma_{t-1}^{\delta}$$
where
$$\delta = power \ captures \ long - memory \ effects \ when$$

$$\delta \approx 1$$
Leverage effect

## **Model Comparison**

| Progress to | date |   |      |                |         |         |         |
|-------------|------|---|------|----------------|---------|---------|---------|
| Model       | Т    | р |      | log-likelihood | SC      | HQ      | AIC     |
| G@RCH( O)   | 4093 | 7 | BFGS | -5367.1337     | 2.6368  | 2.6298  | 2.6260  |
| G@RCH( 1)   | 4093 | 5 | BFGS | -5395.1442     | 2.6464  | 2.6415  | 2.6387  |
| G@RCH( 2)   | 4093 | 7 | BFGS | -5228.7723     | 2.5692  | 2.5622  | 2.5584  |
| G@RCH( 3)   | 4081 | 8 | BFGS | -5184.5175     | 2.5571< | 2.5491< | 2.5447< |
|             |      |   |      |                |         |         |         |

Tests of model reduction (please ensure models are nested for test validity) G@RCH( 0) --> G@RCH( 1): Chi<sup>2</sup>( 2) = 56.021 [0.0000] \*\*

By clicking on the progress button on the GARCH GUI, one can obtain the information criteria for preceding models to compare them for fit.

#### Forecasts

- Conditional mean, with confidence intervals
- Conditional variance
  - Intervals can be simulated
- VaR intervals serve as confidence intervals

# **GARCH** Forecasting

- In-sample: This is estimation.
  - These can be evaluated by forecast error measures.
- Out-of-sample: This sets aside a hold-outsample, over which forecasts are generated.
   These can be evaluated by forecast error measures.
- Ex Ante: This generates forecasts beyond the end of the sample.
  - These cannot be evaluated until the real or comparative data are collected against which they can be measured.

# Types of GARCH forecasts

- The conditional mean
- The conditional error variance
- The Value-at-Risk

#### Forecasting the conditional mean

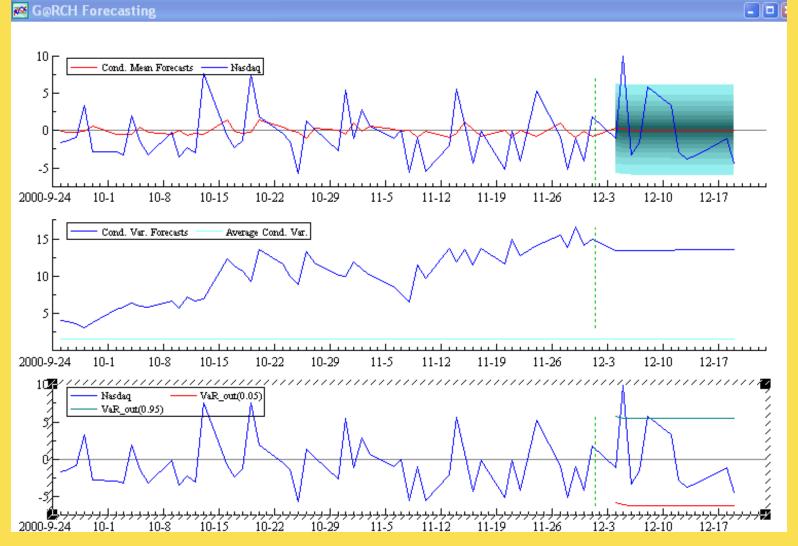
Suppose we have an AR(1) mean process:  $y_t = \mu + \phi(y_{t-1} - \mu) + \mathcal{E}_t$ An optimal h step – ahead forecast is  $\hat{y}_{t+h} = \hat{\mu} + \phi(\hat{y}_{t+h-1|t} - \mu)$  $= \hat{\mu} + \phi_1^h (\hat{y}_{t+h-1|t} - \mu)$ For an ARMA(1,1) mean process:  $\hat{y}_{t+h} = \hat{\mu} + \phi(\hat{y}_{t+h-1|t} - \mu) + \theta_1 \varepsilon_{t+h-1}$ 

Laurent, S. G@RCH manual, pp. 49-50

### Forecasting the Conditional Error Variance

• Suppose we had an ARCH(q) process.

$$\hat{\sigma}_{t+h}^2 = \hat{\omega} + \sum_{i=1}^q \hat{\alpha}_i^2 \varepsilon_{t+h-i|t}^2$$


### Click on the test icon

| Test Menu              |           |
|------------------------|-----------|
| Test Menu              |           |
| Tests                  |           |
| Graphic Analysis       |           |
| Forecast               |           |
| Exclusion Restrictions |           |
| Linear Restrictions    |           |
| Store                  |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        |           |
|                        | OK Cancel |
|                        |           |

#### **Forecast selection**

| For | ecast - GARCH Models                       | ×          |
|-----|--------------------------------------------|------------|
|     | Forecasting                                |            |
|     | Number of forecasts                        | 12         |
| Ξ   | Options                                    |            |
|     | Print Forecasts Errors Measures            |            |
|     | Print Forecasts                            |            |
|     | Plot Forecasts                             |            |
|     | Add sample average of conditional variance |            |
|     | Number of pre-observations                 | 49         |
| Ξ   | Confidence Interval                        |            |
|     | None                                       | 0          |
|     | Error Bands                                | 0          |
|     | Error Bars                                 | 0          |
|     | Error Fans                                 | $\odot$    |
|     | Critical Value                             | 2          |
| Ξ   | VaR Forecasts                              |            |
|     | Print VaR Forecasts                        |            |
|     | Plot VaR Forecasts                         |            |
|     | VaR levels:                                | 0.05; 0.95 |
|     |                                            |            |
|     |                                            |            |
|     |                                            |            |
|     |                                            |            |
|     |                                            |            |
|     | (                                          | OK Cancel  |

#### Forecasts graphed from GJR model



### **Forecasts printed**

| ******    | * * * * * * * * * * * * | ۲  |       |
|-----------|-------------------------|----|-------|
| ** VaR F( | DRECASTS **             |    |       |
| *******   | * * * * * * * * * *     |    |       |
| Number of | Forecasts:              | 12 |       |
|           |                         |    |       |
| Horizon   | 0.05                    |    | 0.95  |
| 1         | -5.716                  |    | 8.482 |
| 2         | -7.222                  |    | 6.989 |
| 3         | -7.508                  |    | 6.717 |
| 4         | -7.567                  |    | 6.671 |
| 5         | -7.584                  |    | 6.668 |
| 6         | -7.594                  |    | 6.673 |
| 7         | -7.601                  |    | 6.679 |
| 8         | -7.609                  |    | 6.685 |
| 9         | -7.616                  |    | 6.692 |
| 10        | -7.624                  |    | 6.698 |
| 11        | -7.631                  |    | 6.705 |
| 12        | -7.639                  |    | 6.711 |

### **Forecast Evaluation**

Forecast Evaluation Measures

|                                                | Mean    | Variance |
|------------------------------------------------|---------|----------|
| Mean Squared Error(MSE)                        | 18.41   | 674      |
| Median Squared Error(MedSE)                    | 10.85   | 33.91    |
| Mean Error(ME)                                 | -0.5271 | 4.921    |
| Mean Absolute Error(MAE)                       | 3.664   | 13.71    |
| Root Mean Squared Error(RMSE)                  | 4.291   | 25.96    |
| Mean Absolute Percentage Error(MAPE)           | .NaN    | 2.144    |
| Adjusted Mean Absolute Percentage Error(AMAPE) | .NaN    | 0.3743   |
| Percentage Correct Sign(PCS)                   | 0.25    | .NaN     |
| Theil Inequality Coefficient(TIC)              | 0.9714  | 0.5777   |
| Logarithmic Loss Function(LL)                  | .NaN    | 1.559    |

### Mean Square Error (MSE)

$$MSE(h) = \frac{1}{h} \sum_{t=1}^{H} (\hat{\sigma}_{t+h} - \sigma_{T+t(h)})^{2}$$

where

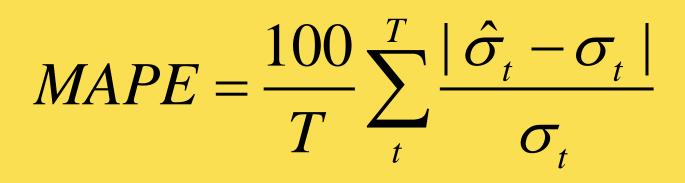
h = forecast horizon lengthT = largest number of in - sample obs

### Root mean squared error (RMSE)

$$MSE(h) = \sqrt{\frac{1}{h} \sum_{t=1}^{H} (\hat{\sigma}_{t+h} - \sigma_{T+t(h)})^2}$$

#### where

h = forecast horizon lengthT = largest number of in - sample obs


### Mean Error (ME)

$$ME = \frac{1}{T} \sum_{t=1}^{T} \left( \hat{\sigma}_{t} - \sigma_{t} \right)$$

### Mean Absolute Error

# $MAE = \frac{1}{T} \sum_{t=1}^{T} |\hat{\sigma}_t - \sigma_t|$

### Mean Absolute Percentage Error (MAPE)



MAPE tends to exaggerate when the counts are small to begin with.

### Adjusted (symmetric) MAPE

- Corrects for asymmetry between actual and forecast values
- Can be interpreted as a percentage error

$$AMAPE = \frac{1}{T - T_1} \sum_{t=T_1}^{T} \left| \frac{x_{t+n} - f_{t,n}}{x_{t+n} + f_{t,n}} \right|$$

 $T = total \ obs \ available$ 

 $T - T_1$  = holdout sample used for forecasting

Brooks, C.(1997). Linear and Non-linear Non-Forecastability of High Frequency Exchange Rates, Journal of Forecasting, 16, 125-147.

### Symmetric MAPE caveats

 Symmetric MAPE, according to Goodwin and Lawton (2000) IJF (15), 405-408 is not symmetric in that it treats positive and negative errors differently, particularly where they have large absolute values.

### Theil's U

$$Theil - U = \frac{1}{T} \frac{\sum_{t=1}^{T} (\hat{\sigma}_t - \sigma_t)^2}{\sum_{t=1}^{T} (\hat{\sigma}_t^{BM} - \sigma_t)^2}$$

BM=baseline model may be a random walk model. This uses another model as a baseline. Scores less than 1.00 are good and those more than 1.00 not so good.

### Logarithmic Loss Function

$$LL = \frac{1}{T} \sum_{t=1}^{T} \left[ \ln(e_{T-t}^2) - \ln(\hat{h}_{T-t}) \right]^2$$

Lopez, J. (1999) Evaluating the Predictive Accuracy of Volatility Models, FRB of San Francisco, p.6.

### Forecasting VaR follows shortly

# Simulation of CEV confidence intervals

- The model just run can be simulated from the Ox Code.
- The simulations generates multiple replications.
- Means and standard errors can be computed.
- These CEV means and standard errors can be graphed.

### Simulation of GARCH models

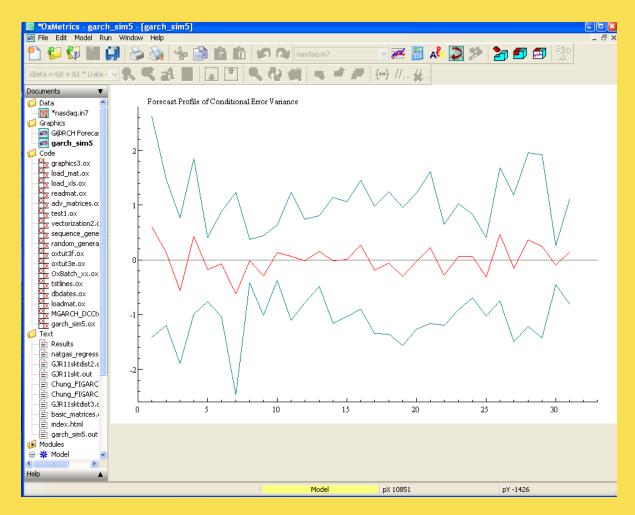
| 2 | G@RCH       | - Monte Carlo   | J                  |       |                      |        |      | × |
|---|-------------|-----------------|--------------------|-------|----------------------|--------|------|---|
|   | All         | G@RCH           | PcGive             | STAMP |                      |        |      |   |
| P | 1odule      | G@RCH           |                    |       |                      |        |      |   |
| C | lategory    | Monte Carlo     |                    |       |                      |        |      | ~ |
| Ν | 1odel class | Simulation of U | nivariate GARCH Mo | odels |                      |        |      | ~ |
|   | 0           |                 | Formulate          |       | Estimate<br>Progress | ><br>< | Test |   |
|   |             |                 | Options            |       | Close                |        |      |   |

### Simulation menu

| Sim | ulation - Simulation                                | ×              |
|-----|-----------------------------------------------------|----------------|
|     | Select a GARCH model                                |                |
|     | GARCH                                               | •              |
|     | EGARCH                                              | 0              |
|     | GJR                                                 | 0              |
|     | APARCH                                              | 0              |
|     | ARMA Orders                                         |                |
|     | AR order (m)                                        | 0              |
|     | MA order (I)                                        | 0              |
|     | GARCH Orders                                        |                |
|     | Garch order (p)                                     | 1              |
|     | Arch order (q)                                      | 1              |
| Ξ   | Distribution                                        |                |
|     | Gauss                                               | 0              |
|     | Student                                             | $\odot$        |
|     | GED                                                 | 0              |
|     | Skewed Student                                      | 0              |
|     | Options                                             |                |
|     | Number of simulations                               | 5              |
|     | Number of observations                              | 30             |
|     | Seed (-1 resets to the initial seed)                | 0              |
|     | Plot the simulated data                             |                |
|     | Store the simulated data                            |                |
|     | Default name for the simulated series               | \$y_t\$        |
|     | Default name for the simulated conditional variance | \$\sigma_t^2\$ |
|     |                                                     |                |
|     |                                                     |                |
|     | ОК                                                  | Cancel         |


### Simulations file created

| ) 💕 🕼 📗 🕻                                       | ]        | ا 🍁 ا 🔬 د    | 🗎 🛍 🛍    | 50        | !simulation4.in7 | v 🏄        | š 🔝 🖧     | 2 🤌 💈     | 2 🗖 🔁     | 120       |
|-------------------------------------------------|----------|--------------|----------|-----------|------------------|------------|-----------|-----------|-----------|-----------|
| eta = 8:0 + 8:1 * Lrate -                       |          | <b>4 A B</b> |          | R. (2)    | 1                | 🚛   {+> // |           |           |           |           |
| uments 🔻                                        |          | yl           | у2       | уЗ        | y4               | y5         | sigmalt^2 | sigma2t^2 | sigma3t^2 | sigma4t^2 |
| Data 🔼                                          | 1        | .169019      | 1.12612  | .812508   | -1.04443         | 1.96627    | . 5       | . 5       | . 5       | . 5       |
| 🎇 *nasdaq.in7                                   | 2        | 1.18054      | 288153   | 376089    | 50354            | .67862     | .452529   | . 574572  | .514402   | .561182   |
| 🧱 !simulation4.i                                | 3        | 141352       | .334158  | -1.49112  | -1.13621         | 383555     | . 549038  | .518547   | . 476428  | . 525318  |
| Graphics                                        | 4        | 633318       | . 893473 | .953508   | 190201           | 1.15436    | .491521   | . 475346  | . 656478  | .601635   |
| 🥂 G@RCH Foreca                                  | 5        | 459311       | 24788    | .317386   | 458766           | 0258676    | . 484603  | . 508329  | .664203   | . 535316  |
| 🚧 garch_sim5                                    | 6        | 222918       | .735118  | .113883   | 302017           | 693954     | .459708   | . 463313  | . 590811  | . 500227  |
| Code<br>V graphics3.ox                          | 7        | .155296      | -1.33448 | .180274   | 00557622         | -2.08851   | .423191   | . 47323   | . 523728  | .459917   |
| v graphics.ox                                   | 8        | 0783748      | 069647   | .256827   | .116811          | 326772     | .390664   | .609346   | . 471882  | . 417958  |
|                                                 | 9        | 100535       | 148988   | 994155    | .0391714         | 227777     | .363312   | . 538111  | . 433598  | . 385507  |
| vx load_xls.ox<br>vx readmat.ox                 | 10       | .407801      | .292544  | 0737646   | . 302532         | 25192      | .341872   | .483016   | . 497711  | .358491   |
| adv_matrices.o:                                 | 11       | .0627513     | .102212  | 509087    | 457543           | 1.12196    | . 339322  | . 444396  | . 44887   | . 34535   |
| adv_matrices.o:                                 | 12       | 462648       | .428915  | 354197    | 126076           | . 435833   | .321736   | . 406367  | .436041   | .34814    |
| vectorization2.c                                | 13       | . 477128     | 0945392  | 314593    | .200346          | . 528593   | .329728   | . 392643  | .412097   | . 330364  |
| z sequence_gene                                 | 14       | .657314      | .299077  | 200368    | .209897          | -1.02513   | .335603   | .365207   | .390214   | .317914   |
| random_genera                                   | 15       | . 199092     | .282967  | 201422    | .666212          | 881394     | .360384   | .350522   | .366596   | . 308327  |
| oxtut3f.ox                                      | 16       | 282536       | .0770651 | 307738    | . 698636         | 1.19503    | .341883   | . 337869  | .347747   | . 339723  |
| oxtut3e.ox<br>OxBatch xx.ox                     | 17       | 927427       | .0315634 | 786861    | . 163535         | . 597634   | . 332064  | . 320745  | . 338293  | . 3692    |
| CXBatch_xx.ox                                   | 18       | . 403487     | .671414  | 0707442   | -1.22721         | 0583207    | . 403528  | . 306642  | . 384133  | . 347718  |
| dbdates.ox                                      | 19       | 898186       | 840161   | .130833   | 614895           | .720988    | . 388306  | . 339061  | .357959   | . 481244  |
| loadmat.ox                                      | 20       | -1.19054     | .243597  | .632912   | 0285347          | .235865    | . 443125  | . 393526  | . 337827  | . 474045  |
| GARCH_DCCb                                      | 20       | 1.49255      | 0976025  | 0128015   | 56485            | . 303794   | . 548629  | . 370278  | .359064   | . 429384  |
| MGARCH_DCCti                                    | 21       | . 497524     | 529842   | 880838    | 352779           | 100019     | . 708698  | . 34738   | . 337303  | . 426553  |
| Text 🛛                                          | 22       | 556697       | . 290518 | . 855525  |                  | 00721031   | . 640726  | . 357047  | . 399202  | . 404403  |
| Results                                         | 23       | .467578      | .0553257 | 322024    | .534162          | 383009     | . 594695  | . 343506  | . 440852  | . 381311  |
| natgas_regress                                  | 24       | 42579        | 465822   | .00136728 | .176135          | 835628     | . 546694  | .343506   | .440852   | . 382524  |
| GJR11sktdist2.c                                 |          | 1.0542       | 0534958  | 1.33686   | 153095           | . 165063   | . 506347  | . 323011  | . 380972  | . 358779  |
| GJR11skt.out                                    | 26<br>27 | 00519389     | 0334958  | .700679   | 0414241          | -1.36946   | . 564112  | . 332649  | . 380972  | . 339683  |
| Chung_FIGARC                                    |          |              |          |           |                  |            |           |           |           |           |
| GJR11sktdist3.c                                 | 28       | . 531862     | 395052   | . 435184  | 465564           | 1.72308    | . 501313  | . 303388  | . 522371  | . 322011  |
| basic_matrices.                                 | 29       | 1.03317      | 133282   | .0907544  | -1.02679         | 1.28669    | . 478284  | . 309117  | . 485975  | . 330225  |
| basic_matrices.<br>index.html<br>garch_sim5.out | 30       | 187045       | 311387   | .223466   | 0588587          | 121525     | .537315   | . 299347  | . 439432  | . 421674  |
|                                                 | 31       | .864221      | 315571   | .0699841  | 382183           | .512331    | .483735   | .299806   | .406103   | .387813   |
| Modules 🛛 💌                                     |          |              |          |           |                  |            |           |           |           |           |
|                                                 |          |              |          |           |                  |            |           |           |           |           |


# Alt-O invokes the Ox Code of the model just run

```
#include <oxstd.h>
#import <packages/Garch5/garch>
#include <oxdraw.h>
#import <database>
#import <simulations/>
main()
   //--- Ox code for G@RCH( 0)
   decl model = new Garch();
   decl z,eps,sigma2,y,y_all=<>,sigma2_all=<>;
   decl new name simul y=new array[5];
   decl new name simul sigma2=new array[5];
   for (decl i=0;i<5;++i)</pre>
   {
        z=rann(31,1);
       model.Simulate GARCH(0.05,<0.1>,<0.8>, z, 0, &eps, &sigma2);
        y=eps+0.01;
        y all~=y;
        sigma2 all~=sigma2;
        new_name_simul_y[i]=sprint("y",i+1);
        new name simul sigma2[i]=sprint("sigma",i+1,"t<sup>2</sup>");
   -}
   decl plot=0;
   for (decl i=0;i<5;++i)</pre>
   {
        DrawTMatrix(plot++, y all[][0]', new name simul y[i]);
        DrawTMatrix(plot++, sigma2_all[][0]', new_name_simul_sigma2[i]);
   }
   ShowDrawWindow();
   decl dbase = new Database();
   dbase.Create(1,1,1,rows(y),1);
   dbase.Append(y all, new name simul y);
   dbase.Append(sigma2 all,new name simul sigma2);
   dbase.Save("!simulation4.in7");
 // delete dbase;
                                       Model
                                                    L1C1 Win
```

# Remainder of Ox code for simulation



### Graphed simulated confidence intervals around the Conditional Error Variance



### **Outlier Modeling**

- Mean model outliers
- Variance model outliers
- Outliers in both mean and variance model may be designated.
- These can be important in model fitting.

### Value-at-Risk

• Normal APARCH (1,1)

$$\sigma_t^{\delta} = \omega + a_1 (|\varepsilon_{t-1}| - \gamma_1 \varepsilon_{t-1})^{\delta} + b_1 \sigma_{t-1}^{\delta}$$

- APARCH has long memory capabilities and threshold capabilities built in. Leverage effects are captured.
- Is usually used with a skewed t distribution. In this case I use an APARCH(1,1) with a t distribution to generate the Value at Risk. It does handle the fat-tails but in this case there is no appreciable asymmetry.

### Value-at-Risk

- In-sample
  - Models are tested at  $\alpha$  and  $(1 \alpha)$  levels for both long and short positions at various VaR quantiles .
  - Graphical output is available here.
  - The failure rate is indicated by number of times absolute value > forecasted VaR.
  - Kupiec test is available
  - Dynamic regression quantile is available.
  - Expected shortfall for long and short positions

### **Out-of-sample VaR**

- Backtesting on the estimation sample
- Out-of-sample length defined by user

| stimate - GARCH Mo   | dels 🛛                            | ¢, |
|----------------------|-----------------------------------|----|
| Choose the estim     | ation sample:                     |    |
| Selection sample     | 1989-09-28 - 2004-09-27           |    |
| Estimation starts at | 1989-09-28                        |    |
| Estimation ends at   | 2004-09-27                        |    |
| Less forecasts       | 20                                |    |
| Choose the estim     | ation method:                     |    |
| BFGS                 | •                                 |    |
| BFGS-BOUNDS          | 0                                 |    |
| MaxSA                | 0                                 |    |
|                      | Setting the valida segment length | t  |
|                      | OK Cancel                         |    |

### **Opt for Forecasts**

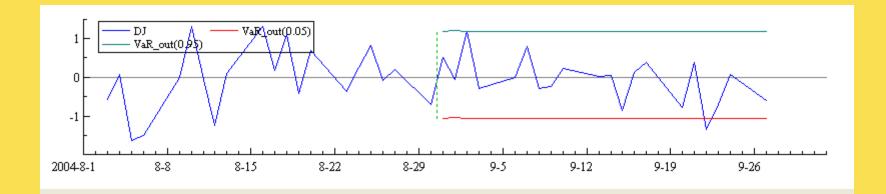
| Test Menu              |           | × |
|------------------------|-----------|---|
| Test Menu              |           |   |
| Tests                  |           |   |
| Graphic Analysis       |           |   |
| Forecast               |           |   |
| Exclusion Restrictions |           |   |
| Linear Restrictions    |           |   |
| Store                  |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        | OK Cancel |   |

### Set the VaR out-of-sample horizon

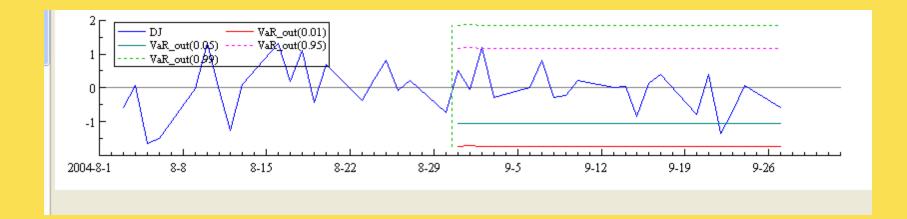
| For | Forecast - GARCH Models                    |            |  |  |  |  |
|-----|--------------------------------------------|------------|--|--|--|--|
|     | Forecasting                                |            |  |  |  |  |
|     | Number of forecasts                        | 20         |  |  |  |  |
| Ξ   | Options                                    |            |  |  |  |  |
|     | Print Forecasts Errors Measures            |            |  |  |  |  |
|     | Print Forecasts                            |            |  |  |  |  |
|     | Plot Forecasts                             |            |  |  |  |  |
|     | Add sample average of conditional variance |            |  |  |  |  |
|     | Number of pre-observations                 | 20         |  |  |  |  |
| +   | Confidence Interval                        |            |  |  |  |  |
| Ξ   | VaR Forecasts                              |            |  |  |  |  |
|     | Print VaR Forecasts                        |            |  |  |  |  |
|     | Plot VaR Forecasts                         |            |  |  |  |  |
|     | VaR levels:                                | 0.05; 0.95 |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     |                                            |            |  |  |  |  |
|     | (                                          | OK Cancel  |  |  |  |  |

### **Printout of VaR Forecasts**

\*\* VaR FORECASTS \*\*


Number of Forecasts: 20

| Horizon | 0.01   | 0.05   | 0.95  | 0.99  |
|---------|--------|--------|-------|-------|
| 1       | -1.723 | -1.06  | 1.176 | 1.839 |
| 2       | -1.702 | -1.039 | 1.197 | 1.86  |
| 3       | -1.722 | -1.059 | 1.177 | 1.84  |
| 4       | -1.722 | -1.059 | 1.177 | 1.84  |
| 5       | -1.722 | -1.059 | 1.177 | 1.84  |
| 6       | -1.722 | -1.059 | 1.177 | 1.84  |
| 7       | -1.722 | -1.059 | 1.177 | 1.84  |
| 8       | -1.722 | -1.059 | 1.177 | 1.84  |
| 9       | -1.722 | -1.059 | 1.177 | 1.84  |
| 10      | -1.722 | -1.059 | 1.177 | 1.84  |
| 11      | -1.722 | -1.059 | 1.177 | 1.84  |
| 12      | -1.722 | -1.059 | 1.177 | 1.84  |
| 13      | -1.722 | -1.059 | 1.177 | 1.84  |
| 14      | -1.722 | -1.059 | 1.177 | 1.84  |
| 15      | -1.722 | -1.059 | 1.177 | 1.84  |
| 16      | -1.722 | -1.059 | 1.177 | 1.84  |
| 17      | -1.722 | -1.059 | 1.177 | 1.84  |
| 18      | -1.722 | -1.059 | 1.177 | 1.84  |
| 19      | -1.722 | -1.059 | 1.177 | 1.84  |
| 20      | -1.722 | -1.059 | 1.177 | 1.84  |
|         |        |        |       |       |


### Requesting More VaR levels

| Forecast - GARCH Models                    |                      |  |  |  |
|--------------------------------------------|----------------------|--|--|--|
| Forecasting                                |                      |  |  |  |
| Number of forecasts                        | 20                   |  |  |  |
| - Options                                  |                      |  |  |  |
| Print Forecasts Errors Measures            |                      |  |  |  |
| Print Forecasts                            |                      |  |  |  |
| Plot Forecasts                             |                      |  |  |  |
| Add sample average of conditional variance |                      |  |  |  |
| Number of pre-observations                 | 20                   |  |  |  |
| Confidence Interval                        |                      |  |  |  |
| None                                       | 0                    |  |  |  |
| Error Bands                                | 0                    |  |  |  |
| Error Bars                                 | 0                    |  |  |  |
| Error Fans                                 | $\odot$              |  |  |  |
| Critical Value                             | 2                    |  |  |  |
| VaR Forecasts                              |                      |  |  |  |
| Print VaR Forecasts                        |                      |  |  |  |
| Plot VaR Forecasts                         |                      |  |  |  |
| VaR levels:                                | 0.01;0.05; 0.95;0.99 |  |  |  |
|                                            |                      |  |  |  |
|                                            |                      |  |  |  |
|                                            |                      |  |  |  |
|                                            |                      |  |  |  |
|                                            |                      |  |  |  |
| l                                          |                      |  |  |  |

### Graphical Forecast of out-of-sample VaR



### Graphical Forecast of out-of-sample VaR



### Long Memory Models

- APARCH (Ding, Engle, and Granger, 1993)
- FIGARCH-Baillie, Bollerslev, and Mikkelsen(BBM)
- FIGARCH-Chung
- FIAPARCH (Tse, 1998)
- FIAPARCH-Chung
- FIEGARCH (Bollerslev and Mikkelsen, 1996)
- Davidson's Hyperbolic GARCH

### Long-Memory Processes

Fractional differencing for long memory processes

$$(1-L)^d = \sum_{k=0}^{\infty} \frac{\Gamma(d+1)}{\Gamma(k+1)\Gamma(d-k+1)} L^k$$

where

 $\Gamma(n) = gamma \ function \ (n-1)!$ 

We substitute this function for (1-L) in FIGARCH, etc.

### Long-Memory Models

- We run the basic descriptives test on it
  - And find that it has long memory with a GPH
  - d = .2885 with p = 0.0000.
  - Therefore we try a long-memory model.
  - A FIGARCH Chung model

### Asymmetric and Long Memory models

| 🖃 AR(FI)MA Orders (m,d,l |         |  |
|--------------------------|---------|--|
| AR order (m)             | 1       |  |
| MA order (l)             | 0       |  |
| ARFIMA                   |         |  |
| ş 🖃 GARCH Orders         |         |  |
| Garch order (p)          | 1       |  |
| Arch order (q)           | 1       |  |
| 🖃 Model                  |         |  |
| - GARCH                  | 0       |  |
| EGARCH                   | 0       |  |
| J GJR                    | 0       |  |
| APARCH                   | 0       |  |
| IGARCH                   | 0       |  |
| FIGARCH-BBM              | 0       |  |
| FIGARCH-CHUNG            | $\odot$ |  |
| FIEGARCH                 | 0       |  |
| FIAPARCH-BBM             | 0       |  |
| FIAPARCH-CHUNG           | 0       |  |
| HYGARCH                  | 0       |  |
| RISKMETRICS              | 0       |  |
| with lambda :            | 0.94    |  |
| Exactionally Internated  | Andale  |  |

а

S

У

m

m

e t

r

С

# Ar(1) - Chung's Method with normal distribution

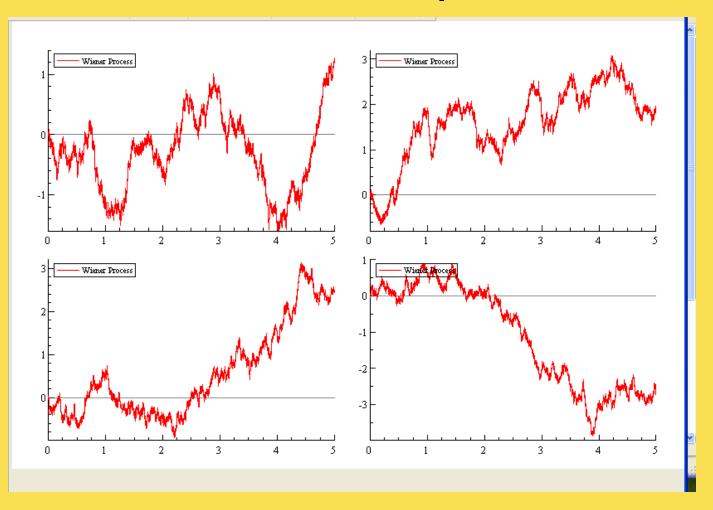
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\* G@RCH( 5) SPECIFICATIONS \*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Dependent variable : Nasdag Mean Equation : ARMA (1, 0) model. No regressor in the conditional mean Variance Equation : FIGARCH (1, d, 1) model estimated with Chung's method. No regressor in the conditional variance Normal distribution. Strong convergence using numerical derivatives Log-likelihood = -5385.77Please wait : Computing the Std Errors ... Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value t-prob Cst(M) 0.088338 0.016143 5.472 0.0000 AR(1) 0.197900 0.018280 10.83 0.0000 Cst(V) 0.821616 0.27665 2.970 0.0030 d-Figarch 0.358937 0.048296 7.432 0.0000 0.045390 0.16180 0.2805 0.7791 ARCH(Phi1) GARCH(Beta1) 0.240098 0.18513 1.297 0.1947 No. Observations : 4093 No. Parameters : 6 Mean (Y) : 0.05517 Variance (Y) : 1.59189 : -0.74128 Kurtosis (Y) Skewness (Y) : 14.25531 Log Likelihood : -5385.775 The sample mean of squared residuals was used to start recursion. The positivity constraint for the FIGARCH (1,d,1) is observed. => See Chung (1999), Appendix A, for more details.

### AR(1) Chung Model sk(t)

| 🖹 File Edit Search Vi     | ew Model Run Window Help                                                   |  |  |  |  |  |  |  |  |
|---------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 🎦 🚱 🕼 🛯                   | 🎦 🕼 🕼 🛄 😓 🗞 🍁 🕋 💼 💼 🕢 🕫 📾 nasdaq.in7 💽 🜌 📓 Å 🔯 🌮 🎦 🖅 💱                     |  |  |  |  |  |  |  |  |
| xbeta = &0 + &1 * Lrate - | xbeta = 80 + 81 * Lrate - 🚽 🛼 🍳 🛃 🗾 📰 🖳 🎦 🍳 🆓 🕵 👞 📽 🞜 🙌 // 🐇               |  |  |  |  |  |  |  |  |
| Documents 🛛 🔻             | Documents 🔻 🗖                                                              |  |  |  |  |  |  |  |  |
| ta                        | *********                                                                  |  |  |  |  |  |  |  |  |
| *nasdaq.in7               | ** G@RCH( 3) SPECIFICATIONS **                                             |  |  |  |  |  |  |  |  |
| aphics                    | *****                                                                      |  |  |  |  |  |  |  |  |
| G@RCH Forecasting         | Dependent variable : Nasdaq                                                |  |  |  |  |  |  |  |  |
| Data Plot                 | Mean Equation : ARMA (1, 0) model.                                         |  |  |  |  |  |  |  |  |
| de                        | No regressor in the conditional mean                                       |  |  |  |  |  |  |  |  |
| ×t                        | Variance Equation : FIGARCH (1, d, 1) model estimated with Chung's method. |  |  |  |  |  |  |  |  |
| Results                   | No regressor in the conditional variance                                   |  |  |  |  |  |  |  |  |
| GJR11sktdist2.out         | Skewed Student distribution, with 7.28811 degrees of freedom.              |  |  |  |  |  |  |  |  |
| GJR11skt.out              | and asymmetry coefficient (log xi) -0.172222.                              |  |  |  |  |  |  |  |  |
| Chung_FIGARCH.out         |                                                                            |  |  |  |  |  |  |  |  |
| Chung_FIGARCH2.out        | Strong convergence using numerical derivatives                             |  |  |  |  |  |  |  |  |
| GJR11sktdist3.out         | Log-likelihood = -5191.14                                                  |  |  |  |  |  |  |  |  |
| basic_matrices.out        | Please wait : Computing the Std Errors                                     |  |  |  |  |  |  |  |  |
| dules<br>Model            |                                                                            |  |  |  |  |  |  |  |  |
| - 🏶 G@RCH                 | Robust Standard Errors (Sandwich formula)                                  |  |  |  |  |  |  |  |  |
| -∵# G@RCH                 | Coefficient Std.Error t-value t-prob                                       |  |  |  |  |  |  |  |  |
| · · · STAMP               | Cst(M) 0.082381 0.013617 6.050 0.0000                                      |  |  |  |  |  |  |  |  |
| Ox                        | AR(1) 0.174820 0.016583 10.54 0.0000                                       |  |  |  |  |  |  |  |  |
| OxDebua                   | Cat(V) 0.565073 0.18343 3.081 0.0021                                       |  |  |  |  |  |  |  |  |
| OxGauss                   | d-Figarch 0.410681 0.042187 9.735 0.0000                                   |  |  |  |  |  |  |  |  |
| OxPack                    | ARCH(Phil) 0.110219 0.086098 1.280 0.2006                                  |  |  |  |  |  |  |  |  |
| OxRun                     | GARCH(Betal) 0.396601 0.10643 3.726 0.0002                                 |  |  |  |  |  |  |  |  |
| Ox - interactive          | Asymmetry -0.172222 0.022033 -7.817 0.0000                                 |  |  |  |  |  |  |  |  |
| X12arima                  | Tail 7.288110 0.68609 10.62 0.0000                                         |  |  |  |  |  |  |  |  |
|                           |                                                                            |  |  |  |  |  |  |  |  |
|                           | No. Observations : 4083 No. Parameters : 8                                 |  |  |  |  |  |  |  |  |
|                           | No. $OSEIVACIONS : 0.05928 Variance (Y) : 1.55579$                         |  |  |  |  |  |  |  |  |
|                           | Skewness (Y) : $-0.72576$ Kurtosis (Y) : $14.44751$                        |  |  |  |  |  |  |  |  |
|                           | Log Likelihood : -5191.143                                                 |  |  |  |  |  |  |  |  |
|                           |                                                                            |  |  |  |  |  |  |  |  |
|                           | The sample mean of squared residuals was used to start recursion.          |  |  |  |  |  |  |  |  |
|                           | The positivity constraint for the FIGARCH (1,d,1) is                       |  |  |  |  |  |  |  |  |
|                           | observed.                                                                  |  |  |  |  |  |  |  |  |
|                           | => See Chung (1999), Appendix A, for more details.                         |  |  |  |  |  |  |  |  |
|                           | -> See Grang (1999), Appendix A, for more decaria.                         |  |  |  |  |  |  |  |  |

# Hyperbolic Garch (James Davidson)

- The generalized hyperbolic distribution was discovered by Barndorff-Neilson(1977) researching wind-blown sand.
- This distribution can be skewed and captures asymmetric effects that normal distributions cannot.
- This distribution describes long-memory processes.


#### **Continuous time Diffusion Models**

- Brownian motion simulation
- Diffusion models
- Diffusion models with jumps
- Microstructure noise with jumps

#### Ox Programs for Realized and Integrated Volatility diffusion models

```
#include <oxstd.h>
#include <oxdraw.h>
#import <packages/garch5/garch>
main()
    decl obs per day=2880; //2880
    decl number days=510;
    decl remove first days=10;
    decl m=obs per day*number days;
    decl Delta=1/obs per day;
    decl select every obs=10; //10
    decl theta=0.035;
    decl omega=0.635;
    decl lambda=0.296;
    decl p0=1;
    decl s20=0.1;
    decl P,Spot vol;
    decl garchobj = new Garch();
    garchobj.Simul Continuous GARCH(p0,s20,m, Delta,theta,omega,lambda,&P,&Spot vol);
                                                                                      // SIMULA
    // Remove the first 'remove first days' observations
    if (remove first days>0)
    {
       P=P[remove_first_days*obs_per_day:];
        Spot vol=Spot vol[remove first days*obs per day:];
        number days-=remove first days;
        m=obs per day*number days;
    3
    // Compute the Integrated volatility
    decl IV=sumr(reshape(Spot vol,number days,obs per day).*Delta);
    // Compute the 5-min prices and daily prices
    decl sel = reshape(zeros(select every obs-1,1)|1,m,1);
    decl P_5min=selectifr(P,sel);
```

#### Ox can simulate continuous time Brownian Motion processes



### GARCH type output

#### \*\*\*\*\*\*\*\*\*\*\*\*\*

#### \*\* SPECIFICATIONS \*\*

Dependent variable : Daily returns Mean Equation : ARMA (O, O) model. No regressor in the conditional mean Variance Equation : GARCH (1, 1) model. No regressor in the conditional variance Normal distribution.

Strong convergence using numerical derivatives Log-likelihood = -689.927 Please wait : Computing the Std Errors ...

Robust Standard Errors (Sandwich formula)

|              | Coefficient | Std.Error | t-value | t-prob |
|--------------|-------------|-----------|---------|--------|
| Cst(M)       | 0.030386    | 0.040286  | 0.7543  | 0.4510 |
| Cst (V)      | 0.086647    | 0.049648  | 1.745   | 0.0816 |
| ARCH(Alpha1) | 0.084538    | 0.033322  | 2.537   | 0.0115 |
| GARCH(Beta1) | 0.826288    | 0.067380  | 12.26   | 0.0000 |

 No. Observations :
 500
 No. Parameters :
 4

 Mean (Y)
 :
 0.02944
 Variance (Y)
 :
 0.97345

 Skewness (Y)
 :
 0.04487
 Kurtosis (Y)
 :
 4.30813

 Log Likelihood
 :
 -689.927
 Alpha[1]+Beta[1]:
 0.91083

```
The sample mean of squared residuals was used to start recursion.

The positivity constraint for the GARCH (1,1) is observed.

This constraint is alpha[L]/[1 - beta(L)] >= 0.

The unconditional variance is 0.971656

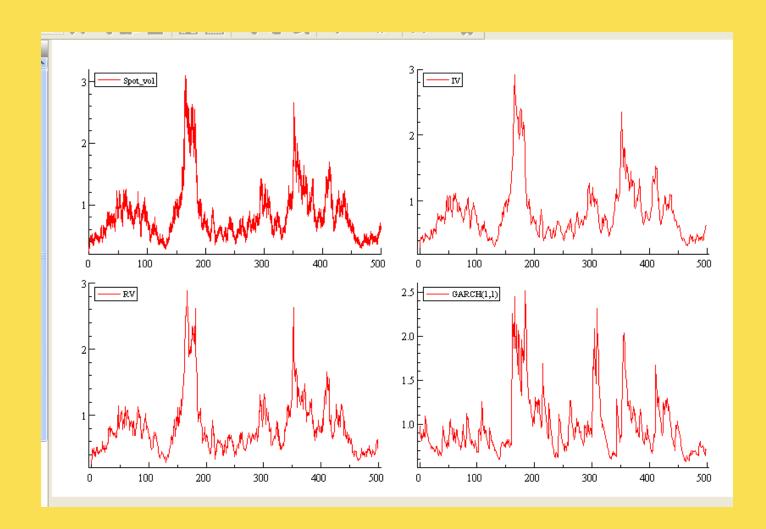
The conditions are alpha[0] > 0, alpha[L] + beta[L] < 1 and alpha[i] + beta[i] >= 0.

=> See Doornik & Ooms (2001) for more details.

The condition for existence of the fourth moment of the GARCH is observed.

The constraint equals 0.843896 and should be < 1.

=> See Ling & McAleer (2001) for details.
```


#### Mean Spot and Integrated Volatility Mean GARCH volatility

Estimated Parameters Vector : 0.030386; 0.086647; 0.084538; 0.826288

Elapsed Time : 0.125 seconds (or 0.00208333 minutes).

Mean Spot vol: 0.82768 Mean IV: 0.82768 Mean GARCH vol: 0.975741 Mean squared daily returns: 0.974312

#### **Graphical Output**



# Other Ox Diffusion Models

- Other diffusion models include diffusion models for estimation of realized volatility with jumps.
- Lee-Mykland's statistical test for detecting jumps at ultra-high-frequency.
- Estimation of integrated volatility with jumps.
- estimation of microstructure noise.
- Estimation of intraday seasonality with flexible Fourier functional form filter.

# **Multivariate GARCH**

- Engle and Kroner (1995) Vec Model
- Baba, Engle, Kraft, Kroner (BEKK) models

   Scalar
  - Diagonal
- RiskMetrics MGARCH
- Factor GARCH
  - Carol Alexander's Orthogonal GARCH
  - GOGARCH Generalized Orthogonal GARCH (ML, NLS)

### Vec Model (Engle and Kroner, 1995)

 $Vec(H_t) = vec(\Omega) + Avec(r_{t-1}r_{t-1}') + Bvec(H_{t-1})$ where A and B are  $n^2xn^2$  matrices with structure following from symmetry of  $H_t$ vec = column stacking operator

with variance targeting,  $vec(\Omega) = (I - A - B)vec(S)$ 

where 
$$S = \frac{1}{T} \sum_{t} (r_t r_t')$$

### Multivariate GARCH menu

| Settings - MGARCH Models |                    |           | 3 |
|--------------------------|--------------------|-----------|---|
|                          | Model              |           |   |
|                          | Scalar-BEKK        | 0         |   |
|                          | Diag-BEKK          | Ŏ         |   |
|                          | RiskMetrics        | 0         |   |
|                          | ccc                | 0         |   |
|                          | DCC (ENGLE)        | •         |   |
|                          | DCC (TSE and TSUI) | 0         |   |
|                          | OGARCH             | 0         |   |
|                          | GOGARCH ML         | 0         |   |
|                          | GOGARCH NLS        | 0         |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    |           |   |
|                          |                    | OK Cancel |   |

#### BEKK(p,q) Model Baba, Engle, Kraft, and Kroner (1995)

$$H_{t} = C'C + \sum_{i=1}^{q} A_{i}' \varepsilon_{t-1} \varepsilon_{t-1}' A_{i} + \sum_{j=1}^{p} G_{j}' H_{t-j} G_{j}$$

C,A, and G are nxn, but C is upper triangular

### **Problem-number of parameters**

- ARCH and GARCH BEKK(1,1) models have N(5\*N+1)/2 parameters. This is a lot.
- To reduce the number of parameters, constraints have to be imposed.
- The curse of dimensionality can slow down or cause the model to fail converge.

#### Assumptions

Kronecker product

This model is covariance stationary if

$$\sum_{i=1}^{q} a_{nn,i}^{2} + \sum_{j=1}^{p} g_{nn,j}^{2} < 1$$

When it exists, the unconditional variance matrix  $\Sigma \equiv E(H_t)$ of the BEKK model =

$$vec(\Sigma) = \left[ I_{N^{2}} - \sum_{i=1}^{q} (A_{i} \otimes A_{i})' - \sum_{j=1}^{p} (G_{j} \otimes G_{j})' \right]^{-1}$$

#### **Kronecker Product**

Let A be an mxn matrix and B be a pxq matrix, then the Kronecker product  $A \otimes B$  is an mpxnq matrix

$$\begin{pmatrix} a_{11}B \dots a_{1n}B \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{m1}B \dots a_{mn}B \end{pmatrix}$$
 and if  $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ , then  
$$A \otimes B = \begin{pmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{pmatrix}$$

### Variance Targeting (Engle and Mezrich, 1996)

- An estimate of the unconditional covariance matrix was obtained by variance targeting.
- This reduces the number of parameters that needs to be estimated.
- In the BEKK model, we replace C'C by

$$unvec[I_{N^2} - \sum_{t=1}^{q} (A \otimes A)' - \sum_{t=1}^{p} (G \otimes G)']\hat{\Sigma}$$

where

unvec is the column unstacking operator  $\hat{\Sigma} =$  unconditional vcv of  $\varepsilon_t$ 

# **Diagonal BEKK**

 Matrices C and G are diagonal to restrict the number of parameters.

### Scalar BEKK

- Another way to reduce the number of parameters is to run a Scalar BEKK.
- Matrices A and G are matrices of ones multiplied by a scalar.

RiskMetrics MGARCH (J.P. Morgan, 1996)

$$H_{t} = (1 - \lambda)\varepsilon_{t-1}\varepsilon_{t-1} + \lambda H_{t-1}$$
  
or

$$Ht = \frac{(1-\lambda)}{(1-\lambda)^{t-1}} \sum_{t=1}^{t-1} \lambda^{i-1} \varepsilon_{t-1} \varepsilon_{t-1}$$
  
where the decay factor  
 $0 < \lambda < 1$   
 $\lambda = .94$  for daily data  
 $\lambda = .97$  for monthly data

#### "Orthogonal GARCH"

by Carol Alexander(2001), Orthogonal GARCH in Alexander, Carol. (ed). *Mastering Risk Vol. 2: Applications*, Financial Times, pp.24-38

- Suppose you have: T obs, K asset or risk factors is summarized by TxK matrix Y.
- You can generate factor GARCH where the components are univariate GARCH models. We begin with Principal Components Analysis.
- PCA will yield up to k components.
- Procedure

1 standardize the series in TxK matrix X.

#### Orthogonal GARCH procedure-cont'd

- X represents the same variables in Y.
- Standardize the columns in X so that they have mean=0 and std dev=1, so if ith
- Risk factor or asset return in system is y, then the normalized variables are

$$x_{i} = (y_{i} - \mu_{i}) / \sigma_{i}$$
where  $\mu = mean$ 

$$\sigma = std \ dev \ of \ i.$$

#### Orthogonal GARCH procedure-cont'd

- Construct the Sum of squares and crossproducts matrix, R=X'X.
- Solve Canonical equation of (R-ΛI)W=0 for eigenvalue-eigenvector decomposition.
- Solve for W = eigenvectors of X'X
- Solve for ∧=diagonal matrix of eigenvalues, ordered by decreasing magnitude.

### Orthogonal GARCH procedure-cont'd

- The principal components of Y are given by the TxK matrix P = XW.
- X'XW=₩∧.
- P'P=W'X'XW=W'W A but because W=orthogonal matrix, W'W=I so
- P'P=Λ, the diagonal matrix of eigenvalues, Variance of the ith component equals the ith eigenvalue of X'X.
- The standardized residuals  $\varepsilon_t = H_t^{-1}(y_t \mu)$

#### Orthogonal GARCH procedure cont'd

# $H_{t} = Var_{t-1}(\varepsilon_{t}) = V^{1/2}V_{t}V^{1/2}$

#### OGARCH(1,1,m) Alexander and Chibumba(1997)

 $y_{t} = u_{t} + \varepsilon_{t}$   $\varepsilon_{t} = V^{1/2}u_{t}$   $u_{t} = Z_{m}f_{t}$   $\varepsilon_{t} = V^{1/2}Z_{m}f_{t}$ where

 $V = diagonal(v_1, v_2, ..., v_n) \text{ with } v_i = population \text{ variances of } \varepsilon_{it}$   $Z_m = matrix \text{ of } P_m L_m^{1/2} = P_m \text{ diag}(l_{1,1}^{1/2} l_{2,1}^{1/2}, ..., l_{m,1}^{1/2})$ in which  $l_i = largest m$  eigenvalues of correlation matrix of  $\varepsilon_{it} \& P_m$   $L_m = matrix \text{ of eigenvalues}$   $P_m = Nxm \text{ matrix of orthogonal eigenvectors}$ 

Laurent, S. (2007) Estimating and Forecasting ARCH models using G@RCH, Timberlake Consultants, Ltd.,p. 177.

132

# Orthogonal GARCH-cont'd

 $f_{t} = (f_{1t}, f_{2t}, ..., f_{mt}) \text{ is a random process vector such that}$   $E_{t-1}(f_{t}) = 0 \quad \& \quad Var_{t-1}(f_{t}) = \sum_{t} = (\sigma_{1t}^{2}, \sigma_{2t}^{2}, ..., \sigma_{mt}^{2}),$   $\sigma_{f_{it}}^{2} = (1 - \alpha_{i} - \beta_{i}) + \gamma(\mathbf{x}_{t} - \overline{\mathbf{x}}) + \alpha_{i}f_{i,t-1}^{2} + \beta_{i}\sigma_{i,t-1}^{2}$   $H_{t} = Var_{t-1}(\varepsilon_{t}) = V^{1/2}V_{t}V^{1/2}$ where

$$V_t = Var_{t-1}(u_t) = Z_m \sum_t Z_m$$

Ibid, 178.

# OGARCH-cont'd

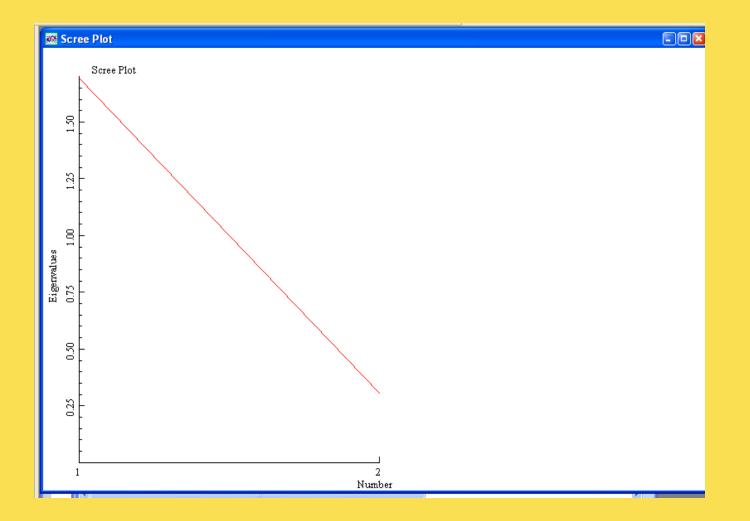
- Alexander warns that high dimensional factor estimation can grind to a halt.
- She suggests low order dimensional component extraction. She extracts 2 components from 12 series.
- QMLE is used.
- ARFIMA can be specified in the mean model.

### Select OGARCH

| Settings - MGARCH Models |                    |           |   |
|--------------------------|--------------------|-----------|---|
|                          | Model              |           |   |
|                          | Scalar-BEKK        | 0         |   |
|                          | Diag-BEKK          | 0         |   |
|                          | RiskMetrics        | 0         |   |
|                          | ccc                | 0         |   |
|                          | DCC (ENGLE)        | 0         |   |
|                          | DCC (TSE and TSUI) | 0         |   |
|                          | OGARCH             | $\odot$   |   |
|                          | GOGARCH ML         | 0         |   |
|                          | GOGARCH NLS        | 0         |   |
|                          |                    |           |   |
|                          |                    | OK Cancel | - |

### OGARCH

| Formulate - MGARCH Models - DJNQ.xls |                   |                                                                                                        |
|--------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------|
| Selection                            | Lags              | Database                                                                                               |
| Y DJ<br>Y NQ<br>Z FRIDAY             | Lag 0 to 👻<br>0 🗘 | Name<br>DAY<br>MONDAY<br>TUESDAY<br>WEDNESDAY<br>THURSDAY<br>FRIDAY<br>DOW JONES<br>NASDAQ<br>DJ<br>NQ |
| Z (Variance) Set                     | Clear>>           |                                                                                                        |
| Recall a previous model              |                   | DJNQ.xls                                                                                               |
|                                      | K Ca              | ancel                                                                                                  |


### Select AR(1)-GJR-GARCH(1,1) with scree plot and standard GARCH output for 2 components

| Mod | Model Settings - MGARCH Models                       |          |  |  |
|-----|------------------------------------------------------|----------|--|--|
|     | AR(FI)MA Orders (m,d,l)                              |          |  |  |
|     | AR order (m)                                         | 1        |  |  |
|     | MA order (II)                                        | 0        |  |  |
|     | ARFIMA                                               |          |  |  |
|     | GARCH Orders                                         |          |  |  |
|     | Garch order (p)                                      | 1        |  |  |
|     | Arch order (g)                                       | 1        |  |  |
| Ē   | Model                                                |          |  |  |
|     | GARCH                                                | 0        |  |  |
|     | EGARCH                                               | 0        |  |  |
|     | GJR                                                  | Ŭ<br>●   |  |  |
|     | APARCH                                               | 0        |  |  |
|     | IGARCH                                               | 0        |  |  |
|     | FIGARCH-BBM                                          | 0        |  |  |
|     | FIGARCH-CHUNG                                        | 0        |  |  |
|     | FIEGARCH                                             | 0        |  |  |
|     | FIAPARCH-BBM                                         | 0        |  |  |
|     | FIAPARCH-CHUNG                                       | 0        |  |  |
|     | HYGARCH                                              | 0        |  |  |
| +   | Fractionally Integrated Models                       | •        |  |  |
|     | Distribution                                         |          |  |  |
|     | Principal Components Options                         |          |  |  |
|     | Univariate GARCH outputs                             | Standard |  |  |
|     | Number of PC (0=print the PC Analysis results first) | 2        |  |  |
|     | Scree Plot                                           |          |  |  |
|     |                                                      |          |  |  |
|     | OK Cancel                                            |          |  |  |

#### Select 2 components

| Model Settings - MGARCH Models 🛛 🔀 |
|------------------------------------|
| Number of Principal Components     |
| M = 2                              |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| OK Cancel                          |

#### Scree plot suggests 1 component



#### Mean model estimates

-----Estimating the univariate GARCH model for DJ------

3

```
** SPECIFICATIONS **
    * * * * * * * * * * * * * * * * * *
Dependent variable : DJ
Mean Equation : ARMA (1, 0) model.
No regressor in the conditional mean
Variance Equation : GARCH (0, 0) model.
No regressor in the conditional variance
Normal distribution.
Strong convergence using numerical derivatives
Log-likelihood = -5596.64
Please wait : Computing the Std Errors ...
 Robust Standard Errors (Sandwich formula)
                 Coefficient Std.Error t-value t-prob
Cst(M)
                  0.033489 0.016156 2.073 0.0383
                -0.001076 0.023241 -0.04630 0.9631
AR(1)
Cst(V)
                  1.022913 0.043648 23.44 0.0000
No. Observations :
                       3913 No. Parameters :
Mean (Y)
             : 0.03369 Variance (Y) : 1.02307
Skewness (Y)
              : -0.30325 Kurtosis (Y) : 8.12068
Log Likelihood : -5596.639
Estimated Parameters Vector :
 0.033489;-0.001076; 1.022913
```

#### Mean model estimates-cont'd

```
** SPECIFICATIONS **
 *******
Dependent variable : NQ
Mean Equation : ARMA (1, 0) model.
No regressor in the conditional mean
Variance Equation : GARCH (O, O) model.
No regressor in the conditional variance
Normal distribution.
Strong convergence using numerical derivatives
Log-likelihood = -7248.07
Please wait : Computing the Std Errors ...
Robust Standard Errors (Sandwich formula)
                Coefficient Std.Error t-value t-prob
Cst(M)
                  0.035089 0.025376 1.383 0.1668
AR(1)
                  0.027975 0.026912 1.040 0.2986
                  2.379124
                              0.10661 22.32 0.0000
Cst(V)
                     3913 No. Parameters :
No. Observations :
                                                   3
Mean (Y)
               : 0.03527 Variance (Y) :
                                              2.38111
Skewness (Y)
              : -0.01238 Kurtosis (Y) :
                                             8.76442
Log Likelihood : -7248.073
Estimated Parameters Vector :
0.035089: 0.027975: 2.379124
Elapsed Time : 0.25 seconds (or 0.00416667 minutes).
```

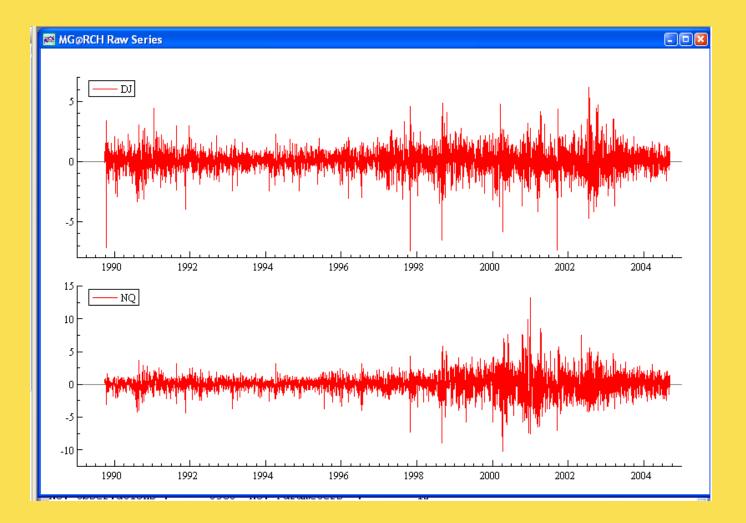
# **PCAI**

| Principal Components Analysis on the Correlation matrix                                                      |  |  |
|--------------------------------------------------------------------------------------------------------------|--|--|
| Component Eigenvalue Proportion Cumulative<br>1.0000 1.6929 0.84647 0.84647<br>2.0000 0.30706 0.15353 1.0000 |  |  |
| Eigenvectors                                                                                                 |  |  |
| PC_1 PC_2<br>DJ -0.70711 0.70711<br>NQ -0.70711 -0.70711                                                     |  |  |
| Correlation between the PC and the variables                                                                 |  |  |
| PC_1 PC_2<br>DJ -0.92004 0.39183<br>NQ -0.92004 -0.39183                                                     |  |  |
| STEP 1: PC Analysis                                                                                          |  |  |
| Principal Components Analysis on the Correlation matrix                                                      |  |  |
| Component Eigenvalue Proportion Cumulative<br>1.0000 1.6929 0.84647 0.84647<br>2.0000 0.30706 0.15353 1.0000 |  |  |

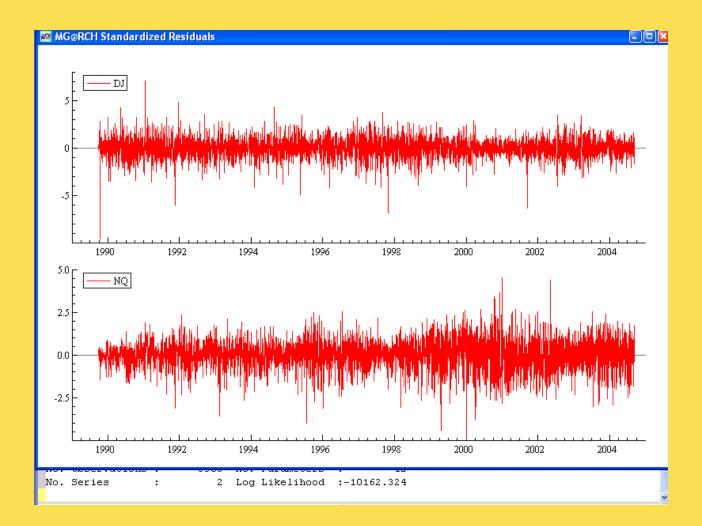
# PCA II

| 🖹 Results                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------|--|--|
| Eigenvectors                                                                                     |  |  |
| PC_1 PC_2<br>DJ -0.70711 0.70711                                                                 |  |  |
| NQ -0.70711 -0.70711                                                                             |  |  |
| Correlation between the PC and the variables                                                     |  |  |
| PC_1 PC_2                                                                                        |  |  |
| DJ -0.92004 0.39183<br>NQ -0.92004 -0.39183                                                      |  |  |
|                                                                                                  |  |  |
| O-GARCH rotation matrix                                                                          |  |  |
| Rotation matrix (Z_m = P_m L_m <sup>1/2</sup> with m=2)<br>-0.92004 0.39183<br>-0.92004 -0.39183 |  |  |
| STEP 2: ML Estimation of the GARCH-type models on the unobserved factors                         |  |  |

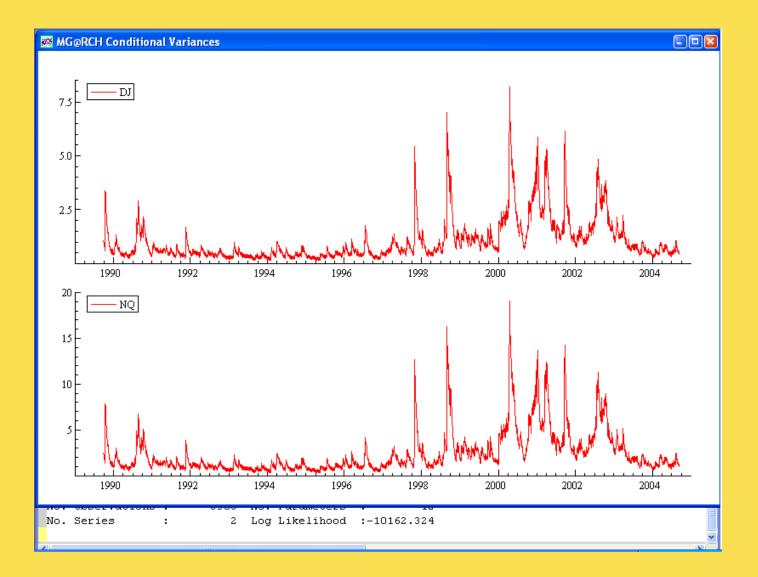
#### Univariate GARCH model for PC(1)


#### Results \*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\* SPECIFICATIONS \*\* \*\*\*\*\*\* Dependent variable : PC(1) Mean Equation : ARMA (O, O) model. No regressor in the conditional mean Variance Equation : GJR (1, 1) model. Variance Targeting 1 regressor(s) in the conditional variance. Normal distribution. Strong convergence using numerical derivatives Log-likelihood = -4916.33 Please wait : Computing the Std Errors ... Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value t-prob FRIDAY (V) 0.155899 0.064006 2.436 0.0149 0.112544 0.026261 4.286 0.0000 ARCH(Alpha1) 0.923963 0.017442 GARCH(Beta1) 52.97 0.0000 GJR (Gamma1) -0.093986 0.026911 -3.492 0.0005 -0.020710siqma^2 No. Observations : 3913 No. Parameters : 4 : -0.00000 Variance (Y) 1.00000 Mean (Y) : Skewness (Y) : 0.15700 Kurtosis (Y) 7.66192 : Log Likelihood : -4916.333 The sample mean of squared residuals was used to start recursion. Positivity & stationarity constraints are not computed because there are explanatory variables in the conditional variance equation.

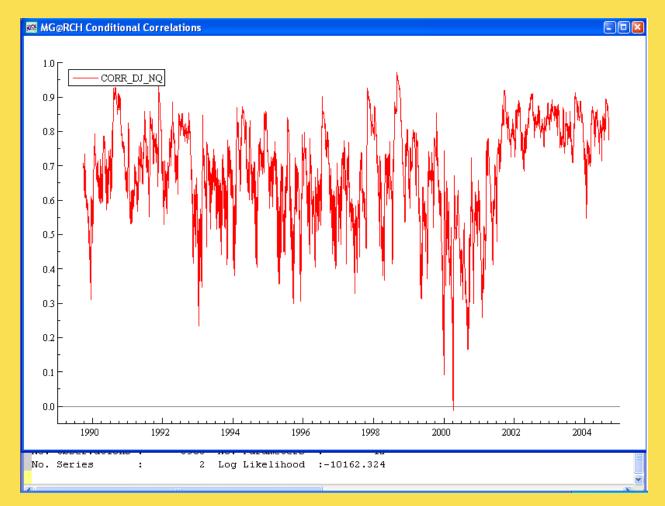
Estimated Parameters Vector : 0.155899; 0.112544; 0.923963;-0.093986


### Univariate GARCH model for PC(2)

#### Results \*\* SPECIFICATIONS \*\* \*\*\*\*\*\* Dependent variable : PC(2) Mean Equation : ARMA (O, O) model. No regressor in the conditional mean Variance Equation : GJR (1, 1) model. Variance Targeting 1 regressor(s) in the conditional variance. Normal distribution. Strong convergence using numerical derivatives Log-likelihood = -4804.16Please wait : Computing the Std Errors ... Robust Standard Errors (Sandwich formula) Coefficient Std.Error t-value t-prob FRIDAY (V) 0.061350 0.053089 1.156 0.2479 0.037768 0.010111 3.735 0.0002 ARCH(Alpha1) GARCH(Beta1) 0.952159 0.0098491 96.67 0.0000 GJR (Gamma1) 0.013421 0.010270 1.307 0.1914 sigma^2 -0.008914 No. Observations : 3913 No. Parameters : 4 Mean (Y) : -0.00000 Variance (Y) : 1.00000 : 10.02964 Skewness (Y) : 0.36774 Kurtosis (Y) Log Likelihood : -4804.160 The sample mean of squared residuals was used to start recursion. Positivity & stationarity constraints are not computed because there are explanatory variables in the conditional variance equation. Estimated Parameters Vector : 0.061350; 0.037768; 0.952159; 0.013421


# Graphs of the Raw Series




### **Graphs of Standardized Residuals**



# **Conditional Variances**



## Graph of the Conditional Correlations



# Forecasts

- Prints conditional mean forecasts
- Prints conditional variance forecasts
- Prints v-c forecasts
- Prints conditional correlation forecasts

# **Printed forecasts**

| 🖹 Results  |           |          |  |
|------------|-----------|----------|--|
| Conditiona | l Mean Fo | precast. |  |
|            |           |          |  |
| Horizon    | DJ        | NQ       |  |
| 1          | 0.03442   | 0.05863  |  |
| 2          | 0.0344    | 0.03652  |  |
| 3          | 0.0344    |          |  |
| 4          | 0.0344    |          |  |
| 5          | 0.0344    |          |  |
| 6          | 0.0344    |          |  |
| 7          | 0.0344    |          |  |
| 8          | 0.0344    |          |  |
| 9          | 0.0344    |          |  |
| 10         | 0.0344    | 0.03588  |  |
|            |           |          |  |
| Conditiona | L W C Fas |          |  |
| step 1:    | I V-C FOI | lecast.  |  |
| step I:    | DJ        | NO       |  |
| 0.46       |           | 0.53764  |  |
| 0.53       |           | 1.0837   |  |
| step 2:    |           | 1.000    |  |
|            | DJ        | NQ       |  |
| 0.46       | 125       | 0.53136  |  |
| 0.53       | 136       | 1.0732   |  |
| step 3:    |           |          |  |
|            | DJ        | NQ       |  |
| 0.45       | 679       | 0.52515  |  |
| 0.52       | 515       | 1.0628   |  |
| step 4:    |           |          |  |
|            | DJ        | NQ       |  |
| 0.59       | 878       | 0.71220  |  |
| 0.71       | 220       | 1.3932   |  |
| step 5:    |           |          |  |
|            | DJ        | NQ       |  |

# Printed forecasts-cont'd.

| 🖹 Resu | lts          |               |          |
|--------|--------------|---------------|----------|
|        | 0.86518      | 1.6673        | }        |
| step   | 10:          |               |          |
|        | DJ           | N             | 2        |
|        | 0.70956      | 0.85526       | 5        |
|        | 0.85526      | 1.6510        | )        |
|        |              |               |          |
|        |              | orrelation Fo | precast. |
| step:  |              |               |          |
|        | DJ           | N(            | _        |
|        | 1.0000       | 0.75676       |          |
|        | 0.75676      | 1.0000        | J        |
| step:  |              |               |          |
|        | DJ           | N(            | -        |
|        | 1.0000       | 0.75523       |          |
|        | 0.75523      | 1.0000        | J        |
| step:  |              |               |          |
|        | DJ<br>1.0000 | N(<br>0.75369 | -        |
|        | 0.75369      | 1.0000        |          |
| step:  |              | 1.0000        | ,        |
| scep:  | т<br>DJ      | N             | <u>`</u> |
|        | 1.0000       | 0.77975       | -        |
|        | 0.77975      | 1.0000        |          |
| step:  |              | 1.0000        |          |
| beep.  | J<br>DJ      | N             | ,<br>,   |
|        | 1.0000       | 0.77835       | -        |
|        | 0.77835      | 1.0000        |          |
| step:  | 6            | 2.0000        | -        |
|        | DJ           | N             | 2        |
|        | 1.0000       | 0.77693       | -        |
|        | 0.77693      | 1.0000        |          |
| step:  | 7            |               |          |
| -      | DJ           | N             | 2        |
|        | 1.0000       | 0.7755:       | L        |
| 21     |              |               | _        |

### **Multivariate tests**

```
Results
  * * * * * * * * * * *
 ** TESTS **
*******
Information Criteria (to be minimized)
Akaike
               5.213592 Shibata
                                      5.213573
               5.232868 Hannan-Quinn 5.220433
Schwarz
 _____
Vector Normality test: Chi^2(4) = 1071.9 [0.0000] **
Hosking's Multivariate Portmanteau Statistics on Standardized Residuals
  Hosking(5) = 25.9177 [0.1324999]
  Hosking( 10) = 42.0959 [0.3384236]
  Hosking( 20) = 107.230 [0.0190009]
  Hosking( 50) = 243.977 [0.0163043]
Warning: P-values have been corrected by 1 degree of freedom
 _____
Hosking's Multivariate Portmanteau Statistics on Squared Standardized Residuals
  Hosking(5) = 287.508 [0.000000]
 Hosking( 10) = 509.086 [0.000000]
 Hosking( 20) = 810.765 [0.000000]
  Hosking( 50) = 1779.90 [0.0000000]
Warning: P-values have been corrected by 2 degrees of freedom
 _____
Li and McLeod's Multivariate Portmanteau Statistics on Standardized Residuals
 Li-McLeod( 5) = 25.9187 [0.1324717]
 Li-McLeod( 10) = 42.1044 [0.3380914]
 Li-McLeod( 20) = 107.152 [0.0192378]
 Li-McLeod( 50) = 243.785 [0.0166497]
Warning: P-values have been corrected by 1 degree of freedom
 _____
```

-

# Generalized OGARCH (van der Weide, 2002)

- One can test whether the correlations between the components are really zero.
- This model outperforms the OGARCH sometimes, generating a log-likelihood may be lower.
- The orthogonality assumption between OGARCH components is relaxed. Rather the Z matrix in

$$u_t = Zf_t$$

- is assumed to be square and invertible only.
- (Laurent, 2007, class notes).

# GOGARCH - (Laurent notes, con'td)

where P and L are defined as the eigenvectors and eigenvalues,

$$m = N, Z_m = Z = PL^{1/2}U$$

and

U is the product of N(N-1)/2 rotation matrices:

$$U = \prod_{i < j} G_{ij}(\delta_{ij}), \quad -\pi \le \delta_{ij} \le \pi, \quad i, j = 1, 2, ..., n$$

### **Generalized Orthogonal GARCH**

 $R_t = J_t^{-1} V_t J_t^{-1}$ 

where

- $R_t = implied \ correlation \ matrix$
- $J_t = (V_t e I_m)^{1/2}$  and  $V_t = Z\Sigma Z'$
- e =Hadamard (element by element) product

# Specification tests (Laurent notes cont'd).

- The specification tests (univariate and multivariate) are used to assess the fit and specification of the model.
- Univariate tests are applied to each u<sub>it</sub>
- Univariate tests are applied to each z<sub>it</sub>.
   Univariate tests are applied to each u<sub>it</sub>u<sub>jt</sub> to assess the covariance specification.
- Multivariate tests are applied to the vector z<sub>t</sub> as a whole.

# **Rotation matrices**

For the trivariate case, the rotation matrices are

$$G_{12} = \begin{pmatrix} \cos \delta_{12} & \sin \delta_{12} & 0 \\ -\sin \delta_{12} & \cos \delta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad G_{13} = \begin{pmatrix} \cos \delta_{12} & \sin \delta_{12} & 0 \\ 0 & 1 & 0 \\ -\sin \delta_{13} & \cos \delta_{13} & 0 \end{pmatrix}$$

There are N(N-1)/2 rotation angles are the parameters to be Estimated.

# **Conditional Correlation Models**

- Bollerslev(1990) introduced constant conditional correlation estimator.
- The Dynamic conditional Correlation between the conditional variances is made time-varying by Engle.
- Forecasts are possible
- Graphs of conditional correlations are possible
- Application: Better for computing time-varying hedge ratios than a linear regression model.
- Takes into account conditional heteroskedasticity in the spot market.

# **Conditional Correlation Models**

- Bollerslev's (1990) Constant Conditional Correlation
- Tse and Tsui(2002) Dynamic Conditional Correlation
- Engle(2002) Dynamic Conditional Correlation

# Constant Conditional correlation (Bollerslev, 1990)

- Two or more univariate GARCH models are estimated.
- Nonlinear combinations of conditional variances from different GARCH models

$$H_t = D_t R D_t = (\rho_{ij} \sqrt{h_{iit} h_{jjt}})$$

where

$$\begin{split} D_t &= diag(h_{11t}^{1/2}, h_{22t}^{1/2}, ..., h_{NNt}^{1/2}) \\ h_{iit} &= any \; univariate \; GARCH \; model \\ R &= \rho_{ij} \; (a \; symmetric \; positive \; definite \; matrix \; with \; \rho_{ij} = 1, \; \forall i \end{split}$$

# Constant conditional correlationcont'd

Originally, the CCC model had a GARCH(1,1) specification for each Conditional variance in  $D_{t:}$ 

$$h_{iit} = \omega_i + \alpha_i \varepsilon_{i,t-1}^2 + \beta_i h_{ii,t-1}$$

The CCC model has N(N+5)/2 parameters.  $H_t$  is positive definite if and only if all N conditional variances are positive and R is positive definite. The unconditional variances are easy to obtain but unconditional covariances are difficult to calculate because of nonlinearity (Laurent,S. G@RCH manual 192).

# Dynamic Conditional Correlations: A new class of MGARCH

- "Rob Engle (1999) in "Dynamic Conditional Correlation— A Simple Class of Multivariate GARCH Modles, has written that, "Time-varying correlations are often estimated with MGARCH that are linear in their squares and cross-products."
- "They have flexibility of univariate GARCH models...."
- "They do not have the complexity of MGARCCH."
- "They have parsimonious parametric models for the correlations."
- They perform well in a variety of situations and provide sensible empirical results."

# DCC models

- Advantages:
  - The number of parameters to be estimated is independent of the number of series to be correlated.
  - Potentially very large correlation matrices can be estimated.
  - The rolling correlation estimator can be computed.

# Dynamic Conditional Correlation (Tse and Tsui, 2002)

 $H_t = D_t R_t D_t$ 

where

 $D_{t} = diag(h_{11t}^{1/2}, h_{22t}^{1/2}, ..., h_{NNt}^{1/2})$  $h_{iit} = any \ univariate \ GARCH \ model$ so that

$$R_t = (1 - \theta_1 - \theta_2)\overline{R} + \theta_1 \psi_{t-1} + \theta_2 R_{t-1}$$

where R = a symmetric positive definite parameter matrix

with 
$$\rho_{ii} = 1$$
, and  

$$\psi_{t-1} = \frac{\sum_{m=1}^{M} \varepsilon_{i,t-m}}{\sqrt{\left(\sum_{m=1}^{M} \varepsilon_{i,t-m}^{2}\right) \left(\sum_{m=1}^{M} \varepsilon_{j,t-m}^{2}\right)}}$$

#### Tse and Tsui's Dynamic Conditional Correlation make R time dependent

 $R_t = (1 - \theta_1 - \theta_2)\overline{R} + \theta_1 \psi_{t-1} + \theta_2 R_{t-1}$ 

where R = a symmetric positive definite parameter matrix

with  $\rho_{ii} = 1$ , and

$$\psi_{t-1} = \frac{\sum_{m=1}^{M} \varepsilon_{i,t-m} \varepsilon_{j,t-m}}{\sqrt{\left(\sum_{m=1}^{M} \varepsilon_{i,t-m}^{2}\right) \left(\sum_{m=1}^{M} \varepsilon_{j,t-m}^{2}\right)}} = B_{t-1}^{-1} L_{t-1} L_{t-1}^{'} B_{t-1}^{-1}$$

where  $\varepsilon_{it} = \frac{e_{it}}{\sqrt{h_{iit}}}$  and  $B_{t-1} = NxN$  diagonal matrix with i - th diagonal

element given by 
$$\sqrt{\left(\sum_{m=1}^{M} \varepsilon_{i,t-h}^{2}\right)}$$
 and  $L_{t-1} = (\varepsilon_{t-1,\dots}, \varepsilon_{t-m}) = NxN$  with  $\varepsilon_{t} = (\varepsilon_{1t}, \varepsilon_{2t}, \dots, \varepsilon_{Nt})'$ 

166

# Tse and Tsui's DCC

$$\overline{R} = \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t \varepsilon_t'$$

Only if  $R_t$  has  $M \le N$  order will  $\psi_{t-1}$  be assured of positivity.

# Dynamic Conditional Correlation (Engle, 2002)

Tse and Tsui

$$\rho_{12t} = (1 - \theta_t - \theta_2)\rho_{12} + \theta_2\rho_{12,t-1} + \theta_1 \frac{\sum_{m=1}^{M} \varepsilon_{i,t-m} \varepsilon_{j,t-m}}{\sqrt{\left(\sum_{m=1}^{M} \varepsilon_{i,t-m}^2\right) \left(\sum_{m=1}^{M} \varepsilon_{j,t-m}^2\right)}}$$
Covariance
Engle
$$\rho_{12t} = \frac{(1 - \alpha - \beta)\overline{q}_{12} + \alpha \varepsilon_{1,t-1} \varepsilon_{2,t-1} + \beta q_{12,t-1}}{\sqrt{\left((1 - \alpha - \beta)\overline{q}_{11} + \alpha \varepsilon_{1,t-1}^2 + \beta q_{11,t-1}\right) \left((1 - \alpha - \beta)\overline{q}_{22} + \alpha \varepsilon_{2,t-1}^2 + \beta q_{22,t-1}\right)}}$$
Std devs

# Engle's DCC

 $R_{t} = diag(q_{11,t,\dots}^{-1/2} q_{NN,t}^{-1/2})Q_{t}diag(q_{11,t,\dots}^{-1/2} q_{NN,t}^{-1/2}),$ where  $Q_{t} = (q_{11,t}^{-1/2})$  is an NxN symmetric positive definite matrix given by

$$Q_{t} = \overline{R} \left( 1 - \alpha - \beta \right) + \alpha \left( \varepsilon_{t-1} \varepsilon'_{t-1} \right) + \beta Q_{t-1}$$

Equation borrowed from Rob Engle's presentation on DCC, ISF2007.

# Parsimony prevails

 If the individual processes are GARCH(1,1), the DCC has only (N+1)(N+4)/2 parameters.

# Two-step Quasi-Maximum Likelihood Estimation

- Engle and Sheppard (2001) show that in the DCC case, the log-likelihood can be written as the sum of the mean and volatility part.
- Step 1 and 2: QML function corresponds to the sum of the LL functions of N univariate models.

$$QL1_{t}(\theta_{1}^{*}) = -\frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \left[ \log(h_{iit}) + \frac{(y_{it} - \mu_{it})^{2}}{h_{iit}} \right]$$

Given  $\theta_1^*$  a consistent though inefficient estimator of  $\theta_2^*$  comes from max imizing :

$$QL1_{t}(\theta_{2}^{*}) = -\frac{1}{2} \sum_{t=1}^{T} \left( \log |Rt| + \mu_{t}^{'} R^{-1} \mu_{t} \right)$$
  
where  $\mu_{t} = D_{t}^{-1} (y_{it} - \mu_{it})$ 

# Engle DCC output

```
----- 🗠
     ******
     ** SPECIFICATIONS **
     Dependent variable : DJ
  Mean Equation : ARMA (1, 0) model.
  No regressor in the conditional mean
  Variance Equation : GJR (1, 1) model.
  No regressor in the conditional variance
  Normal distribution.
  Weak convergence (no improvement in line search) using numerical derivatives
  Log-likelihood = -5150.9
  Please wait : Computing the Std Errors ...
    Robust Standard Errors (Sandwich formula)
                                         Coefficient Std.Error t-value t-prob
                                              0.029764 0.013591 2.190 0.0286
0.021967 0.017049 1.288 0.1977
0.011930 0.0047754 2.498 0.0125
  Cst(M)
   AR(1)
  Cst (V)

        ARCH(Alpha1)
        0.008823
        0.0068322
        1.291
        0.1966

        GARCH(Beta1)
        0.936954
        0.016569
        56.55
        0.0000

        GJR(Gamma1)
        0.081739
        0.024269
        3.368
        0.0008

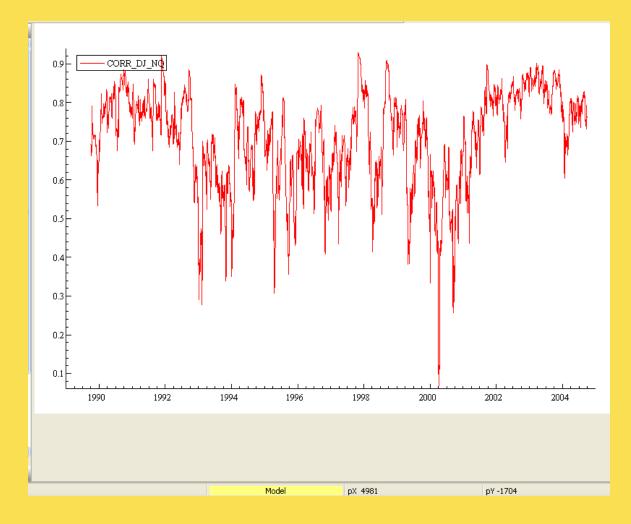
  No. Observations : 3913 No. Parameters :
  Mean (Y) : 0.03369 Variance (Y) : 1.02307
  Skewness (Y) : -0.30325 Kurtosis (Y) : 8.12068
  Log Likelihood : -5150.903
  The sample mean of squared residuals was used to start recursion.
  The condition for existence of the second moment of the GJR is observed.
  This condition is alpha(1) + beta(1) + k qamma(1) < 1 (with k = 0.5 with this distribution.)
  In this estimation, this sum equals 0.986647.
  The condition for existence of the fourth moment of the GJR is observed.
  The construction constant of the state of th
٠.
```

# Engle's DCC

```
-----Estimating the univariate GARCH model for NQ------Estimating the univariate GARCH model for NQ-----
 ****************
 ** SPECIFICATIONS **
 Dependent variable : NQ
Mean Equation : ARMA (1, 0) model.
No regressor in the conditional mean
Variance Equation : GJR (1, 1) model.
No regressor in the conditional variance
Normal distribution.
Strong convergence using numerical derivatives
Log-likelihood = -6245.8
Please wait : Computing the Std Errors ...
 Robust Standard Errors (Sandwich formula)
                 Coefficient Std.Error t-value t-prob
Cst(M)
                    0.044543 0.017815 2.500 0.0125
AR(1)
                   0.110349 0.017202 6.415 0.0000
Cst(V)
                   0.015383 0.0059041 2.605 0.0092
ARCH(Alpha1)
                   0.039653 0.010897 3.639 0.0003
GARCH(Beta1)
                   0.912374 0.018410
                                         49.56 0.0000
                   0.079668 0.024063 3.311 0.0009
GJR (Gamma1)
No. Observations :
                      3913 No. Parameters :
                                                    6
Mean (Y)
                : 0.03527 Variance (Y)
                                           : 2.38111
Skewness (Y)
                : -0.01238 Kurtosis (Y)
                                           : 8.76442
Log Likelihood : -6245.795
The sample mean of squared residuals was used to start recursion.
The condition for existence of the second moment of the GJR is observed.
This condition is alpha(1) + beta(1) + k gamma(1) < 1 (with k = 0.5 with this distribution.)
In this estimation, this sum equals 0.99186.
The condition for existence of the formet momenty of the ATD is not channed
```

## Engle's Dynamic Conditional Correlation

```
* * * * * * * * * * * * *
                   ** SERIES
                   * * * * * * * * * * * *
                         #
                         1
                   ٥J,
                   IO.
                         2
                   ** MG@RCH( 2) SPECIFICATIONS **
                   *************************
                   onditional Variance : Dynamic Correlation Model (Engle)
                   ultivariate Student distribution, with 8.25629 degrees of freedom.
                  trong convergence using numerical derivatives
                   .og-likelihood = -9659.62
                  Please wait : Computing the Std Errors ...
Alpha
                   Robust Standard Errors (Sandwich formula)
                                    Coefficient Std.Error t-value t-prob
Beta
                   lpha
                                      0.044075 0.0062293
                                                           7.075 0.0000
                                      0.945047 0.0087833 107.6 0.0000
                   eta
                                       8.256294
                                                  0.70803 11.66 0.0000
df
                   Inconditional Correlation (CCC)
                  :ho 21
                                      0.692362
                  Jo. Observations :
                                         3913 No. Parameters :
                                                                        16
                  Jo. Series
                                            2 Log Likelihood : -9659.624
                                 :
                  lapsed Time : 0.172 seconds (or 0.00286667 minutes).
```


# Forecasts

| Condi  | tional | Mean  | . Fo | precast. |
|--------|--------|-------|------|----------|
| Horiz  | on     |       | DJ   | NQ       |
|        | 1 0    | 0.016 | 24   | -0.07605 |
|        | 2 0    | 0.029 | 47   | 0.03124  |
|        | 3 0    | 0.029 | 76   | 0.04307  |
|        | 4 0    | 0.029 | 76   | 0.04438  |
|        | 5 0    | 0.029 | 76   | 0.04453  |
|        | 6 0    | 0.029 | 76   | 0.04454  |
|        | 7 0    | 0.029 | 76   | 0.04454  |
|        | 8 0    | 0.029 | 76   | 0.04454  |
|        | 9 0    | 0.029 | 76   | 0.04454  |
| :      | 10 0   | 0.029 | 76   | 0.04454  |
|        |        |       |      |          |
| Condi  | tional | v-c   | For  | recast.  |
| step : | 1:     |       |      |          |
| -      | I      | J     |      | NQ       |
|        | 0.6168 | 36    |      | 0.64156  |
|        | 0.6415 | 56    |      | 1.1277   |
| step 2 | 2:     |       |      |          |
|        | I      | J     |      | NQ       |
|        | 0.6205 | 55    |      | 0.64441  |
|        | 0.6444 | ł1    |      | 1.1339   |
| step : | 3:     |       |      |          |
|        | I      | J     |      | NQ       |
|        | 0.6242 | 20    |      | 0.64723  |
|        | 0.6472 | 23    |      | 1.1401   |
| step 4 | 4:     |       |      |          |
|        | I      | J     |      | NQ       |
|        | 0.6277 | 79    |      | 0.65002  |
|        | 0.6500 | 02    |      | 1.1462   |
| step ! | 5:     |       |      |          |
| -      | I      | J     |      | NQ       |
|        | 0.6313 | 84    |      | 0.65277  |
|        | 0 6505 |       |      | 1 1500   |

### Forecasts of conditional correlation

| step: | 1            |               |
|-------|--------------|---------------|
|       | DJ           | NQ            |
|       | 1.0000       | 0.76920       |
|       | 0.76920      | 1.0000        |
| step: | 2            |               |
|       | DJ           | NQ            |
|       | 1.0000       | 0.76820       |
|       | 0.76820      | 1.0000        |
| step: | 3            |               |
|       | DJ           | NQ            |
|       | 1.0000       | 0.76723       |
|       | 0.76723      | 1.0000        |
| step: | 4            |               |
|       | DJ           | NQ            |
|       | 1.0000       | 0.76628       |
|       | 0.76628      | 1.0000        |
| step: | 5            |               |
|       | DJ           | NQ            |
|       | 1.0000       | 0.76534       |
|       | 0.76534      | 1.0000        |
| step: | 6            |               |
|       | DJ           | NQ            |
|       | 1.0000       | 0.76443       |
|       | 0.76443      | 1.0000        |
| step: | 7<br>DJ      | 200           |
|       | 1.0000       | NQ<br>0.76354 |
|       | 0.76354      | 1.0000        |
| aton. | 0.76354<br>8 | 1.0000        |
| step: | o<br>DJ      | NQ            |
|       | 1.0000       | NQ<br>0.76266 |
|       | 0.76266      | 1.0000        |
| step: |              | 1.0000        |
|       |              |               |

### **Graphical Conditional Correlation**



# Diagnostic Tests for Conditional Correlations

- Testing for misspecification of the conditional mean or variance equation:
- Hosking's (1980) Multivariate Box-Ljung Q statistics:

 $Hosking(1980)(m) = T^{2} \sum_{j=1}^{m} (T-J)^{-1} tr\{C_{y_{t}}^{-1}(0)C_{y_{t}}(j)C_{y_{t}}^{-1}(0)C_{y_{t}}(j)\}$ 

where

 $y_t = vector \ of \ observed \ returns$  $C_{y_t}(j) = sample \ autocovariance \ matrix \ of \ order \ j$  $H_0: no \ serial \ correlation$ 

# Testing Misspecification in mean model

 Qing Li and Dennis McLeod's(1981) Multivariate Portmanteau test of residuals and squared residuals (Li, W.K.(2004) Diagnostic Checks in Time Series, p.10)

$$Q_m^* = Q_m + \frac{k^2 m(m+1)}{2m} \sim \chi^2 \text{ with } df = k^2 (m-s)$$

where

$$Q_{m} = n \sum_{k=1}^{m} \hat{r}_{k}^{2} = Box - Pierce \ statistic,$$
  

$$m = lag \ order,$$
  

$$k = N$$
  

$$s = p + q \ from \ ARMA(p,q) \ orders$$
  
This test is applied to  $z^{2}$  to test misspecification in variance model.

# We opt for the tests in the Test Menu

| Test Menu              |           |   |
|------------------------|-----------|---|
| Test Menu              |           | _ |
| Tests                  |           |   |
| Graphic Analysis       |           |   |
| Forecast               |           |   |
| Exclusion Restrictions |           |   |
| Linear Restrictions    |           |   |
| Store                  |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           |   |
|                        |           | — |
|                        | OK Cancel |   |

# Select both univariate and multivariate tests

| Test | ts - MGARCH Models                                           |               |
|------|--------------------------------------------------------------|---------------|
|      | Available Tests:                                             |               |
|      | Information Criteria                                         |               |
|      | Univariate Tests                                             |               |
|      | Normality Test                                               |               |
|      | Box/Pierce on Standardized Residuals                         |               |
|      | Box/Pierce on Squared Standardized Residuals                 |               |
|      | with lags:                                                   | 5; 10; 20; 50 |
|      | Multivariate Tests                                           |               |
|      | Normality Test                                               |               |
|      | Hosking's Portmanteau Test on standardized residuals         |               |
|      | Hosking's Portmanteau Test on squared standardized residuals |               |
|      | Li and McLeod Test on standardized residuals                 |               |
|      | Li and McLeod Test on squared standardized residuals         |               |
|      | with lags:                                                   | 5; 10; 20; 50 |
|      |                                                              |               |

OK

Cancel

181

# Univariate test output

#### Individual Normality Tests

\_\_\_\_\_

#### Series: DJ

|                 | Statistic | t-Test | P-Value     |
|-----------------|-----------|--------|-------------|
| Skewness        | -0.20445  | 5.2084 | 1.9044e-007 |
| Excess Kurtosis | 2.0549    | 26.182 | 4.3002e-151 |
| Jarque-Bera     | 711.71    | .NaN   | 2.8505e-155 |

#### Series: NQ

|                 | Statistic | t-Test | P-Value     |
|-----------------|-----------|--------|-------------|
| Skewness        | -0.28676  | 7.3055 | 2.7631e-013 |
| Excess Kurtosis | 0.77813   | 9.9141 | 3.6133e-023 |
| Jarque-Bera     | 151.49    | .NaN   | 1.2698e-033 |

#### Q-Statistics on Standardized Residuals

| Series: | DJ |         |             |
|---------|----|---------|-------------|
| Q( 5)   | =  | 2.36824 | [0.7961946] |
| Q( 10)  | =  | 4.02344 | [0.9462835] |
| Q( 20)  | =  | 14.1554 | [0.8225299] |
| Q( 50)  | =  | 48.0901 | [0.5503445] |
|         |    |         |             |

#### Series: NQ

-----

| Q( | 5)  | = | 4.52248 | [0.4768815] |  |  |
|----|-----|---|---------|-------------|--|--|
| Q( | 10) | = | 6.28587 | [0.7907014] |  |  |
| Q( | 20) | = | 29.9389 | [0.0708505] |  |  |
| Q( | 50) | = | 57.8160 | [0.2089322] |  |  |
|    |     |   |         |             |  |  |

#### HO : No serial correlation ==> Accept HO when prob. is High [Q < Chisq(lag)]

## Multivariate test output

```
Vector Normality test: Chi^2(4) = 470.70 [0.0000]**
Hosking's Multivariate Portmanteau Statistics on Standardized Residuals
 Hosking( 5) = 19.2460 [0.3768221]
 Hosking( 10) = 32.8050 [0.7081488]
 Hosking( 20) = 96.0638 [0.0807449]
 Hosking(50) = 241.289 [0.0193504]
Warning: P-values have been corrected by 2 degrees of freedom
 _____
Hosking's Multivariate Portmanteau Statistics on Squared Standardized Residuals
 Hosking( 5) = 29.9095 [0.0383354]
 Hosking(10) = 48.7847 [0.1129106]
 Hosking(20) = 91.0632 [0.1479374]
 Hosking( 50) = 202.751 [0.3934625]
Warning: P-values have been corrected by 2 degrees of freedom
Li and McLeod's Multivariate Portmanteau Statistics on Standardized Residuals
 Li-McLeod( 5) = 19.2488 [0.3766544]
 Li-McLeod( 10) = 32.8200 [0.7074994]
 Li-McLeod( 20) = 95.9928 [0.0814885]
 Li-McLeod( 50) = 241.016 [0.0199243]
Warning: P-values have been corrected by 2 degrees of freedom
Li and McLeod's Multivariate Portmanteau Statistics on Squared Standardized Residuals
 Li-McLeod( 5) = 29.9049 [0.0383810]
 Li-McLeod( 10) = 48.7843 [0.1129181]
 Li-McLeod( 20) = 91.0619 [0.1479583]
 Li-McLeod( 50) = 202.804 [0.3924522]
Warning: P-values have been corrected by 2 degrees of freedom
 _____
```

# **Recapitulation of New Features**

- Autometrics
  - Automatic variable and model selection
  - Outlier and level shift detection and modeling
  - For univariate and multivariate models
- G@RCH
  - Wide variety of vanilla GARCH
  - VaR backtesting
    - Kupiec tests
    - Dynamic Quantile regression
    - Expected shortfall
  - Wide variety of Long-Memory GARCH
  - Ox Code is generated from ALT-O
  - Diffusion modeling for continuous time analysis
  - Simulated confidence intervals are CEV forecasts
  - Multivariate GARCH
  - Conditional Correlations